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1 Introduction

Recent work on the neural networks have shown great improvements over traditional machine learn-
ing algorithms. Especially in computer vision where a high adaptive capacity for a wide range of
pattern recognition problems was demonstrated. The convolutional neuron network (AlexNet)[11]
improved the classification accuracy of TOP-5 images in ImageNet [12] datasets from 73.8% to
84.7% and helped to improve the performance of different computer vision problems [13] with its
ability to extract features. However, the complexity of its calculation and storage is high. According
to current research, the size of the RN model continues to increase. In Table 1, we list the number
of operations (additions or multiplications), the number of parameters and the top-1 precision
on the ImageNet dataset [12] of the Convolutional Neural Networks (CNN) models found in the
literature for image classification, object detection, and image segmentation.

For instance, one of the largest and widely used CNN requires 39 billion floating point (FLOP)
operations with an image size of 224× 224 and has a model parameter of 500 MB (VGG[14]). The
complexity of the calculations is proportional to the size of the input, then, the calculation of high
resolution images will require more than 100 billion operations.

Therefore, it is important to select a computing architecture for any CNN based solution. A
typical CPU runs 10 to 100 GFLOP per second. Energy efficiency is often less than 1 GOP per
day. The CPUs are difficult to apply to cloud applications that require high performance in terms
FLOP and mobile applications that require low power consumption. On the other hand, GPUs
offer high performance up to 10 TOP per second.

Usually, hardware accelerators are based on ASIC [12] or FPGA [13, 14]. ASIC-based accelera-
tors offer the highest performance and energy efficiency, but must withstand considerable develop-
ment costs. Because of their reconfigurable nature, FPGA-based accelerators are more economical
given development costs.

For years, FPGA developers have been struggling with difficult-to-use Register Transfer Level
(RTL) programming languages such as VHDL and Verilog HDL. This makes programming a major
issue for the FPGA. Thus, FPGA providers are beginning to provide high-level synthesis tools such
as the OpenCL framework [15] to enable FPGA programming using high-level languages. Although
developers can easily port codes originally designed for CPUs / GPUs to FPGAs with the OpenCL
framework, it is still difficult to make OpenCL codes run efficiently on FPGAs. The same code may
have different performance on different platforms because of the different execution methods related
to the architecture. Therefore, developers must consider the FPGA architecture when optimizing
OpenCL code.

The main contributions of this work are as follows: (1) an OpenCL based FPGA accelerator with
an efficient pipelined kernel structure is proposed for large scale network (CNN) implementation;
(2) the design space of the proposed architecture was fully explored on the Arria FPGA 10 and
Stratix-10, two large-scale CNN models, were implemented and tested. The results show that the
proposed scheme improves performance and resource utilization compared to previous work.

The rest of the paper is organized as follow: in the next section we recall CNN definition. In
section 3, the proposed implementation is presented. The obtained results are shown in the section
4. The conclusion ends the paper.
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2 F. Keddous, H-N Nguyen and A. Nakib

2 Convolution Neural Network

In this section, we present the basic functions of a neural network and we focus only on the inference
procedure, which means that the Neural Network model was already trained and validated to
predict or classify new data.

The basic architectural ideas of a Convolution Neural Network (CNN) [5] consist of the local re-
ceptive fields via the convolution operation and the spatial sub-sampling via the pooling operation.
The Convolution operation can be formally written as:

fC,lx,y,h = wl
h

T
fOp,l−1x,y + blh (1)

where wl
h and blh are the weights and bias of the hth feature map, fOp,l−1 and fC,lx,y,h are the

input and output feature maps, l denotes the layer and (x, y) is the spatial image coordinate. The
superscript C denotes convolution and Op represents various operations, e.g., input (when l = 1),
convolution, pooling, activation, etc.

Pooling applies local operations, e.g., computing the maximum within a local neighborhood
has the following form:

fPmax,l
x,y,h = max(m,n)∈Nx,y

(fOp,l−1m,n,h ) (2)

where Nx,y denotes the local spatial neighborhood and Pmax denotes the max pooling. Often
a spatial resolution reduction is applied after the max-pooling operation. Besides the two above-
mentioned operations, there are several strategies applied within the CNN models, such as non-
linear activation (e.g., the Rectified Linear Unit (ReLU) [6]), dropout [7] and batch normalization
[8]. A Fully Connected (FC) layer, can be added at the end of the concatenated layers. It takes
all nodes (neurons) from the feature maps of the previous layer as input and connects it to every
nodes (neurons) of the output feature map. At the last layer, called dense layer, of the CNN models
(referred to as the prediction layer), it is the common to use the Softmax activation function defined
as follows:

Softmax =

(
exp (zj)∑K
g=1 exp (zg)

)K

j=1

(3)

where K denotes the number of categories or classes, z = (z1, . . . , zK) is the output of the affine
transformation in the dense layer.

Then, the convolution (CONV) layers and the dense layer of fully connected layer (FC) layers
are two common types of layers most of architectures. CONV layers conduct two-dimensional (2D)
convolutions on a set of input feature maps and add the results to get output feature maps. FC
layers receive a feature vector as input and conduct matrix-vector multiplications.

Besides CONV and FC layers, NN layers also have pooling, ReLU, concat[9], elementwise[10],
and other types of layers. But these layers contributes little to the computation and storage re-
quirement of a neural network model. Figure1 shows the distribution of weights and operations in
the VGG-11 model. In this model, CONV and FC layers together contribute more than 99% of
the network’s weights and operations, which is similar to most of the CNN models. It is obvious
that most of the neural network acceleration systems must be focus on these two types of layers.

3 Proposed implementation

In this work, we used an Altera FPGA Development Kit to build our CNN accelerator. In particular,
the overall memory controller is a DDR3/DDR4 controller, the link controller is a PCIe controller,
and the host computer is a desktop PC based on an x86 architecture.

The figure2 illustrates the proposed architecture that consists of four kernels which are con-
nected using Altera OpenCL extension channel/pipes.

The single threaded Convolution kernel is designed to implement both the 3D multiply-accumulate
operation, defined by:

D0(f0, y, x) =

Cl∑

fi=1

K−1∑

ky=0

K−1∑

kx=0

Wl(f0, fi, ky, kx)Di(fi, y + ky, x+ kx) (4)

3
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Fig. 1. Distribution of the parameters and the operations in chain based architecture. Example of VGG
with 11 layers.

where Di(fi, y, x) and D0(f0, y, x) denote the neurons located at position (x, y) in the input feature
map fi, and the output feature map f0, respectively. Wl(f0, fi, y, x) represents the corresponding
weights in the lth layer which is convoluted with fi. The size of the convolution filters is K ×K,
while the total number of input feature maps is Cl. In this paper, we propose to implement 4 using
a 1-D convolution structure that flattens 3-D convolution as follows:

D0(f0) =

Cl×K×K∑

xi=1

Wl(f0, xi)Di(xi) (5)

where xi is the index of the parameters of the layer i. Local response normalization (LRN) layers
that perform normalization operations on each inputv neuron value by a factor that depends on
the neighboring neurons are also used following the pooling layer.

Therefore, we avoid nested 5-way loops levels and we get a 2-level nested loop structure, there-
fore, the multiplier-adder tree structure with a buffer can be efficiently pipelined by the OpenCL
compiler.

Two DataIN and DataOut data transfer kernels inspired by the work of [2], two NDRange 3-D
multi-mode transfer data of characteristics and weights from / to the global memory.

In addition to the most compute-intensive convolution kernel, we have designed new OpenCL
kernels to speed-up layer operations widely used in CNNs, such as pooling, etc. Therefore, our pro-
posed model can handle the CNN Forward compute stream with very small host CPU involvement,
resulting in high throughput and low latency.

Cascading kernels form a deep compute pipeline able to implement a series of basic CNN
operations without the need to store the interlayer data in global memory. It greatly reduces the
bandwidth requirements.

Fig. 2. Proposed CNN accelerator architecture. LRN: local response normalization
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4 Results and discussions

In this section, we present the results of the implementation of the OpenCL model proposed on
the Alaric board based on Altera Arria 10 GX FPGA and the NallaTech board based on statix -
10 GX 2800.

The Arria 10 FPGA includes 660K logical elements (LE) 1687 DSP blocks and 42MB M20K,
while the stratix 10 FPGA includes 2753K logical elements (LE), 5760 DSP blocks and 229MB
M20K memory.

It should be noted that the card has a 2 GB DDR3 DRAM connected to the FPGA which
functions as global memory for Alaric and 32 GB of DDR4 for Nallatech. OpenCL kernel codes
are compiled using Altera OpenCL SDK v16.0 (Alaric) and v18.0 (Nallatech).

The host computer is equipped with an Intel Core i5-4590 processor and is running Ubuntu
Linux 14.04.3. We followed the same methodology described in [11].

and we implemented the basic design on the same Arria 10 platform. We also use the Caffe
[6] convolutional learning framework as a baseline for our CPU. We extract the input image, pre-
trained weights and output functions of Caffe. We compare the result of our implementation with
the result of Caffe to verify functional correctness.

Two large-scale CNN models: AlexNet (8 layers) and ResNet-50 (50 layers) models were used
as benchmarks to measure performance.

Since CNNs are intensive floating multiplications, the number of DSPs consumed is used as a
metric for evaluating performance. As in [2] the proposed CNN design implements full-precision
direct computation (32-bit float format), which also makes it favorable for implementing back-
propagation flow in the learning phase of the model. To make fair comparison, we provided the
normalized performance as ”performance density” in the table. It can be noticed that the proposed
implementation takes efficiently profit from the DSPs. The classification time is also better than
all other implementations.

Table 1. Comparison with other works. 2016a is in [3], FPGA2015 is in [4], and FPGRA2016b is in [2]
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This contribution deals with the optimization of highly expensive black-box functions, used
in engineering applications. Thus, optimization of such systems becomes a challenging task which
cannot be solved with classical optimization algorithms. One way to alleviate this cost is to use
surrogate models and replace black-box functions by a cheaper and faster model. Based on a
training set which contains prior knowledge about the function, surrogate modelling have already
exhibited probant results [1–3]. From all surrogate models, Gaussian Process represents one of
the most efficient surrogate model due to its ability to resist overfitting and quantify modelling
uncertainty. Several authors have highlighted performances of Gaussian Process in brake squeal
analysis [4, 5], identification of breathing cracks of rotors [6] and digital twins [7].

Albeit Gaussian Process is a practical surrogate model, problematical predictions may arise
from a loss of correlation between the samples of the training set, due to a small lengthscale after
optimization of the surrogate model [8, 7, 9]. This issue is all the more frequent when the function
under study is highly non linear, non stationary and multimodal.

In this contribution, we investigate the impact of this phenomenon on Bayesian Optimization
and suggest a method to handle it. Then, the performance of the suggested strategy is assessed
with a one mathematical problem well known in the literature.

1 Theoretical aspects

Gaussian Processes (hereby denoted GP) are a probabilistic class of surrogate models where the

output prediction Ŷ is described as a Gaussian random vector. Its first two statistical moments
(mean ŷ and variance ŝ) are shown in (Eq. 1) for a given set of parameter values x∗.

ŷ(x∗) = C(x∗,X)C(X,X)−1y

ŝ(x∗) = C(x∗,x∗)−C(x∗,X)C(X,X)−1C(x∗,X)T (1)

where C(·, ·) is the covariance matrix, X the matrix of input parameter values and y the vector of
solutions of the solver given X.

The numerical workflow for Bayesian Optimization with GP is shown in Fig. 1, as long as the
references to corresponding equations. The notations in Fig. 1 rely on the following data, namely
σk is the signal variance (or nugget), θi is the lengthscale associated with the dimension i, n is the
number of input parameter values of X, k is an hyperparameter value which controls the constraint
over the likelihood and ε is a precision parameter equal to 5 · 10−3.

At first, a training set, initialized with a Latin Hypercube Sampling procedure, is computed
to provide prior knowledge about the behavior of the considered function. Then, the inference is
performed by selecting a covariance function (Eq. 2) and finding θi that maximize the likelihood
(Eq. 3). In this communication, we mainly focus on Gaussian likelihood and Matern 3/2 covariance
function. Finally, the prediction is carried out using (Eq. 1).

In Bayesian Optimization, the mean and variance of output prediction Ŷ is used to determine
the location of a solution which represents the best guess for the true global optimum of the

7
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considered function. Via iterative incrementations of the training set and the use of an acquisition
function to determine the new best candidate, the algorithm converges toward the global optimum.

Fig. 1: Workflow of Bayesian Optimization procedure (blue rectangles) with a comparison between
the Classical Optimization of GP parameters prediction (denoted CO procedure) and the suggested
Anti-Deceptive Optimization prediction (denoted ADO procedure) for a given training set

A common choice for acquisition function is the Expected Improvement (Eq. 5), introduced by
[10], which relies on a compromise between exploitation (first term of the sum, searching for the
mininum) and exploration (second term of the sum, diversifying the search).

AEI(xc) = (ymin − ŷ(xc))

[
1

2
+

1

2
erf

(
ymin − ŷ(xc)√

2 ŝ(xc)

)]
+
ŝ(xc)√

2π
exp

[
−
(
ymin − ŷ(xc)

(
√

2 ŝ(xc))

)2
]

(5)

where xc corresponds to the candidate point and ymin, the minimum of the training set output.

Nevertheless, as the maximization of the likelihood succeeds in providing good approximations
most of the time, some training sets may induce poor predictions which annihilate the approxi-
mation power of GP. This phenomenon is as all the more so frequent that the considered function
is highly non-stationary and non-linear and is characterized by an optimum of (Eq. 3) associated
with a lengthscale θi going to 0+. It is referred as deceptive prediction.

As emphasized by Fig. 1, a deceptive prediction, associated with the CO procedure, is defined
by almost constant mean and variance prediction. To handle these peculiar scenarii, we suggested
a method in [11] which consists in constraining the optimization of the likelihood by forcing the
maximum of the likelihood to be smaller than a precision value. This method hinges on the defini-
tion of a criterion, the Deceptive Upper Bound (hereby denoted DUB), which allows to detect these
bad predictions. This method works well to alleviate the deceptiveness behavior of the prediction
as shown in Fig. 1.

From the aspect of the mean and variance when considering CO procedure, it is clear that the
impact is important on the selection of new candidates in Bayesian Optimization algorithm. Thus,
the following section is focusing on quantifying this impact over the process.

8
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2 Numerical application

To illustrate the impact of deceptiveness over the convergence toward the global optimum, we
consider the Xiong’s function (Eq. 6) introduced in [12]. This function is highly non-stationary
which causes the optimization to begin quite challenging. The global minimum value is -0.6093.

f(x) = −0.5
(
sin
(
40(x− 0.85)4

)
cos(2.5(x− 0.95)) + 0.5(x− 0.9) + 1

)
(6)

Both procedures have been evaluated for 50 different training sets, whose sizes are all equal to
10 samples. At first, results show that both procedures perform almost equally. A very small speed
up has been detected with ADO procedure (about 0.6 computations less than CO procedure for
the 50 computations).
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Fig. 2: Convergence of two different initial training sets for both optimization procedure

Fig. 2 exhibits two examples of convergence from the considered benchmark of 50 training sets
and where great differences have been noticed. The left one shows a faster convergence of ADO
procedure, which needs 51 computations against 57 for CO. On the other hand, the right one
presents a faster convergence of CO which needs 29 computations against 34 for ADO.

The reason of this performance of deceptive prediction comes from a flaw of the Expected
Improvement. Some areas of the design space might be overlooked because it only focuses on
non-explored areas with a potential of holding the optimum. Thus, it induces a non-optimal di-
versification. This lack of diversification in the exploration is also noticeable for other acquisition
functions.

As regards of deceptiveness, new samples are almost added ”randomly” since the mean and
variance provided to the Bayesian Optimization algorithm are flawed. The new sample may be
added anywhere in the design space. Consequently, deceptiveness, which is primarily a defect of
GP, becomes helpful by bringing diversification during the Bayesian Optimization algorithm.

3 Conclusions

In this communication, the performance of Bayesian Optimization was investigated while consider-
ing deceptive Gaussian Processes. The phenomenon of deceptiveness was highlighted and a method
for detection and correction was described. Then, the impact of deceptiveness over Bayesian Op-
timization convergence has been emphasized with a non-stationary mathematical function.

This work has allowed to show that the deceptiveness is a phenomenon that penalizes the per-
formance of Gaussian Process for prediction whereas, for Bayesian Optimization, this phenomenon
may help the algorithm to converge faster. Indeed, it allows to introduce diversification in the search
of new potential candidates for global optimum. Nevertheless, it remains a flaw of the Gaussian
Process formalism and other methods to introduce diversification in the process have to be studied.
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Abstract. The problem of finding the optimal allocation of storage capacities in a pro-
duction line, known as the buffer allocation problem (BAP), is one of the most researched
problems in manufacturing systems design. However, the current context requires substantial
efforts for including sustainability concerns to the issue. Therefore, considering the energetic
dimension becomes crucial. In this study, we present a novel variant of the BAP for through-
put maximization and energy consumption minimization. The problem is solved using a
multi-objective approach.

Keywords : Buffer allocation problem, Production lines, Multi-objective optimization, Energy
efficiency

1 Introduction

One of the major concerns that face researchers and industrials in the design of production sys-
tems is the buffer allocation problem (BAP). Buffers are used to compensate the negative effects
of machines unreliability. However, larger storage capacities result in important costs for both in-
vestment and work-in-process inventory. Therefore, the issue of finding the optimal buffering is
intensively studied since decades.
A recent paper of [9] reviews the literature related to the BAP. Although various versions of the
BAP are presented, the dual and the primal BAPs are the most studied. These models were first
introduced by [2]. In the dual BAP, the objective is to maximize the throughput under total buffer
space constraint, whereas in the primal BAP, the objective is to minimize the total storage space
under a minimal required throughput constraint.
Nevertheless, with the current context of ecological awareness, limited energy sources and, increas-
ing energy costs, including the energetic dimension in the BAP becomes crucial. Therefore, in this
study, we formulate a novel variant of the BAP that optimizes energy consumption along with
throughput of unreliable production lines.

2 Problem formulation

In this study, a serial production line composed of K unreliable workstations and K−1 buffer areas
with finite capacities is considered. This system is presented in figure 1. The processing, failure

Fig. 1: Serial production line

and, repair rates of the machines, ωi, λi and, µi respectively, are assumed to be exponentially
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distributed. It is also assumed that there is unlimited supply before the first machine and unlimited
storage capacity after the last machine. Therefore, the first machine cannot be starved and the last
machine cannot be blocked. In addition, operation dependent failure is assumed, no setup time is
considered and, transitions times between machines and buffers are assumed equal to zero.

In the BAP, buffer capacities are finite variables to be determined. Based on our literature
review, it is clear that this problem has been widely studied. However, research efforts focus mainly
on the issue of productivity improvement. Nevertheless, the current context requires a crucial focus
on energy efficiency in the design of manufacturing systems. The novel variant of the BAP proposed
considers a multi-objective optimization: energy consumption minimization along with throughput
maximization under total buffer space constraint. The mathematical model of this problem is given
as follows:

Find N = (N1, N2, ..., NK−1) so as to :





(Max ψ and Min E)

s.t.∑K−1
j=1 Nj ≤ Ntotal j ∈ 1...K − 1,

Nj ∈ N∗ j ∈ 1...K − 1.

(1)

K is the number of machines in the production system, ψ the throughout of the line and, E the
total energy consumption. Moreover, N is the buffer size vector and Ntotal the total buffer space
available to be allocated among the K−1 buffer areas. Nj ,∀j = 1...K−1 are non-negative integers
denoting the capacity allocated for each buffer Bj .

3 Performance evaluation approach

The evaluation approach of the two crucial performances considered in the problem, i.e. through-
put and energy consumption of the line, are obtained using the performance evaluation method
developed in [1]. This recently developed method is, according to our literature review, the unique
study that considers the integrated evaluation of throughput and energy consumption of unreliable
production lines.

In this method, the throughput is evaluated using birth death Markov processes (the Equiv-
alent Machine Method [4]). In this analytical formulation, the different states of each buffer are
analyzed using birth-death Markov processes. Thereafter, each original machine is replaced by an
equivalent one taking into account the probabilities of blockage and starvation. The throughput
of the production line is defined as the bottleneck between the effective production rates of the
equivalent machines. Due to its main approach that considers only full and empty buffer states, the
state space cardinality of the Markov chain representation of the system is reduced. Results from
numerical experiments demonstrate a high accuracy with extensively reduced computational time
when compared to other methods from the literature, such as the decomposition and aggregation
methods.

The second part of the method evaluates the energy consumption and efficiency of the produc-
tion line. The energy consumption of the line is the sum of energy consumption of its K machines.
For each machine, the energy consumption is evaluated per machine state. A Markov chain formu-
lation is used to obtain transition and steady state probabilities for each state. These probabilities
are obtained as a function of machine parameters as well as probabilities of empty and full buffer
states derived from the throughput evaluation part. Thereafter, energy consumption and energy
efficiency are formulated for each machine Mi,∀i = 1...K and consequently for the production line,
using steady state probabilities and specific state energy consumption. Corresponding formulations
for throughput and energy consumption evaluation as well as calculation details can be found in
[1] and [4].

4 Multi-objective approach and numerical experiments

The buffer allocation problem formulated in equation 1 requires a multi-objective resolution ap-
proach. In order to find the closest possible set of solutions to Pareto optimal front, ε- constraint
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method [3] is used. In this method, one of the objective functions is selected to be optimized while
the other(s) are converted into additional constraints. In our case, the throughput is maximized
and the energy consumption minimization is converted into a constraint. Therefore, the problem
becomes a single-objective problem formulated as follows:

Find N = (N1, N2, ..., NK−1) so as to :





Max ψ

s.t.

E ≤ ε∑K−1
j=1 Nj ≤ Ntotal j ∈ 1...K − 1,

Nj ∈ N∗ j ∈ 1...K − 1.

(2)

The model is formulated as a mixed integer non-linear program implemented on Lingo solver. Nu-
merical experiments are conducted on literature instances. The proposed BAP with throughput
and energy optimization is compared to the dual BAP that focuses on the throughput maximiza-
tion. The aim is to highlight potential improvements and energy economics allowed by the model.
Results for the ε-constraint method using the instance represented in table 1 (refer to [1] for energy
parameters), are given in figure 2. Throughput loss and energy savings denote the gap between of
the proposed BAP and the dual BAP for respectively the throughput and the energy consumption.
Results show that the model can be used to develop a significant tool for decision making.

Table 1: Production line instance parameters [2, 6, 7, 8, 5]

Machine M1 M2 M3 M4 M5

Failure rate 0.3 0.4 0.45 0.35 0.1
Repair rate 0.64 0.83 0.75 0.85 0.74

Processing rate 2.8 1.7 2.5 3.4 1.9
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Fig. 2: Multi-objective optimization using ε- constraint method

5 Conclusion

In this paper, a novel variant of the BAP with energy minimization and throughput maximiza-
tion was proposed. This problem, that requires a bi-objective optimization approach, is solved
using ε-constraint method. Numerical experiments highlight the relevance of considering energy
consumption along with throughput optimization in the design of storage spaces. Future work
focuses on the multi-objective study of the energy-efficient BAP considering other approaches.
Moreover, this novel BAP allows to explore a new field of research and tackle more interesting
areas in manufacturing systems design.
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Abstract. Cooperative co-evolution is recognized as an effective ap-
proach for solving large-scale optimization problems. It breaks down the
problem dimensionality by splitting a large-scale problem into ones fo-
cusing on a smaller number of variables. This approach is successful when
the studied problem is decomposable. However, many practical optimiza-
tion problems can not be split into disjoint components. Most of them
can be seen as interconnected components that share some variables
with other ones. Such problems composed of parts that overlap each
other are called overlapping problems. This paper proposes a modified
cooperative co-evolutionary framework allowing to deal with non-disjoint
subproblems in order to decompose and optimize overlapping problems
efficiently. The proposed algorithm performs a new decomposition based
on differential grouping to detect overlapping variables. A new coop-
eration strategy is also introduced to manage variables shared among
several components. The performance of the new overlapped framework
is assessed on large-scale overlapping benchmark problems derived from
the CEC’2013 benchmark suite and compared with a state-of-the-art
non-overlapped framework designed to tackle overlapping problems.

Keywords: large-scale global optimization · evolutionary algorithms ·
cooperative co-evolution · overlapping problem.

1 Introduction

Nowadays, many real-world optimization problems arising in engineering and
sciences deal with a large number of variables [7]. They present challenging
characteristics making them hard to efficiently optimize. They are commonly
solved by means of metaheuristics such as evolutionary algorithms or swarm

? The present research benefited from computational resources made available on the
Tier-1 supercomputer of the Fedration Wallonie-Bruxelles, infrastructure funded by
the Walloon Region under the grant agreement n◦1117545.
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intelligence [3]. However, the standard metaheuristics are not suitable to solve
such large-scale global optimization (LSGO) problems because they suffer from
the curse of dimensionality, i.e. their performance deteriorates when increas-
ing the number of variables [1]. In this context, new approaches relying on the
”divide-and-conquer strategy” have been proposed. They divide the initial LSGO
problem into smaller ones which focus on smaller groups of variables. The lat-
ter are optimized in a round-robin fashion with a standard metaheuristic with
the aim of producing the solution of the initial problem. This framework has
been introduced by Potter and De Jong [9]. They designed a cooperative co-
evolutionary (CC) approach to optimize LGSO problems by means of a genetic
algorithm. Following this promising approach, the CC strategy have been embed-
ded in many other metaheuristics such as evolutionary programming [6], particle
swarm optimization [2] and differential evolution [11].

In any case, the efficiency of this approach is highly dependent on the per-
formed decomposition. The latter depends on the characteristics of the objective
function in terms of separability. A function is separable if the influence of any
variable on the function value depends only on itself [18]. In this case, any decom-
position that reduces the dimensionality is efficient in the CC framework. Other
functions can be classified as additively separable [8] if they can be written as:

f(x) =
m∑

i=1

fi(xi), (1)

where xi (i = 1, . . . ,m) are mutually exclusive ki-dimensional decision vectors
of fi, x is the n-dimensional decision vector of the function f and m is the
number of independent components such that k1 + . . .+km = n. In this way, the
influence, of any variable in a component, on the function value depends only on
other variables of the same component. Therefore, an ideal decomposition would
divide the initial problem such that each subproblem focuses on one component
given in Equation (1). The main challenge is thus to identify these components.
It can be done by using the differential grouping strategy [8, 16].

However, separable and partially separable problems are not representative
of most LSGO problems arising in real-world optimization applications. Most of
them incorporate several components that usually interact with each other. For
example, the supply chain design and optimization [4] involves several compo-
nents such as suppliers, manufacturers and distributors that interact with each
other through a variety of transportation and delivery methods. Such intercon-
nected problems are often referred as overlapping problems [17] because they are
composed of parts that overlap others. In other words, each component involves
multiple variables and some of them are shared with one or several other compo-
nents. This kind of function is very challenging and standard CC algorithms fail
to optimize them efficiently. Indeed, most of them rely either on random group-
ing [18] or on intelligent decomposition methods based on interaction identifica-
tion [8]. The former simply completes several random decompositions in order
to try catching linked variables in a same component but does not explicitly
consider the interaction structure. The latter assigns all the linked variables in a
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single group and therefore does not reduce the dimensionality when dealing with
overlapping problems. Two exceptions are the decomposition based on spectral
clustering introduced in [5] and the decomposition specially designed for over-
lapping problems introduced in [15]. The latter breaks the linkage at shared
variables between components in order to reduce the problem dimensionality,
even for overlapping problems. It will be further discussed in Section 2.2.

In addition to the above methods, other CC strategies considering subsets
that overlap each other have also received some attention. They raise some ques-
tions related to the exchange of information between components and related to
the construction of the complete n-dimensional solution. In [14], non separable
problems are decomposed into overlapping subproblems on the basis of a sta-
tistical variable interdependence learning scheme. The exchange of information
is ensured by a periodically updated global solution (built on the basis of sub-
problem cores) used as shared memory. In [13], an overlapping decomposition
covering the set of variables is predetermined. Compete and sharing strategies
are implemented to choose the representative variables and share them among
components. In [12], overlapping is not used to facilitate the decomposition but
to overlap influential variables and evolves them in several components.

Some of these algorithms claim to tackle overlapping problems but do it with
non-overlapped strategies [5, 15]. Others, although based on overlapped strate-
gies, do not explicitly claim to be able to tackle overlapping problems [12–14].
One may obviously think that the best way to optimize them in a CC framework
is to do it with overlapped strategies. Nevertheless, to the best of the authors’
knowledge, there are no research studies in that way. This paper introduces such
a strategy and compare it with the non-overlapped approach specially designed
for overlapping problems in [15]. The paper is organized as follows: Section 2
briefly describes the CC framework and the recursive differential grouping. Sec-
tion 3 introduces the new strategy to split LSGO problems into overlapping
subproblems and the overlapped CC framework that manages the exchange of
information between subproblems. Experimental settings and results analysis are
given in Section 4. Finally, findings and perspectives are discussed in Section 5.

2 Related work

2.1 Cooperative Co-evolutionary algorithms

The first attempt to optimize a LSGO problem with an evolutionary algo-
rithm by means of a divide-and-conquer strategy was presented in 1994 [9].
Since then, this new approach, called cooperative co-evolution, has been widely
studied [7]. The classical structure of this framework is described as follows:

1. Decomposition: Split the n-dimensional decision vector into some smaller
disjoint subcomponents;

2. Optimization: Optimize each subcomponent with a standard evolutionary
algorithm for a fixed number of iterations in a round-robin strategy;
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3. Combination: Merge the solutions from each subcomponent to build the
n-dimensional solution.

Throughout the optimization stage, the individuals in each subcomponent need
to be evaluated with the n-dimensional function. For this purpose, they are
completed with the variables of the context vector. The latter is a n-dimensional
vector that contains information from all the subcomponents. Typically, it is
composed of the variables of the current best solutions in each subcomponent
and it is updated each time a better solution is found in a subcomponent.

2.2 Recursive Differential Grouping

In a CC framework, the decomposition should ideally be performed in such a
way that there is no interaction between variables from different subcompo-
nents. For additively separable problems, it can be uncovered with the Differ-
ential Grouping (DG) strategy [8, 16]. In particular, the Recursive Differential
Grouping (RDG) that benefits, as stated by its name, from recursive interaction
detections between subsets of variables, relies on the following result [15, 16]:

Theorem 1. Let f : Rn → R̄ be an objective function; X1 and X2 be two
mutually exclusive subsets of decision variables: X1 ∩ X2 = ∅. If there exist a
candidate solution x? and sub-vectors a1, a2, b1, b2 such that

f1,1(x?)− f2,1(x?) 6= f1,2(x?)− f2,2(x?) (2)

where, fi,j(x
?) is the function value obtained when replacing, in x?, the variables

of X1 with ai and the variables of X2 with bj (i, j = 1, 2), then there is some
interaction between the decision variables in X1 and X2.

In practice, all the variables of x?, a1 and b1 are set to the lower bounds l
of the search space. The variables of a2 are set to the upper bounds u and
those of b2 are set to the mean m̄ of the lower bounds and the upper bounds.
Furthermore, equation (2) is not directly employed since the inequality may be
the results of computational round-off errors instead of interaction detection, as
expected. Thus, the following quantities are computed

∆1 = f1,1(x?)− f2,1(x?), ∆2 = f1,2(x?)− f2,2(x?), λ = |∆1 −∆2| (3)

and some interaction is detected when λ is greater than a threshold ε (see [16]
for further details). Eventually, the success of the RDG algorithm relies on the
recursive use of Theorem 1 to identify variables in X2 that interact with those
of X1. Indeed, if any interaction between X1 and X2 is detected using Equa-
tion (3), the set X2 is divided into two nearly equally-sized groups G1 and G2.
Then, the interaction between X1 and G1 and X2 and G2 is checked. The process
is repeated until all single variables in X2 that interact with X1 are identified.

In brief, the complete RDG algorithm can be presented as follows: (1) deter-
mine all the variables that interact with a selected variable xi using the above
recursive strategy and put them in a set X1; (2) identify variables that interact
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with X1 and add them to X1, repeat the process until no more variable is added
toX1; (3) select another variable that is yet to be classified and return to step (1).
Note that this approach would set all the variables of an overlapping problem
into a single group. In [15], this issue was solved by slightly modifying the step
(2) by imposing a condition on the size of X1. In this new approach called RDG3,
the step (2) is repeated: (a) until no more variable is added to X1 or (b) until X1

contains more than εn variables, where εn is fixed to a predetermined value.

3 Proposed algorithm

The newly proposed algorithm aims to tackle LSGO overlapping problems within
an overlapped CC framework. The fact that it has to deal with subcomponents
that share several variables raises new challenges. The first one is to perform an
accurate decomposition that detects overlapping variables efficiently and share
them among several subcomponents. It can be achieved by using the modified
approach of the RDG strategy presented in Section 3.1. The second challenge
concerns the management of overlapping variables during the optimization, in
particular for function evaluations. It will be discussed in Section 3.2.

3.1 Overlapped Recursive Differential Grouping

The main idea of the newly proposed decomposition strategy is to relax the group-
ing by identifying variables that make the link between several components in in-
terconnected problems and share them among these components. For example, in
the interaction graph presented in Figure 1, three components can be identified:

S1 = {x1, x2, x3, x4}, S2 = {x3, x4, x5, x6, x7} and S3 = {x7, x8, x9}. (4)

In each of them, interaction between variables are plentiful while there is no direct
interaction between variables from distinct components, i.e.∀ i, j(i 6= j), k, l(k 6= l)
such that xi ∈ Sk\Sl and xj ∈ Sl\Sk, xi does not interact with xj . Using the
RDG3 strategy to decompose such a problem will break the linkage at shared
variables and will lead to the decomposition illustrated in Figure 1a. The lat-
ter might not be the optimal one since x3 and x4 (resp. x7) are not optimized
with x5, x6 and x7 (resp. x8 and x9) while they are strongly connected. The new
strategy, called Overlapped RDG (ORDG), is aimed to allow some overlapping
between subcomponents to prevent from breaking these important linkages. It
will produce the decomposition proposed in Figure 1b.

The ORDG strategy is presented in Algorithm 1. It is very closed to the
RDG algorithm except for the instructions in the ”else” statement at line 12.
In particular, the instruction at line 5 recursively identifies variables in X2 that
interact with X1. They are added to X1 to constitute the set X?

1 (see Algo-
rithm 2).

– If no interaction has been identified, i.e. if |X?
1 | = |X1|, the X1 set is recog-

nized as a nonseparable subset if it contains several variables, otherwise the
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(a) RDG3 (b) Overlapped RDG

Fig. 1: The two obtained decompositions for an overlapping problem using RDG3
and Overlapped RDG strategies respectively.

Algorithm 1: Overlapped Recursive Differential Grouping

1 seps = {}, nonseps = {};
2 Set all the variables of xl to the lower bounds, compute f = f(xl) ;

3 X1 = {x1}, X2 = {x2, . . . , xn} ;
4 while X2 6= {} do
5 X?

1 =R Inter(X1, X2, f , f) ;

6 if |X?
1 | = |X1|

// For RDG3, the if would be: if |X?
1 | = |X1| or |X?

1 | > εn
7 then
8 if |X1| = 1 then seps = seps ∪ X1 ;
9 else nonseps = nonseps ∪ X1 ;

10 X1 = {xj} s.t. j ≤ i ∀xi ∈ X2;
11 X2 = X2 \ {xj} ;

12 else
// For RDG3, the else statement would only contains the

following instructions: X1 = X?
1, X2 = X2 \ X1 ;

13 if |X1| = 1 then
14 X1 = X?

1 , X2 = X2 \ X1 ;
15 else
16 X??

1 = L inter(X1, X2, f , f) ;

17 nonseps = nonseps ∪ X1 ;
18 X1 = X?

1 \ X1 ∪X??
1 ;

19 X2 = X2 \ X?
1 ;

20 if |X1| = 1 then seps = seps ∪ X1 ;
21 else nonseps = nonseps ∪ X1 ;
22 return seps and nonseps;

20



Overlapped Strategies to Solve Overlapping Problems in a CC Framework 7

only variable in X1 is identified as a separable one (lines 8-9). The process
moves on to the next variable that is yet to be classified (lines 10-11).

– Otherwise, some interaction has been identified between X1 and X2. The
variables in X2 responsible of the interaction have been identified during the
recursive detection at line 5 but at this stage, the variables in X1 responsible
of the interaction have not yet been determined (and they should be to
perform the overlapped decomposition). IfX1 contains only one variable, this
is the one responsible of the interaction. In this case, the algorithm moves
on to the next iteration while making the same update that for the RDG3
strategy (lines 13-14). Otherwise (i.e. if X1 contains several variables), those
interacting with X2 are identified at line 16 using a recursive mechanism
again (see Algorithm 3) and the update described in lines 17-19 produces
the desired overlapped decomposition.

Algorithm 2: R Inter(X1, X2, f , f)

1 if Interact(X1, X2, f , f) then

2 if |X2| = 1 then
3 X1 = X1 ∪X2 ;

4 else
5 Split X2 into equally-sized

groups G1, G2 ;
6 X1

1 =R Inter(X1, G1, f , f);

7 X2
1 =R Inter(X1, G2, f , f);

8 X1 = X1
1 ∪X2

1 ;

9 return X1 ;

Algorithm 3: L Inter(X1, X2, f , f)

1 if Interact(X1, X2, f , f) then

2 if |X1| = 1 then
3 return X1 ;

4 else
5 Split X1 into equally-sized

groups G1, G2 ;
6 X1

1 =L Inter(G1, X2, f , f);

7 X2
1 =L Inter(G2, X2, f , f);

8 X1 = X1
1 ∪X2

1 ;

9 return X1 ;

Note that the main difference between the R inter and the L inter functions
lies in the fact that the former focuses on the set X2 while the latter works on X1.
Furthermore, the two functions also differ in line 3 (see Algorithms 2 and 3) since
the R inter function adds variables from X2 that interact with X1 to X1 while
the L inter function only returns variables from X1 that interact with X2. For
both algorithms, the Interact function at line 1 relies on Theorem 1.

3.2 Overlapped CC framework

The main layout of the overlapped CC framework is similar to the standard CC
presented in Section 2.1 with the major exception that it is designed to detect
and manage overlapping variables efficiently. For this purpose, the decomposition
step performs the ORDG algorithm presented in the previous section.

The optimization still consists in iteratively evolving each subcomponent in
a round-robin strategy. However, in this step, the cooperation between subprob-
lems through the sharing of best solutions in the context vector needs to be
revised. Since subcomponents overlap, a variable xi belonging to one compo-
nent Sk may also appear in another component Sl. This introduces the issue of
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which value of xi has to be shared in the context vector. In a standard framework
(i.e. without any overlapping), this value is the one of the variable xi of the best
individual in the (only) subpopulation containing xi (see Figure 2a for an illus-
trative example). For the overlapped framework, this idea is extended: the value
of xi in the context vector is the one of the best individual among all the indi-
viduals in the two subpopulations focusing on xi (or in the only subpopulation
if xi is not overlapped). Such an arrangement is illustrated in Figure 2b.

Note that, in order to choose the best individual within two different sub-
populations, the function value of each individual used for comparison is the
one that has been computed during the optimization of the corresponding sub-
components in the round-robin fashion loop. In this process, individuals in each
subcomponent are completed with the variables of the context vector in order
to be evaluated. The latter is updated each time a better solution is reached.

(a) Standard CC (b) Overlapped CC

Fig. 2: Management of the context vector within a standard and an overlapped
CC framework. The illustrative example relies on the interaction structure pre-
sented in Figure 1. Dashed, dotted and solid lines represent individuals from
subpopulations 1, 2 and 3 respectively. The context vector is built with the
variables values of the best individual in each subpopulation.

4 Experimental settings and results

The performance of the new overlapped framework is assessed on large-scale
overlapping benchmark problems derived from the CEC’2013 suite [17] and com-
pared with the standard CC framework based on RDG3 decomposition [15]. The
benchmark set contains 6 functions. Two of them, F5 and F6, are directly taken
from [17]: F6 is the 1000-d shifted Rosenbrock function and F5 is the 905-d shifted
Schwefel’s function with conflicting3 overlapping subcomponents. The four other

3 Note that the function f13 in [17] also contains overlapping subcomponents but it has
not been included in the benchmark set because their overlapping subcomponents are
conforming. It means that they have the same optimum value with respect to both
subcomponent functions. It can be simply optimized in a standard CC framework.

22



Overlapped Strategies to Solve Overlapping Problems in a CC Framework 9

functions, F1 to F4, are obtained by replacing the Schwefel basis function in F5

by Ackley, Elliptic, Rastrigin and Rosenbrock functions respectively. Therefore,
functions F1 to F5 contain 20 overlapping subcomponents that share 5 variables
with adjacent subcomponents. The F6 function (Rosenbrock) can be seen as
containing 999 subcomponents sharing one variable with adjacent ones.

In order to evaluate the decomposition effects of the newly proposed frame-
work on overlapping problems, the RDG3 and ORDG strategies are used to
decompose the benchmark problems presented above. For the RDG3, two dif-
ferent threshold values εn = 50 and εn = 0 are tested. The first value is the
one used to study optimization results in [15] while the second value aims to
identify as many components as possible and systematically cut the overlapping
at shared variables. The number of components generated (k), the sum of the
number of variables in each group (r) and the number of function evaluations
computed (FEs) are reported in Table 1.

Table 1: Decomposition results of RDG3 (with εn = 50 and εn = 0) and ORDG
strategies. k is the number of components generated, r is the sum of the number
of variables in each group and FEs is the number of function evaluations.

RDG3 (εn = 50) RDG3 (εn = 0) ORDGFun
k r FEs k r FEs k r FEs

F1 12 905 16273 20 905 16597 12 1011 16702
F2 12 905 16252 19 905 16666 17 1000 18214
F3 12 905 16249 20 905 16615 17 1000 18214
F4 12 905 16252 20 905 16666 17 1000 18214
F5 13 905 16288 21 905 16669 17 1003 18202
F6 20 1000 49891 500 1000 25435 999 1998 59848

For the RDG3 decompositions, r is simply equal to the number of variables
of the function because there is no overlap. For F1 to F5, the ORDG should cap-
ture the overlapping subcomponents introduced in [17] and therefore retrieve the
1000 variables involved in the benchmark construction. This is the case for F2

to F4. For F1 and F5, some additional interactions between independent vari-
ables have been identified due to computational round-off errors and lead to a
slightly larger value of r. Still according to [17], the number of components k
for functions F1 to F5 is equal to 20 in the benchmark construction. The RDG3
with εn = 50 produces only 12 (or 13) components since components that con-
tain less than 50 variables are merged with other ones. The RDG3 with εn = 0
retrieves the 20 subcomponents (except for F2 and F5 for which the small dif-
ference is again due to computational round-off errors). The ORDG detects 17
components for functions F2 to F5

4. They correspond to the ones formed in the
benchmark construction except that some of them have been merged. Indeed, if

4 Theoretically, 17 components should also be detected for F1 but round-off erros affect
the results for that particular function.
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the ORDG procedure starts the detection with a variable belonging to a com-
ponent that share some overlapping variables with two adjacent components,
the latter are merged to form only one component. Thereafter, adjacent compo-
nents to these components are also merged and so on. Although this prevents
the detection of the 20 subcomponents, the obtained decomposition still agrees
with the desired objective. In this particular case, the fact that some overlapping
components contain two subsets of variables that do not directly interact will not
affect the optimization efficiency. For the F6 function, the obtained decomposi-
tion corresponds to the expected one, 20 (500) components of 50 (2) variables
are formed for the RDG3 with εn = 50 (= 0 resp.) and the ORDG produces 999
components of 2 variables. Finally, since the ORDG analyses additional inter-
actions with respect to the RDG3, the cost in terms of FEs is higher. However,
the additional cost remains reasonable and will be negligible with respect to the
budget in terms of FEs allowed for the optimization.

The influence of the decomposition on the optimization results is analyzed
by embedding each kind of decomposition in the overlapped CC framework pre-
sented above. In particular, when the latter is coupled with the RDG3 decom-
positions, it behaves like the standard CC. The evolutionary algorithm used to
optimize the subcomponents is a genetic algorithm. In this study, the one im-
plemented in the Minamo software is considered [10]. Here there is an overview
of its main features: real-value representation of the individuals; tournament
selection to pick up pairs of parents; arithmetic crossovers for recombination;
mutation rate of 1 %; elitism of two individuals. Within the CC framework,
the population size is set to 10 times the number of variables of the consid-
ered component. The round-robin fashion optimization loop is repeated until
the maximum number of FEs is reached. It is set to 3 × 106 in total (for the
decomposition and the optimization).

The median of the best solution over 51 independent runs and the stan-
dard deviation are reported in Table 2. The CC-ORDG produces better solution
quality than the CC-RDG3 for 4 of the 6 functions. The CC-RDG3 with εn = 0
generates the best results for the 2 other functions. Convergence graphs depict-
ing the convergence behavior along the optimization process are also provided
in Figure 3. It can be seen that the three algorithms follow the same trend for
functions F1 to F5

5. Between the two variants of the CC-RDG3, the slightly
different number of components does not have too much influence on the op-
timization quality. However, for F6, the CC-RDG3 with εn = 0 that produces
many more subcomponents (each of them focusing on 2 variables) has a better
handle of the optimization. Furthermore, the closed results between the CC-
RDG3 with εn = 0 and the CC-ORDG may be surprising. By analyzing the
convergence behavior of the overlapping variables in the CC-ORDG in details,
it can be seen that most of the time, the variables shared among two subcompo-
nents converge to the same value at the same rate in the two subcomponents. In
this context, the overlapped decomposition does not significantly contribute to a

5 Note that for F2, the CC-ORDG is stuck in a pseudo-optima for a few runs. It causes
the large green-colored area in Figure 3b.
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Table 2: Optimization results of the CC-RDG3 (with εn = 50 and εn = 0) and
the CC-ORDG. The median of the best solution over 51 independent runs and
the standard deviation are presented. Best median values are in bold.

RDG3 (εn = 50) RDG3 (εn = 0) ORDGFun
median std median std median std

F1 7.03e+07 1.77e+05 7.04e+07 1.48e+05 7.01e+07 2.84e+05
F2 3.95e+13 3.56e+12 3.53e+13 5.24e+12 3.85e+13 1.67e+14
F3 4.83e+08 2.81e+07 5.22e+08 4.45e+07 4.17e+08 8.11e+07
F4 6.01e+11 1.82e+10 4.27e+11 1.40e+10 7.80e+11 3.58e+10
F5 1.04e+11 2.15e+10 1.15e+11 2.66e+10 9.64e+10 1.75e+10
F6 8.68e+05 9.80e+04 1.50e+03 1.21e+02 1.34e+03 1.01e+02

better cooperation between subcomponents in comparison with the cooperation
through the sharing of the context vector performed in a standard CC frame-
work. Therefore, although results in Table 2 might indicate that the CC-ORDG
provides slightly better results, we can not definitely claim that a strategy is
better than the other.

5 Discussion

The new CC framework introduced in this paper is designed to optimize overlap-
ping LSGO problems with an overlapped decomposition strategy. In this context,
an overlapped variant of the RDG has been developed to efficiently detect over-
lapping variables and share them among several subcomponents. The optimiza-
tion step of the standard CC framework has also been extended in order to
efficiently sha-re information between overlapped subcomponents through the
context vector.

Numerical experiments were conducted on 6 benchmark functions. The ex-
tension of the method to a larger set of test functions is straightforward. However
we believe the latter goes beyond the scope of this introductory paper and thus
it will be considered in a further work. Similarly, the benchmark set is limited
to 905-d and 1000-d functions, which is common practice in LSGO studies. Fur-
ther research on the scalability may also be carried out to determine how the
algorithm performs on more complex problems with larger dimensions.

The experiments presented in this paper show that the new approach pro-
duces the desired overlapped decomposition. However, although the optimization
results might indicate that the new decomposition helps to get slightly better
solutions, we can not definitely claim that the new framework outperforms the
standard ones. This may be partly explained by the fact that the exchange of
information between subcomponents in a standard CC framework through the
context vector is stronger than we could expect. In any way, there is scope for
even better progress to further develop the CC concept to deal with overlapping
problems. We think that the new strategy that introduces overlapped subcom-
ponents may be a promising way to achieve such an improvement.
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(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) F6

Fig. 3: Convergence graphs representing the evolution of f(x) (in log-scale) with
respect to the number of FEs. CC-RDG3 with εn = 50 (blue stars), CC-RDG3
with εn = 0 (red circles), CC-ORDG (green triangles). The solid line depicts the
median value while the light-colored area represents the interval between the
best and the worst value over the 51 runs.
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Abstract. In many machine scheduling studies, individual algorithms
for each problem have been developed to cope with the specifics of the
problem. On the other hand, the same underlying fundamentals (e.g.
Shortest Processing Time, Local Search) are often used in the algorithms
and only slightly modified for the different problems. This paper deals
with the synthesis of machine scheduling algorithms from components of
a repository. Especially flow shop and job shop problems with makespan
objective are considered to solve with Shortes/Longest Processing Time,
NEH, Giffler & Thompson algorithms. For these components, the pa-
per includes an exemplary implementation of an agile scheduling system
that uses the Combinatory Logic Synthesizer to recombine components
of scheduling algorithms to solve a given scheduling problem. Special at-
tention is given to the composition heuristics and the process of recombi-
nation to executable programs. The advantages of this componentization
are discussed and illustrated with examples. It will be shown that algo-
rithms can be generalized to deal with scheduling problems of different
machine environments and production constraints.

1 Introduction

In production, machine scheduling algorithms help to decide automatically when
a certain job should be executed on which machine. Many manufacturers have
not yet automated their machine scheduling. One reason is that for each ma-
chine scheduling problem with its numerous specific characteristics, suitable
algorithms have to be selected, adapted, and implemented individually. Each
practical scheduling problem can be categorized into a problem class, for which
dedicated heuristics are applicable. If a class is a subset of another class, the
heuristics of the superset class can often also be applied to the subset class.
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Also, relationships and overlapping between categories can be identified which
simplifies the transfer of heuristics between problem classes.

The assignment problem which a combination of heuristics or metaheuristics
should be chosen for which practical production environment concerning the
applicability, solution quality, and computing time represents a combinatorial
challenge. The synthesis framework Combinatory Logic Synthesizer ((CL)S) [1]
is suitable for the automated solution of this task. The (CL)S can construct
software from a collection of individual components and it is possible to specify
components semantically, which enables the (CL)S to select the appropriate com-
ponents. The framework then automatically generates all possible combinations
in the form of executable software.

The objective of the paper is to use the (CL)S-Framework to automatically
select and combine different algorithms to solve a given scheduling problem.
Therefore, we build a (CL)S repository of algorithms for different machine en-
vironments, which takes the relationships of the classes into account and auto-
matically composes selected algorithms for instances of these problems.

This paper is structured as follows: First, we present the general classifica-
tion scheme of machine scheduling problems. In the related work, we discuss
algorithms for scheduling of flow shop and job shop problems and present the
framework on which our implementation is based on, the (CL)S. The handling
of this framework, as well as the generation and composition of algorithms, is
shown in the fourth chapter with example runs. In detail, we show the poten-
tial of the tool and the resulting possibilities using the Giffler & Thompson’s
algorithm.

2 Classification of Machine Scheduling Problems

Machine scheduling problems can be specified by a tuple α|β|γ [2, pp. 288–290][3,
pp. 13–21][4, pp. 1–2]. In the following, parameter values are specified which are
considered in this paper.
The parameter α defines the amount and arrangement of machines [3, pp. 14–
15]:

– 1: Single Maschine, one machine is available for production.
– Fm: flow shop, m machines with one machine per processing stage. All jobs

follow the same route through the machines.
– Jm: job shop, m machines with one machine per stage. Each job has a

prescribed route through the stages. The route may differ between the jobs.
– Om: Open Shop, m machines, where each job can visit the machines one

after the other in an order that is determined by the planner.

Parameter β can contain as many entries as required and describes characteristics
and limitations of the production process:

– prmu: Permutation, the processing sequence of jobs from the first processing
stage through all machines is to be kept consistent [3, p. 17].
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– skip: skipping stages of jobs is possible (further example, but not applicated
in the paper) [5, pp. 1151–1155, 4, p. 13].

γ specifies the objective function:

– Cmax: Makespan, interval between production start of the first scheduled job
and finish time of the last job.

3 Related Work

In the following, important scheduling algorithms for these machine environ-
ments and β-constraints in combination with makespan minimization are de-
scribed, as well as related work according to the (CL)S.

3.1 Maschine Scheduling Algorithms for Flow Shops and Job Shops

In the context of machine scheduling, an enormous number of papers and al-
gorithms are available. Literature overviews for flow shops and job shops can
be found in Komaki, Sheikh, and Malakooti [6], Framinan, Gupta, and Leisten
[7] (permutation flow shop with makespan minimization) and Zhang et al. [8].
A comparison between commonly used algorithms for constructive flow shop
scheduling can be found in Ruiz and Maroto [9]. Different dispatching rules have
been studied in Arisha, Young, and El Baradie [10]. In the following, selectively
a few algorithms of the overviews are analyzed that dealt with flow shops or
job shops to minimize the makespan and are related to our problem classes (see
Section 2).

Some of the most commonly used constructive heuristics for flow shops and
job shops are Shortest Processing Time First (SPT), Longest Processing Time
First (LPT), and the NEH-heuristic (flow shops) and have therefore been con-
sidered in this paper. The benefits of dispatching rules like SPT and LPT are low
computational complexities and therefore fast calculations, and transparent be-
havior for production planners. The NEH-Heuristic, firstly published by Nawaz,
Enscore, and Ham [11, pp. 92–94] for permutation flow shops and makespan
minimization (Fm|prmu|Cmax) produces good results in most cases. Giffler and
Thompson [12] published a constructive algorithm that also applies rules like
SPT and LPT to job shops.

3.2 Giffler & Thompson algorithm

Using the algorithm by Giffler & Thompson, job shop as well as flow shop prob-
lems can be solved. It schedules exactly one job on a machine in each iteration,
so the algorithm returns complete schedules after m ∗ n iterations, where m is
the number of machines and n the amount of jobs. The heuristic is only pa-
rameterized by the applied dispatching rule. In the algorithm, this dispatching
rule decides between several competing jobs on the same machine. The imple-
mentation of the complete Giffler & Thompson algorithm is shown in Alg. 1.1.
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The algorithm consists of four phases where steps 2 to 4 iterate until all jobs
are scheduled [13, S. 75-76]. The calculated schedule and the completion times
of the scheduled jobs and for all machines are returned.

1 Let Zi be the completion time of machine i. Initialize Zi = 0 for i = 0, ...,m. Select
a dispatching rule.

2 Select machine i∗ that first can finish a job out of the set of jobs, which are waiting
to be processed next on one of the machines and are not scheduled yet.

3 From the set of all jobs waiting to be processed on this machine i∗ select one job by
the dispatching rule which is initalized in step 1.

4 Schedule selected job on machine i∗ and update Zi∗ . If there are jobs left to be
scheduled, return to step 2.

Algorithm 1.1: Implementation of the Giffler & Thompson algorithm

Alg. 1.1 works as follows. In each iteration (step 2-4), the machine is de-
termined, which can first complete a job. For this purpose, each not yet fully
scheduled job is iterated and the end time after scheduling on the next machine
to be visited is compared. Up to this point, it is a greedy algorithm that selects
a machine according to the earliest completion time on the next machine the job
has to be processed on. Once the machine to be scheduled has been determined,
in the second phase the job is varied to meet a prioritization on the machine.
This is done by determining all jobs that are also to be scheduled next on the
selected machine, including the job determined in the previous phase. If two
or more jobs are waiting to be scheduled on the selected machine, the jobs get
ranked according to the selected dispatching rule. After selecting a job on the
determined machine, it gets scheduled and Zi, as well as the current end time
of the job, gets updated.

3.3 Combinatory Logic Synthesizer

Combinatory Logic Synthesizer, short: (CL)S, is a type-based framework for
the synthesis of software from a set of components specified in a repository
[1]. The framework was developed in the programming language Scala and is
used in this paper. In addition to the synthesis, the framework also allows the
immediate execution of the synthesis result. Due to the implementation in the
Scala programming language, the synthesis results can also access existing Java
and Scala libraries. The framework (CL)S was developed at the chair 14 of the
faculty for Computer Science at the TU Dortmund University.

The Combinatory Logic Synthesizer ((CL)S) is particularly suitable for han-
dling unpredictable variability, which makes it well suited for the synthesis of
machine allocation algorithms in production planning. (CL)S enables the spec-
ification of components, their implementation, as well as the modeling of vari-
ability and the automatic composition of components under consideration of the
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modeled variability rules [14]. All this is uniformly done within the framework.
Thus, the framework provides a solid basis for mapping and specifying individ-
ual heuristics and algorithms, and is also suitable as a technological basis for the
automatic composition of components [15]. The (CL)S has been used in the past
for numerous applications of a similar nature. As an example, we mention the
automatic configuration of factory planning projects [16], the automatic gen-
eration of BPMN processes [17], and the automated configuration of plans in
construction projects [18]. The basis for the use of the framework is that within
the target domain, results can be composed of specifiable components. In the
(CL)S the specification is done by so-called semantic intersection types. How
components can be specified and implemented, and which solutions are then
generated automatically, is shown in the following chapters using an example.

4 Implementation

Machine
schedule

Constructive 
Heuristics

Iterative 
Metaheuristics

Dispatching
Rules

Neighbourhood
Strategies

Type of machine 
scheduling 

problem

(flow shop, job
shop) 

Demand data

Scrap data

Processing times

Set-up times

C

L

S

Composition
of heuristics

Objective function

Constraints

Fig. 1. Concept of schedule generation with (CL)S

The (CL)S-Repository contains all algorithm components as shown in Fig. 1,
which can be combined into an executable scheduling system. Through a syn-
thesis request to the (CL)S framework, production characteristics can be used
to intersect with the defined types of the algorithm components. The (CL)S only
selects those heuristics that are applicable to the given problem class. Available
problem classes in this exemplary implementation are flow shop and job shop.
After composing the algorithms, they can be utilized to solve the given schedul-
ing problem and produce valid machine schedules. The synthesized algorithms
work as transition functions and transfer the given data object into an applicable
machine schedule. After scheduling, the makespan is calculated.

Further problem classes can be integrated by adding further possible pa-
rameter assignments and therefore extending the intersection types. By speci-
fying additional parameters, further β constraints can be realized, which may
exclude further heuristics because they are not applicable for the problem, or
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Γ = {
Scheduler: (String → String) ∩ (Algorithm ∩ shopClass → Scheduler(shopClass))

NEH: String ∩ (Algorithm ∩ FS)

FSDispatch: (String → String) ∩ (PriorityRule → Algorithm ∩ FS)

GifflerThompson: (String → String) ∩ (PriorityRule → Algorithm ∩ JS ∩ FS)

LPT: String ∩ PriorityRule

SPT: String ∩ PriorityRule

}

Fig. 2. (CL)S repository

include others because they require certain assumptions or additional data such
as deadlines.

Our defined (CL)S repository is shown in Fig. 2 and the solution tree cal-
culated by the (CL)S across all combinators of the repository is illustrated in
Fig. 3. The repository’s first combinator Scheduler of Fig. 2 is a wrapping base
module, which serves as the common target type for all synthesis requests. Ac-
cordingly, it is found on the first level of the solution tree (left square in Fig. 3).
As parameter shopClass (see Fig. 2) it receives information about the problems’
machine environment (α-component). Starting from the base module, the differ-
ent algorithms for flow shop and job shop problems of the type Algorithm are
now available according to the parameter shopClass. By concretizing the param-
eter when calling the synthesis, the number of applicable combinators is reduced
in such a way that only the algorithms for the corresponding problem class can
be used. This is done by using the parameter also as an intersection type of the
base module and thus an intersection with combinators of other problem classes
is no longer possible.

Fig. 3. (CL)S solution tree for flow shops

The first two algorithms NEH and FSDispatch in our implementation can
only be applied to flow shops while the algorithm of Giffler & Thompson can
be applied to job shops, which implies that it can also be used for flow shops
because flow shops are a real subset of job shops as shown in Fig. 4.
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Om

Jm

Fm

1

Fig. 4. Relationships between considered scheduling problem classes

The algorithms FSDispatch and GifflerThompson additionally require a dis-
patching rule. Fig. 3 shows the reuse of these dispatching rules SPT and LPT
for FSDispatch and GifflerThompson. This shows again one advantage of such a
composing method. It is easily possible to integrate and combine new algorithms,
heuristics, and dispatching rules into the tool by inserting them into the reposi-
tory as combinators with corresponding intersection types. New components can
reuse already existing ones. Individual components can also be replaced by other
possibly better performing components without having to replace them individ-
ually at all points. Furthermore, the derivation graph in Fig. 3 shows similarities
and differences between algorithms in the sense that the use of similar compo-
nents is immediately recognizable. The procedure of disassembling an algorithm
into reusable components and representing them as (CL)S-combinators is now
explained in detail using the example of the Giffler & Thompson algorithm.

5 Results

To show that the same implementation of an algorithm can be effectively used
for different machine environments, the Giffler & Thompson algorithm and its
implementation is shown in Alg. 1.1 has been applied to a flow shop and a
job shop problem. The selection of the dispatching rule takes place inside the
dispatching rule combinator that has been selected by CLS and parsed into the
program code at this point. The dispatching rule is varied by replacing the code
at this point.

To give a concrete example, processing times in Tab. 1 have been randomly
generated from a triangular distribution with lower limit 5s, upper limit 15s,
and mode 8s. For the job shop problem, also the processing order has been
randomized across the stages as shown in Tab. 2. The entry ”4” in row ”S1” and
column ”job 1” indicates that job 1 has to be processed on the first stage (S1) in
the fourth production step. Before, the job has to visit stage 3, then stage 2 and
stage 2 in exactly this sequence. The calculated job shop schedule of the Giffler
& Thompson algorithm with LPT-rule is shown in fig. 5.

Since the algorithm was not particularly designed for flow shop problems, it
is reasonable to compare its result with the NEH heuristic. The two schedules
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Job: 1 2 3 4 5 6 7 8 9 10

S1 6 12 8 9 10 8 9 9 11 7

S2 7 11 7 7 9 7 10 9 10 6

S3 8 12 11 8 9 8 12 13 7 9

S4 9 12 11 7 6 9 10 8 11 10

Table 1. Generated processing times

Job: 1 2 3 4 5 6 7 8 9 10

S1 4 1 4 3 4 4 1 3 2 3

S2 3 3 1 4 1 2 2 2 3 1

S3 1 2 2 1 3 3 4 4 4 4

S4 2 4 3 2 2 1 3 1 1 2

Table 2. Order for job shop production

Job Shop : G&T LPT

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

J2 J7 J3 J5 J9 J8 J10 J6 J4 J1

J9 J2 J7 J8 J3 J5 J6 J10 J4 J1

J8 J2 J9 J5 J7 J3 J10 J6 J4 J1

J3 J5 J2 J7 J9 J8 J6 J1 J10 J4

Cmax

Fig. 5. Jop shop schedule with Giffler & Thompson

are shown in Fig. 6. As expected, the NEH heuristic creates a better schedule
than the Giffler & Thompson algorithm. It is worth mentioning that Giffler &
Thompson created a valid schedule that can keep up with algorithms specially
designed for flow shop algorithms and can therefore be for example used as a
starter solution for an iterative algorithm or it can be used if no better solution
is available. In addition, Giffler & Thompson algorithm can be executed with
different priority rules. To execution of the algorithm with different priority rules
as input parameters lead to multiple solutions, the planner team can choose from.
The benefit is not having to implement an algorithm for flow shop problems as
the job shop algorithm can already handle it.

35



Synthesis of scheduling heuristics by composition and recombination 9

Flow Shop : NEH

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

Flow Shop : G&T LPT

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

Cmax,NEH Cmax,G&T

Fig. 6. Comparison of flow shop schedules with NEH and Giffler & Thompson
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6 Conclusion

In this paper, we presented a repository for machine scheduling algorithms using
the (CL)S, a framework that can generate algorithms automatically and to create
solutions that are specially tailored to a previously specified problem. We used
this framework for the problem area of machine scheduling in order to solve flow
shop and job shop problems with SPT, LPT, NEH and Giffler & Thompson.

We have classified scheduling algorithms and mapped them as components in
a (CL)S repository. Through componentization, different algorithms can be inte-
grated into a framework via a uniform interface. This makes it easy to generate
different algorithmen to scheduling problems. The recombined algorithms gener-
ate valid schedules according to their functionalities. Algorithms can be defined
for various problem classes and constraints. According to the synthesis request,
only those algorithms are recombined that apply to the current problem.

The shown concept is not limited to constructive algorithm as presented
in this study and can also be applied to any iterative metaheuristic in further
studies if the given data object already contains a constructive start solution.
Concatenations of different constructive and iterative heuristics are conceivable
as well. Also, extensions of other objective functions are possible.
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Abstract. In this paper, we study the use of reinforcement learning in adaptive operator selec-
tion within the Iterated Local Search metaheuristic for solving the well-known NP-Hard Traveling
Salesman Problem. This metaheuristic basically employs single local search and perturbation op-
erators for finding the (near-) optimal solution. In this paper, by incorporating multiple local
search and perturbation operators, we explore the use of reinforcement learning, and more specif-
ically Q-learning as a machine learning technique, to intelligently select the most appropriate
search operator(s) at each stage of the search process. The Q-learning is separately used for
both local search operator selection and perturbation operator selection. The performance of
the proposed algorithms is tested through a comparative analysis against a set of benchmark
algorithms. Finally, we show that intelligently selecting the search operators not only provides
better solutions with lower optimality gaps but also accelerates the convergence of the algorithms
toward promising solutions.

Keywords: Adaptive operator selection · Iterated local search · Reinforcement learning ·
Q-learning · Traveling salesman problem.

1 Introduction

Combinatorial Optimization Problems (COPs) are a complex class of optimization problems with
discrete decision variables and a finite search space. Many COPs are NP-hard for which no polynomial-
time algorithm exists. Meta-heuristics (MHs) can solve these problems in reasonable time and provide
them with acceptable solutions; however, they do not guarantee the optimality [22]. MHs employ either
single or multiple search operators to evolve a single or a population of solutions toward (near-) optimal
solutions. When using multiple search operators, the problem of operator selection arises.

Individual search operators may be effective in particular stages of the search process and not
throughout the search process. The reason is that the search space of COPs is a non-stationary en-
vironment that includes different search regions with dissimilar characteristics. Therefore, different
search operators act differently in different regions of the search space [7]. Accordingly, solving COPs
with single search operators does not necessarily lead to the highest performance of the search pro-
cess. Intuitively, employing multiple search operators selected in an appropriate way during the search
process not only leads to a more robust behavior of a MH with respect to the process of finding the
optimal solution [19], but also significantly affects the exploration (i.e., explore undiscovered regions)
and exploitation (i.e., intensify the search in promising regions) abilities of a MH, and provides an
Exploration-Exploitation balance during the search process. The main question in this regard is in
which order the search operators should be employed such that the MH can go toward the global
optimum. One efficient way is to dynamically select and apply the most appropriate operator based on
their history of performance during the search process. This is referred to as Adaptive Operator Selec-
tion (AOS) [7]. Adaptive selection strategies may differ from very simple strategies to more advanced
ones. In simple strategies, such as score-based selection strategy [16], an initial score is assigned to each
search operator and the scores are updated based on the performance of each operator at each step of
the search process. In this strategy, the selection chance of each search operators is then proportional to
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its accumulated score. Regardless of the neglectable overhead that they impose to the search process,
the added-value of simple strategies may not be necessarily significant [24]. Hence, more advanced
adaptive strategies should be embedded into the AOS.

In this regard, Machine Learning (ML) techniques can be used in AOS to provide a more intelligent
adaptive strategy when selecting the search operators during the search process. The integration of ML
techniques into MHs is an emerging research field that has attracted numerous researchers in recent
years [3,23,5,20,8,10,15]. In particular, ML techniques help the AOS to use feedback information on
the performance of the search operators during the search process. In this situation, operators are
selected based on a credit assigned to each operator (i.e., feedback from their historical performance).
Considering the nature of the feedback, the learning can be offline or online. In offline learning,
knowledge is extracted from a set of training instance with the aim to solve new problem instances. In
online learning, the knowledge is extracted and incorporated into the resolution process dynamically
while solving a problem instance [23,4].

In this paper, we study the use of reinforcement learning (RL), particularly Q-learning as a ML
technique, in AOS within the Iterated Local Search (ILS) meta-heuristic [12] for solving the well-known
NP-hard Traveling Salesman Problem (TSP). The ILS basically employs single local search and per-
turbation operators for finding the (near-) optimal solutions. However, there are several specific and
efficient local search and perturbation operators for TSP in the literature (e.g., 2-opt, 3-opt, insertion,
etc. as local search operators and double-bridge, shuffle-sequence, etc. as perturbation operators) [22]
that can be employed simultaneously. In this paper, we incorporate multiple local search and pertur-
bation operators into the ILS and use Q-learning to adaptively select among them during the search
process. Indeed, Q-learning is integrated into ILS to adaptively select its operators during the search
process. This integrated algorithm is called Q-ILS hereafter. In this paper, two variants of Q-ILS are
proposed: in the first algorithm called Q-ILS-1, Q-learning is used to select appropriate local search
operators at each stage of the search process, and in the second algorithm called Q-ILS-2, Q-learning
is used for selecting appropriate perturbation operators. We will show that both Q-ILS-1 and Q-ILS-2
are able to find good solutions and outperform the ILS with single operator and also ILS with multiple
randomly selected operators.

The rest of the paper is organized as follows. Section 2 reviews the recent relevant papers studying
Q-learning for AOS in solving different COPs. Section 3 explains the preliminaries and main concepts
of this paper. The two Q-ILS algorithms (Q-ILS-1 and Q-ILS-2) are proposed in Section 4. The per-
formances of the proposed algorithms are investigated in Section 5. Finally, the conclusion is given in
Section 6.

2 Literature review

AOS has been widely studied within different MHs for adaptively selecting the search operators [7].
Most of the studies use simple score-based methods that select operators based on their accumulated
score [7]. Besides simple score-based mechanisms for AOS, RL techniques, in particular Q-learning
algorithm, have been used for AOS in recent years [2,19,18,14,9]. In the following, the studies on the
use of Q-learning algorithm for AOS for solving different COPs are elaborated.

In [19], Q-learning has been integrated into a Variable Neighborhood Search algorithm to solve
the symmetric TSP. The role of Q-learning is to select appropriate local search operators during the
search process, where both the states and actions are a set of local search operators (i.e., interchange,
insertion, 2-opt, and double-bridge). The authors show that using Q-learning to intelligently select the
local search operators achieves satisfactory results for small-sized instances of the TSP. In [18], the
Q-learning algorithm is used to select the search operators of a Genetic algorithm, namely mutation
and crossover operators, during the search process for solving TSP. The authors discuss that adaptive
operator selection based on the immediate performance of the operators might lead to a short-sighted
optimization. Therefore, to overcome this shortcoming, they recommended using RL that can learn
a policy to maximize the expected reward in a long term prospect. In [14], the authors have used
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Q-learning algorithm to select appropriate local search operators of a Simulated Annealing algorithm.
The proposed algorithm is applied to mixed-model sequencing problem to select among exchange, shift,
and knowledge sharing operators. The states are defined as the number of successful neighbor moves
(i.e., moves that improve the objective function) occurred during an episode, and actions are a set of
triplet local search operators. They show that the integration of Q-learning into Simulated Annealing
significantly improves its performance comparing to other Simulated Annealing-based algorithms. In
[2], the authors have employed Q-learning to select the order of applying mutation and crossover oper-
ators in each generation of the Genetic algorithm. In their algorithm, five states are defined depending
on the number of chromosomes within the population that are replaced by executing an action, and
there are two possible actions; apply crossover first and mutation next or apply mutation first and
crossover next. To show the performance of the proposed method, it is applied to job sequencing
and tool switching problem. The authors show that the proposed algorithm is competitive and even
superior to the state-of-the-art algorithms for solving some instances of the problem.

As shown by the reviewed papers, the use of Q-learning in AOS has provided promising results in
solving different COPs, and even in some cases it has been superior to some state-of-the-art algorithms.
Motivated by the good performance of Q-learning, this paper aims at investigating the integration of
Q-learning into AOS to select local search (Q-ILS-1 algorithm) and perturbation (Q-ILS-2 algorithm)
operators of the ILS for solving the TSP.

The main contributions of this paper compared to the literature are threefold: 1) for the first time,
this paper investigates the use of Q-learning in ILS for intelligently selecting the search operators
throughout the search process, 2) the Q-learning is integrated into ILS in two levels for selecting local
search and perturbation operators, with the aim of investigating the effect of intelligent AOS in each
level, and 3) a new design of Q-learning is proposed where a set of appropriate states and actions are
defined according to the level of integration. In Q-ILS-1 the states are defined as the sequence of last k
local search operators and the actions are the local search operators. In Q-ILS-2, we define two states;
0 if there is no improvement in the best found solution during an episode and 1; otherwise, and the
actions are a set of perturbation operators.

3 Preliminaries

In this section, first a short introduction to the TSP is provided. Next, the basics of the ILS algorithm
and the Q-learning algorithm, are explained.

3.1 Traveling Salesman Problem

TSP is a classical NP-hard COP, which requires exponential time to be solved to optimality [11].
TSP can be formally defined by means of a weighted graph G = (V,A) where V is the set of vertices
representing cities and A is the set of edges that connect the vertices of V . The edge that connects
cities i and j has a weight of dij , which represents the distance between cities i and j; i, j ∈ V . In
TSP, the aim is to find the Hamiltonian cycle of minimum total travel distance such that all vertices
are visited exactly once.

3.2 Iterated Local Search

Iterated Local Search (ILS) is a well-known MH for its effectiveness in both exploration and exploitation
and its simplicity in practice. When the search gets trapped in a local optimum, ILS attempts to escape
from the trap without losing many of the good properties of the current solution [12]. Considering sbest
as the best solution found in the history of ILS, the general pseudo code of ILS is given in Algorithm
1. For a given initial solution s0, a LocalSearch(.) function is performed on solution s0 to search
its neighborhood with the hope to find better solutions, particularly the local optimal solution s∗.
Subsequently, s∗ is archived as the current best solution sbest. Then, the main loop of the ILS starts
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by performing a Perturbation(.) function over the current local optimum solution s∗ to help the
search process to escape from the local optimum; whereby an intermediate solution s′ is generated. The
LocalSearch(.) function is performed on the intermediate solution s′ to obtain a new local optimal
solution s∗′ . Next, the Acceptance(s∗, s∗′ , sbest) function is employed to check whether the new local
optimal solution s∗

′ is accepted. The Acceptance(.) function can only accept better solution (i.e.,
Only Improvement strategy) or it can even accept worse solution with a small gap (i.e., Metropolis
acceptance strategy [13]). Finally, the best solution sbest is updated. The algorithm terminates when
the termination criterion is satisfied.

Algorithm 1. Pseudo code of the ILS

1 get an initial solution s0
2 s∗ := LocalSearch(s0)
3 sbest := s∗

4 while termination criterion not reached do
5 s′ := Perturbation(s∗)
6 s∗

′ := LocalSearch(s′)
7 s∗ := Acceptance(s∗, s∗′ , sbest)
8 end
9 return the best found solution sbest

3.3 The Q-learning algorithm

In RL, an agent interacts with the environment and aims to iteratively learn which action to take at a
given state of the environment to achieve a goal. At each interaction depending on the state s (s ∈ S) the
agent takes an action a (a ∈ A(s)) and receives a numerical feedback from the environment. Through
this process, the agent attempts to iteratively maximize the cumulative received reward. Classical RL
methods need the complete model of the environment (i.e., all possible states of the system, the set
of possible actions per state and the matrix of transition probabilities as well as the expected values
of the feedback). However, in most problems including COPs, it is not possible to have a complete
model of the environment [26]. In such cases, Monte Carlo and Temporal Differences algorithms can be
used [21]. The Q-learning algorithm [25] is a model-free RL algorithm based on temporal differences.
In Q-learning, a Q-value is associated with each state-action pair (s, a) that represents the expected
gain of the choice of action a at state s. The Q-value of each state-action pair (s, a) is updated using
Expression (1).

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (1)

where r is the reward (punishment) received after performing action a in state s and γ (0 ≤ γ < 1)
and α (0 ≤ α < 1) are the discount factor and the learning rate, respectively.

One strategy to select the actions in Q-learning is to always select the action with the maximum Q-
value. In this strategy, the best state-action pairs with the maximum Q-values are exploited sufficiently,
while other state-action pairs remain unexplored. To cope with this issue and to make a balance between
exploration and exploitation, the ε-greedy strategy (Expression (2)) [21] is an efficient strategy that
assigns an ε selection probability to other actions to give them a chance to be explored.

a =





argmax
a

Q(s, a) with probability 1− ε
any other action with probability ε

(2)

To move from exploration of new actions toward exploitation of the best actions, the value of ε
gradually degrades throughout the search process using a parameter β called ε-decay.
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4 Proposed Q-ILS algorithms

This section proposes two Q-ILS-1 and Q-ILS-2 algorithms and explains their corresponding operators
and properties.

4.1 Q-ILS-1 algorithm

The novelty of the proposed Q-ILS-1 algorithm is development of a new local search procedure for
ILS based on the ideas from AOS and Q-learning. The proposed local search procedure adaptively
selects appropriate operators during the search process based on the current employed operator and
operators’ history of performance. In the first step, a pool of local search operators are incorporated
into the algorithm. Then, the proposed Q-learning algorithm is integrated into AOS to select local
search operators.

General framework In Q-ILS-1, the local search operators perform a descent-based search and
continue until no more improvements are found. As the perturbation operator, we employ double-bridge
operator wherein four edges are removed from the route of the cities and sub-routes are reconnected in
another way to explore a new route [22]. The Acceptance(.) function in Q-ILS-1 applies a Metropolis
acceptance strategy [13] that accepts all improved solutions and even non-improved solutions with
a probability of exp ∆f

T , where ∆f is the difference between the objective function before and after
applying the local search operator, and parameter T denotes the temperature. The higher the value of
T , the higher the chance to accept worse moves and vice versa.

Local search operators In Q-ILS-1, three efficient local search operators are used; the basic 2-opt
[22], a new 2-opt, and a new insertion operators. The basic 2-opt removes two edges from the route of
the cities and reconnects the sub-routes with new edges.

In this paper, we propose a new 2-opt operator based on the idea of best-move 2-opt presented in
[6]. In the best-move 2-opt, in each iteration of the local search, all the improving moves are identified
and sorted based on their improvement value, and only the best improving move is performed. In this
way, the information gathered about other improving moves is neglected and remain unused. However,
in the proposed 2-opt, the main idea is to use the gathered information about the improving moves
and to perform all possible moves simultaneously as long as they can be done independently (i.e.,
they do not share any segment of the route). In this way, in an iteration of the local search, a greater
value of improvement achieves. We call this new 2opt, the best-independent-moves 2-opt. To explain
the procedure of the proposed 2-opt, consider a simple example of Figure 1. In the first step, all the
improving moves are identified (moves 1, 2, 3, and 4 with improving values in parenthesis). Then, the
improving moves are sorted based on their improvement values in a descending order (moves 2, 4, 1, 3).
Finally, starting from the first move, all the independent moves are performed simultaneously (moves
2, 4, and 3). Indeed, move 1 cannot be applied immediately after move 4 since they share the same
segment "Q-R-A".

In addition, we propose a new insertion operators in this paper. In the new proposed insertion
operator, four types of moves are employed: forward-left, forward-right, backward-left, and backward-
right. Let’s consider two k → i→ l and m→ j → n segments of the route, where the first segment is
visited before the second segment. In addition, consider that two cities i and j undergo the insertion
operator. The four above-mentioned insertion moves produce m → i → j → n, m → j → i → n,
k → j → i → l, and k → i → j → l, respectively. Finally, the best insertion move among all four
moves are applied to the solution.

Action, state, and reward In Q-ILS-1, the actions are the set of local search operators to be selected
and applied at each iteration and the states are the sequence of last k local search operators (k is equal
to 1). At the end of each iteration, the performance of the employed perturbation operator is evaluated.
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Fig. 1: Independent improving moves in the best-independent-moves 2-opt operator

Then, a reward or punishment is assigned to the employed operator. If the operator has been able to
improve the best found solution, it receives a reward equal to the proportional improvement of the
objective function; otherwise, it receives a punishment and is deleted from the set of available actions
for the next iteration. In some cases, where no operator is able to improve the solution and set of
available operators is empty, one operator is selected and applied randomly.

4.2 Q-ILS-2 algorithm

The novelty of the proposed Q-ILS-2 algorithm is development of a new perturbation procedure for
ILS based on the ideas from AOS and Q-learning. In this algorithm, the type of perturbation operators
and the number of times to apply them are adaptively selected based on the status of the search using
the Q-learning algorithm. The aim of the proposed perturbation procedure is to adapt the exploration
level to the status of the search. The general framework of Q-ILS-2 is the same as Q-ILS-1 except that
Q-ILS-2, employs the best-independent-moves 2-opt operator as its single local search operator.

Perturbation operators In Q-ILS-2, a pool of three different perturbation operators are employed;
the Double-bridge operator, the Shuffle-sequence operator that perturbs the solution by re-ordering a
randomly selected sequence at random, and the Reversion-sequence operator that perturbs the solution
by reversing a randomly selected sequence from the solution.

Action, state, and reward In Q-ILS-2, the actions are tuples (P,R), where P is the type of the
perturbation operator and R is the repetition number of the perturbation operator P . Each action is
given a chance of one episode equal to a fixed number of iterations to help the solution to escape from
the local optimum. Accordingly, the states are the set of S = {0, 1}. s = 1 if the current perturbation
operator P with R number of repetition followed by the local search has been able to improve the best
found solution in an episode and s = 0, otherwise. After evaluation of the current action at the end of
each episode, a reward (punishment) is assigned to the corresponding action. If the operator has been
able to improve the best found solution, it receives a reward equal to the proportional improvement of
the objective function; otherwise, it receives a punishment.

5 Results and discussion

In this section, the performance of the two proposed algorithms, Q-ILS-1 and Q-ILS-2 are validated
through a set of experimental results. For this aim, the experiments are designed in Section 5.1. Next,
the numerical results are presented in Section 5.2.
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5.1 Experimental design

The performance of the proposed algorithms are validated through a set of 24 randomly selected
symmetric TSP instances from the TSPLIB library [1] with different number of cities ranging from
50 to 2150. Two different experiments are done in this paper. First, the performance of the proposed
algorithms in finding the optimal solution is investigated. Second, a comparative study is done to assess
the efficiency of employing Q-learning in AOS. For this aim, first, in order to show the effectiveness of
intelligent operator selection, Q-ILS-1 and Q-ILS-2 are compared to their corresponding Random ILS
(R-ILS) with the same set of operators selected randomly. Second, in order to show the effectiveness of
incorporating multiple operators into ILS, Q-ILS-1 and Q-ILS-2 are compared to their corresponding
S-ILS algorithms, each employing single local search and perturbation operators.

For the Q-ILS-2, the maximum number of repetitions R of double-bride, shuffle-sequence and
reversion-sequence are considered equal to 3, 1, and 1, respectively. The input parameters of the pro-
posed algorithms are tuned using Design of Experiments [17] where ε = 0.8, α = 0.6, γ = 0.5, β = 0.999,
and episode = 3. Each algorithm has been executed 30 times on each instance and is stopped after
0.2N number of iterations without improvement, where N is the number of cities in each instance. All
algorithms have been coded in Python 3 and executed on an Intel Core i5 with 2.7GHz CPU and 16G
of RAM.

The performance of the algorithms is measured using two main criteria [22]:

– The solution quality represented as the Relative Percentage Deviation (RPD). The RPD is calcu-
lated as RPD = OF−OF∗

OF∗ × 100, where OF is the objective function (i.e., tour length) of the best
found solution by each algorithm and OF ∗ is the objective function of the optimal solution.

– The convergence behavior of the algorithms that measures how fast (i.e., when/ at which iteration)
an algorithm converges to the best found (optimal) solution.

5.2 Numerical results

The performance of Q-ILS-1 and Q-ILS-2 in achieving the (near-) optimal solution are investigated
through Tables 1 and 2. In these tables, the columns "Best RPD" and "Best time" are the gap of the
best found solution and its corresponding CPU time, respectively and the columns "Average RPD"
and "Average time" are the average gap and average CPU time over 30 executions.

Table 1 indicates that Q-ILS-1 is able to find optimal solution in both small- and medium-sized
instances and it is able to find near-optimal solutions with an optimality gap of 3.83% for the largest
instance with 2152 cities. By looking at the "Best RPD" and the "Average RPD" results, it can be seen
that Q-ILS-1 has produced small gaps over all 30 executions. In terms of the CPU time, the higher
the size of the instance, the higher the CPU time of the algorithm. By looking at the "Best Time" and
the "Average Time" results, it can be seen how expensive certain instances are in terms of CPU time.
For example, instance "ts225" with 225 cities is much less expensive comparing to instance "ch130"
with 130 cities. Accordingly, the number of cities is not the only factor that affects the computational
complexity of the instance, but the geographical distribution of the cities is also an important factor.

Some of the observations from Table 1 can be also generalized to the results of Table 2. Besides
the zero optimality gap for small- and medium-sized instances, Q-ILS-2 is even able to find optimal
solution for some large-sized instances up to 300 cities. For larger instances, small gaps have been also
reported with an optimality gap of 3.94% for the largest instance with 2152 cities. Similar to Q-ILS-1,
the results of "Best RPD" and "Average RPD" show that Q-ILS-2 produces small gaps over all 30
executions for almost all instances.
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Table 1: Result of the proposed Q-ILS-1 in comparison to the optimal solutions

Instance Optimal Best RPD(%) Best time (s) Average RPD(%) Average time (s)
berlin52 7542 0 0.1 0 0.7
st70 675 0 2.4 0.037 9.9
kroA100 21282 0 0.3 0.005 10.2
rd100 7910 0 9.3 0.173 25.9
lin105 14379 0 0.5 0 15.2
pr124 59030 0 4.7 0.004 34.1
ch130 6110 0.262 42.9 0.546 73.4
ch150 6528 0.077 50.5 0.465 50.8
u159 42080 0 5.8 0 55.4
d198 15780 0.165 286.8 0.263 220.9
kroA200 29368 0.051 97.3 0.352 237.5
ts225 126643 0 1.1 0 48.0
pr264 49135 0 303.5 0.402 207.1
a280 2579 0 451.8 0.587 396.8
pr299 48191 0.151 734.7 0.805 704.3
lin318 42029 0.895 737.2 1.559 688.7
fl417 11861 0.430 605.5 0.696 796.1
pr439 107217 0.755 840.1 2.308 778.2
pcb442 50778 1.061 747.7 1.568 758.4
d493 35002 1.451 16.5 2.135 643.4
vm1084 239297 3.025 1461.4 4.217 2012.2
d1291 50801 3.173 782.4 4.295 1835.3
u1817 57201 4.142 254.0 4.858 664.4
u2152 64253 3.836 235.3 4.841 919.8

Table 2: Result of the proposed Q-ILS-2 in comparison to the optimal solutions

Instance Optimal Best RPD(%) Best time (s) Average RPD(%) Average time (s)
berlin52 7542 0 0 0 0.2
st70 675 0 0.7 0.109 4.5
kroA100 21282 0 1.3 0 7.3
rd100 7910 0 3.6 0.201 14.2
lin105 14379 0 0.4 0 4.5
pr124 59030 0 1.8 0 8.7
ch130 6110 0 17.4 0.359 40.4
ch150 6528 0 19.8 0.374 33.2
u159 42080 0 9.6 0.112 42.9
d198 15780 0.057 149.4 0.180 147.5
kroA200 29368 0 117.3 0.150 194.8
ts225 126643 0 56.5 0.002 108.9
pr264 49135 0 61.4 0.172 135.8
a280 2579 0 246.4 0.498 276.5
pr299 48191 0 453.1 0.274 440.7
lin318 42029 0.302 502.4 0.795 479.6
fl417 11861 0.211 574.5 0.339 553.0
pr439 107217 0.438 573.9 1.392 528.2

To be continued ...
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Table 2 (continued)
Instance Optimal Best RPD(%) Best time (s) Average RPD(%) Average time (s)
pcb442 50778 0.640 518.4 1.294 521.6
d493 35002 0.923 571.5 1.499 587.8
vm1084 239297 3.061 2729.6 3.717 2608.3
d1291 50801 2.281 1985.9 3.418 2060.1
u1817 57201 3.449 412.1 4.366 1416
u2152 64253 3.947 1967.5 4.531 1022.3

Table 3 shows the comparative results of Q-ILS-1 and Q-ILS-2 against R-ILS and S-ILS algorithms.
Considering Q-ILS-1 with three local search operators, there are three S-ILS; S-ILS-1 to S-ILS-3 that
stand for the use of basic 2-opt, best-independent-moves 2-opt and insertion local search operators,
respectively. Considering Q-ILS-2 with three perturbation operators, S-ILS-1 to S-ILS-3 stand for
the use of double-bridge, shuffle-sequence, and reversion-sequence operators perturbation operators
repeated only once, respectively. The values in Table 3 represent the RPD of other algorithms (i.e.,
R-ILS and S-ILS) comparing to Q-ILS-1 and Q-ILS-2 which is calculated as Equation 3:

RPDR(S) = OFR(S) −OFQ
OFQ

× 100 (3)

where OFR(S) is the average tour length obtained by R-ILS (S-ILS) for each instance and OFQ is the
average tour length obtained by Q-ILS-1/Q-ILS-2. A positive RPD value for an algorithm represents
that the corresponding algorithm has a positive gap compared to the Q-ILS-1/Q-ILS-2. The RPD
values equal to 0 shows both the two algorithms have led to the same solution. It can be seen that
both R-ILS and S-ILS for almost all the instances have positive gap comparing to Q-ILS-1 and Q-ILS-2.
This highlights the outperformance of the proposed Q-ILS algorithms over R-ILS and S-ILS in terms
of the optimality gap. Investigating the results of R-ILS with positive gaps illustrates the efficiency
of integrating the knowledge from the Q-learning algorithm into the operator selection mechanism
of the ILS algorithm. Furthermore, the performance of Q-ILS algorithms are better than the S-ILS
algorithms with single local search or perturbation operators. It shows the efficiency of employing
different operators when solving TSP instances. Based on the obtained results, it can be concluded
that intelligent selection of the operators at each stage of the search process using Q-learning provides
promising results when solving TSP instances.

Table 3: The RPD (%) of R-ILS and S-ILS comparing to Q-ILS-1 and Q-ILS-2

Instance Q-ILS-1 Q-ILS-2
R-ILS S-ILS R-ILS S-ILS

1 2 3 1 2 3
berlin52 2.04 1.34 2.09 3.01 3.34 3.48 3.17 2.10
st70 1.05 1.03 1.21 1.00 1.19 1.25 0.74 0.83
kroA100 0.34 0.76 0.43 2.17 0.97 1.23 0.58 0.64
rd100 1.23 1.53 1.63 3.00 1.43 1.79 1.20 1.62
lin105 1.39 1.07 1.19 1.02 0.83 1.84 1.24 0.85
pr124 0.60 0.72 0.93 1.87 1.06 1.21 0.65 0.70
ch130 0.99 1.51 1.12 2.60 1.68 2.18 1.12 1.23
ch150 0.95 1.19 1.29 3.20 1.31 2.36 1.01 1.17
u159 1.78 1.44 1.26 2.28 2.28 2.99 1.28 1.74
d198 0.43 0.39 0.51 2.65 0.73 1.92 0.71 0.96

To be continued ...
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Table 3 (continued)
Instance Q-ILS-1 Q-ILS-2

R-ILS S-ILS R-ILS S-ILS
1 2 3 1 2 3

kroA200 0.53 0.31 0.37 1.07 1.33 1.91 0.60 1.02
ts225 0.72 0.81 0.97 3.67 0.72 1.54 0.74 0.80
pr264 1.00 1.15 1.22 5.05 1.67 3.39 1.12 1.14
a280 1.96 1.84 2.27 4.23 2.23 4.17 1.53 2.00
pr299 1.63 2.07 1.56 5.06 2.22 4.23 1.65 2.18
lin318 0.58 0.48 0.58 0.97 1.81 3.34 1.44 1.79
fl417 1.67 2.00 2.19 5.11 1.14 3.88 2.19 1.99
pr439 1.51 1.22 1.68 3.16 2.78 3.65 1.75 1.45
pcb442 0.77 1.34 1.40 3.36 1.26 3.16 1.66 1.97
d493 0.85 0.87 1.49 3.28 1.26 3.58 2.18 2.06
vm1084 0.67 1.01 1.44 3.58 1.33 2.74 1.40 1.89
d1291 1.15 1.08 1.74 2.82 2.06 3.33 2.30 2.62
u1817 2.19 1.35 2.82 5.17 1.57 3.18 3.14 3.24
u2152 2.45 1.26 2.46 5.59 1.75 2.72 2.43 2.52

In addition to investigating the performance of Q-ILS-1 and Q-ILS-2 over R-ILS and S-ILS in finding
(near-) optimal solutions, the algorithms are also compared based on their convergence behavior. In
this regard, the average gap to the optimal solution for the instance "d493" for different algorithms at
different stages of the search are depicted in Figure 2 for Q-ILS-1 and Figure 3 for Q-ILS-2.

Fig. 2: Convergence behavior of Q-ILS-1 comparing to its benchmarks for instance d493

As Figures 2 and 3 illustrate, the convergence of Q-ILS-1 and Q-ILS-2 happens at earlier stages of
the search, about 40% of the search process for Q-ILS-1 and 60% of the search process for Q-ILS-2,
which leads to solutions with higher quality in both algorithms. Considering Figure 3, although R-ILS
converges at earlier stages, it is a premature convergence which cannot be improved by the end of the
search process. Considering both Figures 2 and 3, all algorithms are competitive but the Q-ILS-1 and
Q-ILS-2 always converge faster to the good solutions. The faster convergence of Q-ILS-1 and Q-ILS-2
is also observed for all the TSP instances.

Based on the obtained results, the integration of Q-learning into ILS in both levels provides promis-
ing results. Comparing the performance of the proposed Q-ILS-1 and Q-ILS-2 algorithms, it can be seen

49



A Learning-based Iterated Local Search Algorithm for Solving the Traveling Salesman Problem 11

Fig. 3: Convergence behavior of Q-ILS-2 comparing to its benchmarks for instance d493

that Q-ILS-2 outperforms the Q-ILS-1 in all the selected instances. It can be concluded that incorpo-
rating multiple efficient perturbation operators with different characteristics into ILS and intelligently
selecting among them significantly enhances the exploration ability of the ILS.

6 Conclusion

In this paper, we have integrated the Q-learning algorithm as a machine learning technique to select the
most appropriate search operators in the ILS algorithm for solving TSP. For this aim, the Q-learning
has been integrated into the ILS algorithm in two levels: 1) selecting the appropriate local search
operators and 2) selecting the appropriate perturbation operators at each stage of the search process.
In the first integration level, a set of three local search operators including the basic 2-opt, a new
2opt, and a new insertion operator are considered. In the second integration level, the selection is done
among three perturbation operators including double-bridge, shuffle-sequence and reversion-sequence.

The performance of the proposed algorithms has been tested on a set of 24 symmetric TSP instances
from the TSPLIB library. In addition, a comparative study has been conducted to investigate the
efficiency of intelligently selecting search operators using Q-learning algorithm. The results showed
that the proposed algorithms are able to find optimal solutions for small- and medium-sized instances
and near-optimal solutions for large-sized instances with small gaps. Through the comparative analysis,
it was observed that employing several search operators provides better performance for the ILS when
solving the TSP instances. Furthermore, the impact of the Q-learning for intelligently selecting the
appropriate search operators at each stage of the search process was significant.

Finally, it was concluded that employing different perturbation operators provides better results
in comparison to employing different local search operators. Indeed, the ILS algorithm is inherently
powerful in exploitation while it gets trapped easily in local optimum. Accordingly, considering different
perturbation operators and selecting the most appropriate one at each stage of the search process helps
the ILS to escape from the local optimum. ILS with multiple perturbation operators becomes more and
more efficient when the knowledge obtained from the Q-learning algorithm is injected into its operator
selection mechanism.

Testing the performance of the proposed algorithms on TSP instances with larger sizes could be
an interesting future research direction. In addition, considering other types of local search search and
perturbation operators and testing their performance is another future research direction that is worth
of further investigation. Finally, comparing the performance of the proposed algorithms against the
benchmark algorithms in the literature and statistically checking their differences could be another
future research work.
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Abstract. We present a regression method for enhancing the predictive
power of a model by exploiting expert knowledge in the form of shape
constraints such as monotonicity or convexity constraints. Incorporating
such information is particularly beneficial when the available data sets
are sparse. We set up the regression subject to the considered shape con-
straints as a semi-infinite optimization problem and propose an efficient
adaptive solution algorithm. It turns out that, in manufacturing applica-
tions with their typically sparse data, the predictive power of the models
obtained with our method is generally superior to those obtained with
standard monotonization methods.

Keywords: shape-constrained regression · semi-infinite optimization ·
informed machine learning.

1 Introduction

Conventional machine learning models are purely data-based. Accordingly, the
predictive power of such models is generally bad if the underlying training data
D = {(xl, tl) : l ∈ {1, . . . , N}} is insufficient. Such data insufficiencies occur
quite often in applications, and they can come in one of the following forms:
on the one hand, the available data sets can be too small and have too little
variance in the input data points x1, . . . ,xN and on the other hand, the output
data t1, . . . , tN can be too noisy.

Aside from potentially insufficient data, however, one often also has addi-
tional knowledge about the relation between the input variables and the re-
sponses to be learned. Such extra knowledge about the considered process is
referred to as expert knowledge in the following. Informed machine learning [1]
techniques combine data and expert knowledge to build hybrid or gray-box mod-
els predicting the responses more accurately than purely data-based models.
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An important and common type of expert knowledge is prior information
about the monotonicity behavior of the unknown functional relationship x 7→
y(x) to be learned. Along with convexity constraints, monotonicity constraints
are probably the most intensively studied shape constraints in the literature
and correspondingly, there exist plenty of different approaches to incorporate
monotonicity knowledge in a machine learning model. See [2] for an extensive
overview. Very roughly, these approaches can be categorized according to when
the monotonicity knowledge is taken into account: in or only after the train-
ing phase. In this talk, we propose a novel in-training approach to monotonic
regression and compare it to the standard after-training approaches [3], [4].

2 Semi-infinite optimization for monotonic regression

In our approach to monotonic regression, multivariate polynomial models

x 7→ ŷw(x) =
∑

|α|≤m
wαx

α ∈ R (1)

are used for all input-output relationships x 7→ y(x) to be learned. In the
above relation (1), the sum extends over all d-dimensional multi-indices α =
(α1, . . . , αd) ∈ Nd0 with degree |α| := α1 + · · · + αd less than or equal to some
total degree m ∈ N. Also, the terms xα := xα1

1 · · ·xαd

d are the monomials in
d variables of degree less than or equal to m and the Nm numbers wα are the
model parameters to be tuned by regression. As is well-known, standard poly-
nomial regression is about solving the unconstrained optimization problem

min
w∈RNm

1

2

N∑

l=1

(
ŷw(xl)− tl

)2
(2)

or, in other words, about optimally adapting the model parameters wα ∈ R of
the polynomial model (1) to the available data D = {(xl, tl) : l ∈ {1, . . . , N}}.
In general, the resulting model x 7→ ŷw(x) will not exhibit the monotonicity
behavior an expert expects for the underlying true physical relationship x 7→
y(x). In order to enforce the expected monotonicity behavior, the constraints

σj · ∂xj ŷw(x) ≥ 0 for all j ∈ J and x ∈ X (3)

are added to the unconstrained standard regression problem (2). The numbers
σj ∈ {−1, 0, 1} indicate the expected monotonicity behavior for each coordinate
direction j ∈ {1, . . . , d}. Also, J := {j ∈ {1, . . . , d} : σj 6= 0} is the set of all
directions for which a monotonicity constraint is imposed, and the input space
X := [a1, b1]×· · ·× [ad, bd] is a hyperbox in Rd. Since X contains infinitely many
points, the monotonic regression problem (2)-(3) takes the form

min
w∈RNm

f(w) s.t. gj(w,x) ≥ 0 for all j ∈ J and x ∈ X (4)

of a semi-infinite optimization problem [5]. In order to solve (4), we adapt the
adaptive discretization algorithm from [6] to our specific situation.
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Algorithm 1 1. Choose a finite subset X0 ⊂ X and set k = 0.
2. Solve the kth discretized upper-level problem

min
w∈RNm

f(w) s.t. gj(w,x) ≥ 0 for all j ∈ J and x ∈ Xk (5)

to obtain optimal model parameters wk ∈ RNm .
3. Solve the (k, j)th lower-level problem minx∈X gj(wk,x) δk-approximately for

every j ∈ J to obtain δk-approximate global minimizers xk+1,j ∈ X. Add
those of the points xk+1,j, for which substantial monotonicity violations oc-
cur, that is, for which gj(w,x

k+1,j) < −εj, to the current discretization Xk

and go to Step 2 with k = k + 1. If for none of the points xk+1,j substantial
monotonicity violations occur, go to Step 4.

4. Check for monotonicity violations on a fixed, fine reference discretization
Xref ⊂ X. If there are no such violations, that is, if gj(w

k,x) ≥ −εj for all
j ∈ J and x ∈ Xref , then terminate. If there are such violations, then for
every direction j with violations, add the reference grid point xk+1,j

ref with the
largest violation to Xk and go to Step 2 with k = k + 1.

Clearly, the upper-level problems (5) are convex quadratic problems and the
lower-level problems are multivariate polynomial optimization problems. Since
in contrast to [6] we require only approximate solutions of the lower-level prob-
lems, we can use a wide range of global solvers, for example, global polynomial
solvers based on semidefinite relaxation hierarchies. We present convergence re-
sults for this and related adaptive discretization algorithms. We also apply the al-
gorithms to two real-world manufacturing applications, namely laser glass bend-
ing and press hardening of sheet metal. In these processes, experimental data are
fairly costly and therefore sparse (with little variance), but monotonicity expert
knowledge is available. Compared to the well-known after-training approaches to
monotonization (via rearrangement [3] or projection [4]), our in-training semi-
infinite optimization approach yields monotonic models with generally better
predictive power. Another advantage of our approach is that it directly extends
not only to convexity constraints but, in fact, to any shape constraint that can be
expressed in terms of the partial derivatives of the underlying model x 7→ ŷw(x).
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Abstract. Grammatical inference is concerned with the study of algo-
rithms for learning automata and grammars from words. We focus on
learning Nondeterministic Finite Automaton of size k from samples of
words. To this end, we formulate the problem as a SAT model. The gen-
erated SAT instances being enormous, we propose some model improve-
ments, both in terms of the number of variables, the number of clauses,
and clauses size. These improvements significantly reduce the instances,
but at the cost of longer generation time. We thus try to balance instance
size vs. generation and solving time. We also achieved some experimental
comparisons and we analyzed our various model improvements.

Keywords: Constraint problem modeling · SAT · model reformulation.

1 Introduction

Grammatical inference [7] is concerned with the study of algorithms for learning
automata and grammars from words. It plays a significant role in numerous
applications, such as compiler design, bioinformatics, speech recognition, pattern
recognition, machine learning, and others. The problem we address in this paper
is learning a finite automaton from samples of words S = S+∪S−, which consist
of positive words (S+) that are in the language and must be accepted by the
automaton, and negative words (S−) that must be rejected by the automaton.
A non deterministic automaton (NFA) being generally a smaller description for
a language than an equivalent deterministic automaton (DFA), we focus here on
NFA inference. An NFA is represented by a 5-tuple (Q,Σ,∆, q1, F ) where Q is
a finite set of states, the vocabulary Σ is a finite set of symbols, the transition
function ∆ : Q × Σ → P(Q) associates a set of states to a given state and a
given symbol, q1 ∈ Q is the initial state, and F ⊆ Q is the set of final states.

Not to mention DFA (e.g., [6]), the problem for NFA has been tackled from
a variety of angles. In [15] a wide panel of techniques for NFA inference is given.
Some works focus on the design of ad-hoc algorithms, such as DeLeTe2 [3] that
is based on state merging methods. More recently, a new family of algorithms
for regular languages inference was given in [14]. Some approaches are based
on metaheuristic, such as in [12] where hill-climbing is applied in the context
of regular language, or [4] which is based on genetic algorithm. In contrast to
metaheuristics, complete solvers are always able to find a solution if there exists
one, to prove the unsatisfiablility of the problem, and to find the optimal solution
in case of optimization problems. In this case, generally, the problem is modeled
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2 F. Lardeux et al.

as a Constraint Satisfaction Problem (CSP [11]). For example, in [15], an Integer
Non-Linear Programming (INLP) formulation of the problem is given. Parallel
solvers for minimizing the inferred NFA size are presented in [8, 9]. The author
of [10] proposes two strategies, based on variable ordering, for solving the CSP
formulation of the problem.

In this paper, we are not interesting in designing or improving a solver, but
we focus in improving models of the problem in order to obtain faster solving
times using a standard SAT solver. Modeling is the process of translating a
problem into a CSP consisting in decision variables and constraints linking these
variables. The INLP model for NFA inference of [15] cannot be easily modified
to reduce the instances: to our knowledge, only Property 1 of our paper could be
useful for the INLP model, and we do not see any other possible improvement.
We thus start with a rather straightforward conversion of the INLP model into
the propositional satisfiablity problem (SAT [5]). This is our base SAT model to
evaluate our improvements. The model, together with a training sample, lead to
a SAT instance that we solve with a standard SAT solver. The generated SAT
instances are very huge: the order of magnitude is |S|.(|ω|+1).k|ω| clauses, where
k is the number of states of the NFA, ω is the longest word of S, and |S| is the
number of words of the training sample. We propose three main improvements to
reduce the generated SAT instances. The first one prevents generating subsumed
constraints. Based on a multiset representation of words, the second one avoid
generating some useless constraints. The last one is a weaker version of the first
one, based on prefixes of words. The first improvement returns smaller instances
than the second one, which in turn returns smaller instances than the third
one. However, the first improvement is very long and costly, whereas the third
one is rather fast. We are thus interested in balancing generation and solving
times against instance sizes. We achieved some experiments with the Glucose
solver [1] to compare the generated SAT instances. The results show that our
improvements are worth: larger instances could be solved, and faster. Generating
the smallest instances can be too costly, and the best results are obtained with
a good balance between instance sizes and generation/solving time.

This paper is organized as follows. In Section 2, we describe the problem
and we give the basic SAT model. We also evaluate the size of the generated
instances. Section 3 presents 3 model improvements, together with sketches of
algorithms to generate them. Section 4 exposes our experimental results and
some analysis. We finally conclude in Section 5.

2 Modeling the problem in SAT

The non-linear integer programming (INLP) model of [15, 9] cannot be easily
improved or simplified. Indeed, the only improvement proposed in [15] and [9]
corresponds to Property 1 (given in the next section). In this section, we thus
present a SAT formulation of the NFA inference problem. This SAT model per-
mits many improvements to reduce the size of the generated SAT instances.
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The NFA inference problem Consider an alphabet Σ = {s1, . . . , sn} of n
symbols; a training sample S = S+ ∪ S−, where S+ (respectively S−) is a set
of positive words (respectively negative words) from Σ∗; and an integer k. The
problem consists in building a NFA of size k which validates words of S+, and
rejects words of S−. The problem can be extended to an optimization problem:
it consists in inferring a minimal NFA for S, i.e., an NFA minimizing k. However,
we do not consider optimization in this paper.

Notations Let A = (Q,Σ, q, F ) be a NFA with: Q = {q1, . . . , qk} a set of
states, Σ a finite alphabet (a set of symbols), q the initial state, and F the set of
final states. The symbol λ represents the empty word. We denote by K the set
{1, . . . , k}. A transition from qj to qk with the symbol si is denoted by τsi,qj→qk .
Consider the word w = w1 . . . wn with w1, . . . , wn in Σ. Then, the notion of
transition is extended to w by Tw,qi1→qin+1

which is a sequence of transitions
τw1,qi1→qi2 , . . . , τwn,qin→qin+1

. The set of candidate transitions for w between the

states qi1 and qil in a NFA of size k is Tw,qi1→qil = {Tw,qi1→qil | ∃i2, . . . iil−1 ∈
K, Tw,qi1→qil = τw1,qi1→qi2 , . . . , τwl,qil−1→qil }.

A SAT model Our base model is a conversion into SAT of the nonlinear integer
programming problem given in [15] or [9]. Consider the following variables:

– k the size of the NFA we want to build,

– F = {f1, . . . , fk} a set of k Boolean variables determining whether states q1
to qk are final or not,

– and ∆ = {δs,qi→qj |s ∈ Σ and i, j ∈ K} a set of n.k2 variables determining
whether there is or not a transition δs,qi→qj , i.e., a transition from state qi
to state qj with the symbol s, for each qi, qj , and s.

A transition Tw1...wn,qi1→qin+1
= τw1,qi1→qi2 , . . . τwn,qin→qin+1

exists if and only
if the conjunction d = δw1,qi1→qi2 ∧ . . . ∧ δwn,qin→qin+1

is true. We call d a
c transition, and we say that d models Tw1...wn,qi1→qin+1

. We denote by Dw,qi,qj

the set of all c transitions for the word w between states qi and qj .

The problem can be modeled with 3 sets of equations:

1. If the empty word λ is in S+ or in S−, we can determine whether the first
state is final or not:

if λ ∈ S+, f1 (1)

if λ ∈ S−, ¬f1 (2)

2. For each word w ∈ S+, there is at least a transition starting in q1 and ending
in a final state qj :

∨

j∈K

∨

d∈Dw,q1,qj

(
d ∧ fj

)
(3)
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With the Tseitin transformations [13], we create one auxiliary variable for
each combination of a word w, a state j ∈ K, and a transition d ∈ Dw,q1,qj :

auxw,j,d ↔ d ∧ fj
For each w, we obtain a formula in CNF:

∧

j∈K

∧

d∈Dw,q1,qj

[(¬auxw,j,d ∨ (d ∧ fj))] (4)

∧

j∈K

∧

d∈Dw,q1,qj

(auxw,j,d ∨ ¬d ∨ ¬fj) (5)

∨

j∈K

∨

d∈Dw,q1,qj

auxw,j,d (6)

d is a conjunction, and thus ¬auxw,j,d ∨ d is a conjunction of |w| binary
clauses: (¬auxw,j,d ∨ δw1,q1→qi2 ) ∧ . . . ∧ (¬auxw,j,d ∨ δw|w|,qi|w|→qi|w|+1

).

|Dw,q1,qj | = k|w|−1 since for each symbol of w there is k possible moves
in the NFA, except for the last symbol which leads to qj . Thus, we have
(|w|+1).k|w| binary clauses for Constraints (4), k|w| (|w|+2)-ary clauses for
Constraints (5), and one k|w|-ary clause for Constraints (6). We have added
k|w| auxiliary variables.

3. For each w ∈ S− and each state qj , either there is no complete transition
from state q1 to qj , or qj is not final:

¬


∨

j∈K

∨

d∈Dw,q1,qj

(
d ∧ fj

)

 (7)

Constraints (7) are already in CNF, and we have k|w| (|w + 1|)-ary clauses.

Thus, the constraint model Mk for building a NFA of size k is:

Mk =
∧

w∈S+

(
(4) ∧ (5) ∧ (6)

)
∧
∧

w∈S−
(7)

and is possibly completed by (1) or (2) if λ ∈ S+ or λ ∈ S−.

Size of the models Considering ω+, the longest word of S+, and ω−, the
longest word of S−, the number of constraints in model Mk is bounded by:

– |S+|.(|ω+|+ 1).k|ω+| binary clauses;
– |S+|.k|ω+| (|ω+|+ 2)-ary clauses;
– |S+| k|ω+|-ary clauses;
– |S−|.k|ω−| (|ω−|+ 1)-ary clauses.

The number of Boolean variables is bounded by:

– k variables in F determining final states;
– n.k2 variables determining existence of transitions;
– |S+|.k.|ω+| auxiliary variables auxw,j,d.

It is thus obvious that it is important to improve the model Mk.
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3 Improving the SAT model

We now give some properties that can be used for improving the SAT model.
By abuse of language, we will say that a model M1 is smaller than a model
M2 whereas we should say that the SAT instance generated with M1 and data
D is smaller than the instance generated with M2 and D. A first and simple
improvement is based on the following property.

Property 1 (Empty word λ). If λ ∈ S−, then each c transition ending in q1 does
not have to be considered when generating the constraints related to the word
w ∈ S.

Indeed, if w is positive, it cannot be accepted by a transition ending in q1;
similarly, if w is negative, ¬d∨¬f1 is always true. When λ ∈ S+, the gain is not
very interesting: f1 can be omitted in Constraints (7), (4), and (5). This does not
really reduce the instance, and a standard solver would simplify it immediately.

Whereas a transition is an ordered sequence, the order of conjuncts in a
c transition is not relevant, and equal conjuncts can be deleted. Thus, a c transi-
tion may model several transitions, and may correspond to several words. By
abuse of language, we say that a c transition ends in a state qj if it corresponds
to at least a transition ending in qj . Thus, a c transition may end in several
states. We consider an order on c transitions. Let d and d′′ be two c transitions.
Then, d � d′′ if and only if there exists a c transition d′ such that d ∧ d′ = d′′.
In other words, each transition variable δs,qi→qj appearing in d also appears in
d′′. This order is used in the two first model improvements which are based on
c transitions. The third model improvement is based on transitions. We now
consider some redundant constraints.

Property 2 (Redundant constraints). When a state qi cannot be reached, each
outgoing transition becomes free (it can be assigned true or false), and qi can be
final or not. In order to help the solver, all the corresponding variables can be
assigned an arbitrary value. For each state qj , j 6= 1:

( ∧

i∈K,i 6=j

∧

s∈Σ
¬δs,qi→qj

)
→ ¬fj ∧

( ∧

i∈K

∧

s∈Σ
¬δs,qj→qi

)

In CNF, these constraints generate (for all qj), (k−1).(k.n+1) redundant clauses
of size n.(k − 1) + 1.

These constraints are useful when looking for a NFA of size k when k is not
the minimal size of the NFA. Compared to SAT instance size, these redundant
constraints can be very helpful without being too heavy.

Note that in our implementation, for all the models, we always simplify in-
stances using Property 1 and removing duplicate transition variables in c transitions
(i.e., δs,qi→qj ∧ . . . ∧ δs,qi→qj is simplified into δs,qi→qj ∧ . . .). Moreover, we also
generate the redundant constraints as defined in Property 2.
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Improvement based on c transitions subsumption. This first improve-
ment consists in removing tautologies for negative words, and some constraints
and unsatisfiable disjuncts for positive words.

Property 3 (c transition subsumption). Let v be a negative word from S−, and
¬dv ∨ ¬qj be a Constraint (7) generated for the c transition dv for v ending in
state qj . We denote this constraint cv,dv,qj . Consider a positive word w from
S+, and dw a c transition for w ending in qj such that dv � dw. Then, each
dw ∧ fj will be false due to cv,dv,qj . Thus, Constraints (4) and (5) corresponding
to w, dw, and qj will force to satisfy ¬auxw,j,dw ; hence, they can be omitted and
auxw,j,dw can be removed from Constraints (7). Similarly, consider ω from S−,
and dω a c transition for w ending in qj such that dv � dw. Then, Constraint (7),
¬dv∨¬qj , will always be true (due to the constraint cv,dv,qj ), and can be omitted.

We can compute the size of the reduced SAT instance when the smaller word
is a prefix. Let v ∈ S− and w ∈ S be words such that w = v.v′, i.e., v ⊆ w and
v is a prefix of w. Then, using Property 3: if w ∈ S−, the number of clauses
generated for w is reduced to (k−1).k|w|−1 clauses of size |w+1|; if w ∈ S+, the
number of clauses generated for w is reduced to (|w| + 1).(k − 1).k|w|−1 binary
clauses for Constraints (4), (k−1).k|w|−1 (|w|+2)-ary clauses for Constraints (5),
and one clause of size (k− 1).k|w|−1 for Constraint (6). The number of auxiliary
variables is reduced to (k − 1).k|w|−1.

Operationally, we have a two step mechanism. First, for each negative word,
each c transition together with its ending state is generated and stored in a
database of couples (c transition, ending state) that we call c couple. Then,
for generating constraints for a word w, each of its c couple is compared to
the database. If a c transition for w ending in qj is smaller than a c transition
from the database also ending in qj , then the corresponding constraints are not
generated, as shown above. We call Mk,all this reduced model.

Improvement based on Multisets. Although efficient in terms of generated
instance sizes, the previous improvement is very costly in memory and time.
It becomes rapidly intractable. This second improvement also uses Property 3.
It is a weakening of the above operational mechanism that does not omit every
subsumed c transition. This mechanism is less costly. Hence, generated instances
will be a bit larger, but the balance generation time against instance size is very
good. The idea is to order words in order to search in a very smaller database
of c couples (c transition, ending state) when generating constraints for a word
w. Moreover, this order will also imply the order for generating constraints.

We associate each word to a multiset which support is the vocabulary Σ.

The word w, is thus associated with the multiset ms(w) = {s|w|s11 , . . . , s
|w|sn
n }

where |w|si is the number of occurrences of the symbol si in w. Note that several
words can have the same multiset representation. Based on multiset inclusion

({sa
′
1

1 , . . . , s
a′n
n } ⊆M {sa11 , . . . , sann } ⇔ ∀i, a′i ≤ ai), we can now define the notion

of word inclusion, noted ⊆ω. Consider w and w′, two words of Σ∗, then:

w′ ⊆ω w ⇔ ms(w′) ⊆M ms(w)
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Consider a sample S = S+ ∪ S−. Let >(S) be the multiset defined as

>(S) = {s1+maxw∈(S){|w|s1}
1 , . . . , s

1+maxw∈(S){|w|sn}
n }

and ⊥ = {s01, . . . , s0n}. Then, >(S) represents words which are not in the sample
S, and ⊥ represents the empty word λ which may be in S.

Consider the sample S = S+ ∪ S−. Let MS(S) = {ms(w)|w ∈ S+ ∪ S−} be
the set of the representations of words of S. Then, (MS(S) ∪ {⊥,>(S)},⊆M)
is a lattice. Let m be a multiset of MS(S). Then, inf(m) is the set of multisets
{m′ ∈ MS(S) | m′ ⊆M m}. This lattice of multisets defines the data structure
used for constraint generation. For generating constraint of a word w of a multiset
m, we now only compare its c couples with the database of c couples of words
w′ ∈ S− with w′ ⊆ω w, i.e., words represented by multisets smaller than m.

The negative words that allow to reduce the most, are the ones represented
by the smallest multiset. We thus also propose a mechanism to reduce the
database (c transition, ending state) with the most useful c couples, i.e., the
ones from smallest words. Let level(m) be the ”level” of the multiset defined by:
level(m) = 0 if m = ⊥, 1 +maxm′∈inf(m)(level(m

′)) otherwise. Given a multi-
set m, and a threshold l, the base function returns all the multisets m′ of level
smaller than l, and such that m′ ⊆M m: base(p, l) = {n ∈ inf(p) | level(n) ≤
l}⋃

(⋃
p′∈inf(p) base(p

′, l)
)

if p 6= ⊥, ∅ otherwise.
Based on Property 3, c couples of the negative words of these multisets

will be used to reduce constraint generation of the words of m. We call this
model Mk,mset,l, with l a given threshold. If base is called with the threshold
0, the database will be empty and the complete instance will be generated:
Mk,mset,0 = Mk. If base is called with the maximum level of the lattice, then,
the database will be the largest one built with all the smaller words, and we
will thus obtain the smallest instances with this notion of lattice. However, the
larger the threshold, the longer the generation time, and the smaller the SAT in-
stance. With the maximal threshold, the generated instances will be a bit larger
than with the previous improvement (Mk,all ⊆ Mk,mset,max), but the genera-
tion is significantly faster. For lack of space, we cannot give here the complete
algorithms for generating this improved model.

Improvements based on Prefixes. Although faster to generate, the second
model is still costly. We now propose a kind of weakening of Property 3, restrict-
ing its use to prefix.

Property 4 (Prefix). Let w ∈ S be a word from the sample. Consider D∗w,qi,qj
the set of c transitions defined by:

D∗w,qi,qj =
∨

l∈K,l 6=j

(( ∨

du∈D∗u,qi,ql

du ∧
( ∨

dv∈D∗v,ql,qi

dv

)))

if w = u.v, and u ∈ S−; otherwise, D∗w,qi,qj = Dw,qi,qj . Then,

∀d ∈ Dw,qi,qj \D∗w,qi,qj ,¬d ∨ ¬fj
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Hence, this property allows us to directly generate the reduced constraints, for
negative or positive words, without comparing c couples with a database.

Let w = u1 . . . un be a word from S such that u1 ∈ S−, u1.u2 ∈ S−, and
u1 . . . un−1 ∈ S− and for each i < n, there does not exist a decomposition
ui = u′i.u

′′
i such that u1 . . . ui−1.u′i ∈ S−. Then, if w ∈ S+, using several times

Property 4, Constraints (4), (5), and (6) can be replaced by Constraints (8), (9),
and (10) where l0 = q1 and N = [1, . . . , n]:

∧

i∈N,li∈K\{lj |1≤j<i}

∧

i∈N,di∈Dui,qli−1,ql

[(¬auxw,l1,...,ln ∨ (d1 ∧ . . . ∧ dn ∧ fj))] (8)

∧

i∈N,li∈K\{lj |1≤j<i}

∧

i∈N,di∈Dui,qli−1,ql

(auxw,l1,...,ln ∨ ¬d1 ∨ . . . ∨ ¬dn ∨ ¬fj) (9)

∨

i∈N,li∈K\{lj |1≤j<i}

∨

i∈N,di∈Dui,qli−1,ql

auxw,l1,...,ln (10)

Similarly, if w ∈ S−, using several times Property 4, Constraints (7) can be
replaced by Constraints (11):

∧

i∈N,li∈K\{lj |1≤j<i}

∧

i∈N,di∈Dui,qli−1,ql

(¬d1 ∨ . . . ∨ ¬dn ∨ ¬fj) (11)

The number of clauses and variables generated for w ∈ S+ is reduced to:

– (|w|+ 1).
(∏n

i=1(k − i+ 1)
)
.k|w|−n binary clauses for Constraints (8),

–
(∏n

i=1(k − i+ 1)
)
.k|w|−n (|w|+ 2)-ary clauses for Constraints (9),

– one clause of size
(∏n

i=1(k − i+ 1)
)

for Constraint (10),
– and the number of auxiliary variables is reduced to

(∏n
i=1(k − i+ 1)

)
.

For w ∈ S−, Constraints (11) are already in CNF and they correspond to(∏n
i=1(k − i + 1)

)
.k|w|−n (|w + 1|)-ary clauses. Interestingly, these new counts

of clauses (and more especially the factor k − i + 1 with i = n) also give us a
lower bound for k: k must be greater than or equal to n, the number of nested
prefixes in a word. This new improved model, that we call Mk,pref , is not much
larger than Mk,mset, but it is significantly faster to generate.

Improvement order. We have defined various models for inference of NFA of
size k that can be ordered by their sizes:Mk,all ⊆Mk,mset,l max ⊆ mk,pref ⊆Mk.
Note that Mk,mset,l with l 6= l max, and Mk,pref cannot be compared in the
general case; their sizes depend on the instance, the number and size of prefixes,
and on the given level l. In the next section, we compare these models not only
in terms of instance size, but also in terms of generation and resolution time.

4 Experimental results

We suspect that, with respect to their generation time, the models are in reverse
order of the order given above. Thus, we are interested in findng the best balance
between three parameters: model size v.s. generation time + SAT solving time.
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The experiments were carried out on a computing cluster with Intel-E5-2695
CPUs and 128 GB of memory. Running times were limited to 2 hours for the
generation of SAT instances, and 3 hours to solve them. We used the Glucose [1]
SAT solver with the default options.The benchmarks are based on the training
set of the StaMinA Competition (http://stamina.chefbe.net). We selected 12
instances1 with a sparsity s ∈ {12.5%, 25%, 50%, 100%} and an alphabet size
|Σ| ∈ {2, 5, 10}. For each of them, we limited the number of words to |S+| =
|S−| = 10 and 20 for a maximal size of words equal to 7 and to |S+| = |S−| = 20
for a maximal size of words equal to 10. We generate CNF instances for different
NFA sizes (k ∈ {3, 4, 5}). Consequently, we obtained 96 instances.

Table 1 presents a synthetic view of our experiments. The 4 first columns de-
tail the instances: size of the NFA (k), size of the longest word (|ω|), number of
positive (and negative) words (|S+|), and the model. The next columns provide
average values over the 12 instances for the modeling time (TModel), the number
of variables (#V ar), the number of clauses (#Cl), the solving time (Tsolve), and
the total modeling+solving time (Ttotal). We do not indicate the standard devi-
ations but they are very close to zero. ”-” indicates that no result was obtained
before the time-out. From Table 1, we can draw some general conclusions about
model improvements. As expected, Mk,all always returns the smallest instances,
and also the instances that Glucose solve the fastest. However, the generation
time of these instances is very long. Thus, the total CPU time, i.e., generation
+ solving, is not the best. We can also see that when we increase the maximum
length of words, this model does not permit to generate the instances in less
than 2 hours (e.g., Table 1, for k = 4, ω = 10, and |S+| = 20). This model is
thus tractable, but only for small instances, with short words and small samples.

Mk,mset,lmax generates instances a bit larger than Mk,all. Consider the nega-
tive word v = aaab, and the positive word w = ba. Mk,all uses some c transitions
of v to ignore some clauses of w that Mk,mset,lmax will not detect. For example,
a loop on aaa from v with the same transition in v is used in Mk,all but not in
Mk,mset,lmax

. However, with the multiset data structure, we obtain a much faster
generation of instances. The total time is thus more interesting with Mk,mset,lmax

than with Mk,all. The generation time of Mk,mset,lmax is still very high, and its
interest is not always significant. For large instances, not presented in the table,
Mk,mset,lmax

could not be generated in less than 2 hours.
For Mk,pref , we can see that the generation time becomes reasonable, and

much smaller than with the two previous improvements. Although smaller than
with Mk, the instances are larger than with Mk,mset,lmax

. In various experiments,
this improvement was the best for the total time. Note also that our training
samples are not so big, and that the number of prefixes is not so important. With
larger |S+|, for a fixed k, we should obtain better performances of Mk,pref .

We also tried two more improvements of Mk,mset,l with l ∈ {1, 3}. The gen-
eration time of these models is logically faster than the ones of Mk,mset,lmax

; as
planned, the SAT instances are also larger. However, we were pleasantly sur-
prised by the total time which is much better than for Mk,mset,lmax . The three

1 We conserved the ”official” name used during the Stamina Competition.
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Table 1. Comparison on 96 generated instances between the models mk,all,
mk,mset,lmax , mk,mset,1, mk,mset,3, and mk,pref . Instances are grouped by size of the
NFA (k), size of the longest word (|ω|), and number of positive (and negative) words
(|S+|). For each line, obtained values are average on 12 instances.

k |ω| |S+| Model Tmodel #Var. #Cl. Tsolve Ttotal

3

7

10

mk 0.19 6742 61366 0.22 0.41
mk,all 0.68 4310 37789 0.14 0.82

mk,mset,lmax 0.17 4742 42020 0.14 0.31
mk,mset,1 0.18 5517 49484 0.16 0.34
mk,mset,3 0.17 4822 42850 0.14 0.31
mk,pref 0.18 6466 58645 0.2 0.38

20

mk 0.48 14830 134302 1.58 2.06
mk,all 2.62 8274 72569 1.64 4.26

mk,mset,lmax 0.42 8929 79030 1.22 1.64
mk,mset,1 0.45 11179 99811 1.39 1.84
mk,mset,3 0.46 9148 81188 1.27 1.73
mk,pref 0.43 13689 123390 1.71 2.14

10 20

mk 11 303519 3276974 397.68 408.68
mk,all 746.08 108417 1172093 79.98 826.06

mk,mset,lmax 9.87 122423 1313463 143.32 153.19
mk,mset,1 9.04 208610 2255307 233.97 243.01
mk,mset,3 9.06 134720 1443357 156.24 165.3
mk,pref 8.88 281408 3040802 270.04 278.92

4

7

10

mk 1.46 45014 428775 10.3 11.76
mk,all 19.42 32956 302835 5.59 25.01

mk,mset,lmax 1.64 35362 328938 5.58 7.22
mk,mset,1 1.42 39242 369600 7.12 8.54
mk,mset,3 1.56 36048 336637 5.58 7.14
mk,pref 1.3 43655 414141 10.69 11.99

20

mk 3.93 100984 950473 83.55 87.48
mk,all 93.48 64428 588293 74.55 168.03

mk,mset,lmax 4.33 68041 628400 43.08 47.41
mk,mset,1 3.65 83463 777005 32.32 35.97
mk,mset,3 4.27 70720 653396 41.36 45.63
mk,pref 3.37 94829 887943 55.88 59.25

10 20

mk 187.59 4670833 53350566 2084.78 2272.37
mk,all - - - - -

mk,mset,lmax 919.56 2304788 26010946 651 1570.56
mk,mset,1 173.82 3336332 38121787 658.7 832.52
mk,mset,3 375.34 2345238 26693196 107.13 482.47
mk,pref 162.45 4405201 50260648 1331.92 1494.37

5 7

10

mk 6.61 201651 1962754 215.06 221.67
mk,all 232.47 161828 1526044 51.82 284.29

mk,mset,lmax 14.38 169816 1619550 171.92 186.3
mk,mset,1 7.24 182445 1759734 180.98 188.22
mk,mset,3 10.76 172660 1653301 210.1 220.86
mk,pref 6.26 196894 1908623 176.12 182.38

20

mk 19.37 456976 4382919 1268.18 1287.55
mk,all 1158.5 320689 2995308 631.14 1789.64

mk,mset,lmax 44.01 333799 3148787 1115.9 1159.91
mk,mset,1 20.24 398074 3784691 1192.49 1212.73
mk,mset,3 32.82 348339 3288509 1309.17 1341.99
mk,pref 16.54 434008 4141453 1203.36 1219.9

models Mk,pref , Mk,mset,1, and Mk,mset,3 are very difficult to compare. Depend-
ing on the instance, on the number and size of prefixes, on multiset inclusion,
one can be better than the other. But for all the instances we tried, one of this 3
models was always the best of the 6 models, and they were better than Mk. Table
2 presents a focus on 2 specific instances (25 training and 35 training, both with
|Σ| = 5) with a fixed value for k, |ω|, and |S+|. The columns correspond exactly
to those of Table 1. For the first instance, we clearly see the order presented in
Section 3 for instance sizes of improved models. We can also see the reverse order
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Table 2. Focus on 2 specific instances.

k |ω| |S+| Model Tmodel #Var. #Cl. Tsolve Ttotal

25 training

5 7 20

mk 16.72 378030 3748314 934.92 951.64
mk,all 854.47 271338 2626880 841.22 1695.69

mk,mset,lmax 48.71 275331 2678349 1538.06 1586.77
mk,mset,1 14.25 280899 2733709 895.92 910.17
mk,mset,3 23.67 277359 2696089 1147.41 1171.08
mk,pref 11.76 338880 3377124 687.79 699.55

35 training

4 10 20

mk 163.10 5253332 59504339 - -
mk,all - - - - -

mk,mset,lmax 676.22 4234500 47661301 2322.42 2998.64
mk,mset,1 209.86 4969772 56092438 - -
mk,pref 184.56 5253332 59504339 7145.62 7330.18

in terms of generation time. When |Σ| is small, the probability of having prefixes
is higher than with larger vocabularies, and for this instance, Mk,pref returns
the best instance in terms of generation+solving time. For the second instance,
Mk,all could not be generated in less than 2 hours. Mk and Mk,mset,3 could be
generated rather quickly, but could not be solved. Mk,pref was even faster for
generating the SAT instance. However, we see that there was not prefix in the
training set (the size of instances of Mk and Mk,pref are the same). The overhead
for taking prefixes into account is rather insignificant (12% of generation time).
Since the solving time was close to the timeout, the Mk instance did not succeed
to be solved while the Mk,pref instance succeeded (the small difference of 55 s.,
i.e., less than 0,8 %, is certainly due to clause order in the SAT instance). This
instance shows that Mk,mset,lmax

can be the best model in terms of total time.
This is due to the fact that there is no negative word being prefix of another
word from S, and that the lattice is rather ”wide”, with a long branch. Hence,
Mk,mset,l is interesting when l is large for this training sample.

5 Conclusion

In the context of grammatical inference, we proposeed various model improve-
ments for learning Nondeterministic Finite Automaton of size k from samples
of words. Our base model, Mk, is a conversion from an INLP model [15]. The
first improvement, Mk,all, leads to the smallest SAT instances, which are also
solved quickly. However, generating this model is too costly. Thus, when prob-
lems grow (in terms of k, |S|, or length of words), Mk,all cannot be generated
anymore. We proposed a set of improvements based on multiset representation
of words, Mk,mset,l. The generated SAT instances are a bit larger with the maxi-
mal level than with Mk,all, but generation is still costly. We thus defined a third
improvement based on prefix. On average, the best balance between generation
and solving time is obtained with Mk,pref , Mk,mset,1, or Mk,mset,3: the genera-
tion is rather light and the reductions are significant. The interest of our work
is that, to our knowledge, we are the only ones working on CSP model improve-
ments. It is very complicated to compare our results with previous works. Many
works on this topics are only formal and experimental results are also difficult

65
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to compare. For examples, the authors of [8, 9] focus on a parallel solver for op-
timizing k. In [10], experiments are based on samples issued from the Waltz-DB
database [2] of amino acid sequences, i.e., all the words are of size 6, and there
cannot be any prefix word: in the tests we performed, only anagrams could be
used in multisets. Moreover, for all the 50 instances we tried issued from this
database, the Mk model could be generated and solved in a reasonable time,
without need of any model improvement.

In the future, we plan to hybridize Mk,mset,l for small values of l with Mk,pref .
The second idea is to simplify the work of the SAT solver and of the instance
generation with simplified and incomplete training samples. We would then eval-
uate our SAT models with respect to the accurateness of the generated NFA on
test set of words.
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Abstract. Variational Auto Encoder (VAE) provide an efficient latent space representation
of complex data distributions which is learned in an unsupervised fashion. Using such a
representation as input to Reinforcement Learning (RL) approaches may reduce learning
time, enable domain transfer or improve interpretability of the model. However, current
state-of-the-art approaches that combine VAE with RL fail at learning good performing
policies on certain RL domains. Typically, the VAE is pre-trained in isolation and may
omit the embedding of task-relevant features due to insufficiencies of its loss. As a result,
the RL approach can not successfully maximize the reward on these domains. Therefore,
this paper investigates the issues of joint training approaches and explores incorporation of
policy gradients from RL into the VAE’s latent space to find a task-specific latent space
representation. We show that using pre-trained representations can lead to policies being
unable to learn any rewarding behaviour in these environments. Subsequently, we introduce
two types of models which overcome this deficiency by using policy gradients to learn the
representation. Thereby the models are able to embed features into its representation that
are crucial for performance on the RL task but would not have been learned with previous
methods.

1 Introduction

Reinforcement Learning (RL) gained much popularity in recent years by outperforming humans
in games such as Atari ([1], [2]), Go ([3], [2]) and Starcraft 2 [4]. These results were facilitated
by combining novel machine learning techniques such as deep neural networks [5] with classical
RL methods. The RL framework has shown to be quite flexible and has been applied successfully
in many further domains, for example, robotics [6], resource management [7] or physiologically
accurate locomotion [8].

The goal of representation learning is to learn a suitable representation for a given application
domain. Such a representation should contain useful information for a particular downstream task
and capture the distribution of explanatory factors [9]. Typically, the choice of a downstream task
influences the choice of method for representation learning. While Generative Adversarial Network
(GAN) are frequently used for tasks that require high-fidelity reconstructions or generation of
realistic new data, auto-encoder based methods have been more common in RL. Recently, many
such approaches employed the Variational Auto Encoder (VAE) [10] framework which aims to
learn a smooth representation of its domain. For a large number of RL environments, the usage of
VAEs as a preprocesser improved sample efficiency and performance ([11], [12]).

Many of the current methods combining RL with representation learning follow the same pat-
tern, called unsupervised pre-training [13]. First, they build a dataset of states from the RL envi-
ronment. Second, they train the VAE on this static dataset and lastly train the RL mode using
the VAE’s representation. While this procedure generates sufficiently good results for certain sce-
narios, there are some fundamental issues with this method. Such an approach assumes that it
is possible to collect enough data and observe all task-relevant states in the environment without
knowing how to act in it. As a consequence, when learning to act the agent will only have access to

This work was supported by the European Union Horizon 2020 Marie Curie Actions under Grant 813713
NeuTouch.
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(a) Input frame after pre-processing (b) Reconstruction of 1a

Fig. 1: A frame from Atari Breakout. The original image 1a was passed through a pre-trained VAE
yielding the reconstruction 1b. Note the missing ball in the lower right hand corner.

a representation that is optimized for the known and visited states. As soon as the agent becomes
more competent, it might experience novel states that have not been visited before and for which
there is no good representation (in the sense that the experienced states are out of the original
learned distribution and the mapping is not appropriate).

Another issue arises from the manner the representation is learned. Usually, the VAE is trained
in isolation, so it decides what features are learned based on its own objective function and not
on what is helpful for the downstream task. Mostly, such a model is tuned for good reconstruc-
tion. Without the information from the RL model, such a representation does not reflect what is
important for the downstream task. As a consequence, the VAE might omit learning features that
are crucial for good performance on the task because they appear negligible with respect to recon-
struction ([14], Chapter 15, Figure 15.5). For example, small objects in pixel-space are ignored as
they affect a reconstruction based loss only marginally. Thus, any downstream task using such a
representation will have no access to information about such objects. A good example for such a
task is Atari Breakout, a common RL benchmark. Figures 1a and 1b show an original Breakout
frame and its reconstruction. While the original frame contains the ball in the lower right hand
corner, this crucial feature is missing completely in the reconstruction.

We approach this issue through simultaneously learning representation and RL task, that is by
combining the training of both models. As an advantage, this abolishes the need of collecting data
before knowing the environment as it combines VAE and RL objectives. In consequence the VAE
has an incentive to represent features that are relevant to the RL model. The main contributions
of this paper are as follows: First we show, that using unsupervised pre-training on environments
that have underrepresented task-relevant features fails to produce good RL policies. Second, we
show that by jointly training representation and policy leads to a model that encodes task-relevant
information and thus enabling significantly higher performing policies. This will be shown by
comparing achieved rewards and by an analysis of the trained model and its representation.

2 Related Work

[15] explored Auto Encoder (AE) ([16]; [17]; [18]) as a possible pre-processor for RL algorithms. The
main focus in their work was finding good representations for high dimensional state spaces that
enables policy learning. As input, rendered images from the commonly used grid world environment
were used. The agent had to manoeuvre through a discretized map using one of four discrete
movement actions per timestep. It received a positive reward once reaching the goal tile and
negative rewards elsewhere. The AE bottleneck consisted only of two neurons, which corresponds
to the dimensionality of the environemnt’s state. Fitted Q-Iteration (FQI) [19] was used to estimate
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the Q-function, which the agent then acted ε-greedy upon. Besides RL, they also used the learned
representation to classify the agents position given an encoding using a Multi-Layer Perceptron
(MLP) [20]. For these experiments, they found that adapting the encoder using MLP gradients
lead to an accuracy of 99.46 %. However, they did not apply this approach to their RL task.

A compelling example for separate training of meaningful representation is provided by [21]
who proposed a framework called DARLA. They trained RL agents on the encoding of a β-
VAE ([22]; [23]) with the goal of zero-shot domain transfer. In their approach, β-VAE and agent
were trained separately on a source domain and then evaluated in a target domain. Importantly,
source and target domain are similar to a certain extent and only differ in some features, e.g.
a blue object in the source domain might be red in the target domain. During training of the
β-VAE, the pixel-based reconstruction loss was replaced with a loss calculated in the latent space
of a Denoising Auto Encoder (DAE) [24]. Thereby their approach avoids missing task relevant
feature encodings at the cost of training another model. For one of their evaluation models,
they allowed the RL gradients to adapt the encoder. Their results show that subsequent en-
coder learning improves performance of Deep Q-Learning (DQN) but decreases performance of
Asynchronous Advantage Actor-Critic (A3C) [25].

[26] proposed a combination of VAE, Recurrent Neural Networks (RNN) [27] and a simple
policy as a controller. They hypothesized that by learning a good representation of the environ-
ment and having the ability to predict future states, learning the policy itself becomes a trivial
task. Like in most other models, the VAE was pre-trained on data collected by a random policy.
Only the RNN and the controller were trained online. The compressed representation from the
VAE was passed into a RNN in order to estimate a probability density for the subsequent state.
The controller was deliberately chosen as a single linear layer and could thus be optimized with
Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) [28].

This work demonstrated how a VAE can provide a versatile representation that can be utilized
in reinforcement learning. In addition, such an approach allows to predict the subsequent encoded
state. While these findings encourage the usage of VAE in conjunction with RL, this is only possible
in environments where the state space can be explored sufficiently by a random policy. However,
if the policy can only discover important features after acquiring a minimal level of skill, sampling
the state space using a random policy will not yield high-performing agents. Learning such features
would only be possible if the VAE is continuously improved during policy training.

In the work of PlaNet [29], the authors also use a VAE to learn a latent state representation of
a pixel input. Based on the learned representation, they use the Cross Entropy Method to learn
various robotics control tasks. They refine this method in their subsequent publications Dreamer
[30] and DreamerV2 [31] where the agent is trained purely on imagined trajectories from the VAE.
Their works are similar to ours to the extent that they also continuously adapt the learned latent
state representation. However their environments do not contain task relevant features that are
underrepresented, hence their focus does not lie on training them.

Another interesting combination of VAEs and RL was recently proposed by [32], with their
so called Action-Conditional Variational Auto-Encoder (AC-VAE). Their motivation for creating
this model was to train a transparent, interpretable policy network. Usually, the β-VAEs decoder
is trained to reconstruct the input based on the representation the encoder produced. In this work
though, the decoders objective was to predict the subsequent state st+1. As input it got the latent
space vector z combined with an action-mapping-vector, which is the action vector at with a
zero-padding to match the latent spaces dimensionality. Inspecting the decoder estimates for st+1

when varying one dimension of the latent space showed, that each dimension encoded a possible
subsequent state that is likely to be encountered if the corresponding action from this dimension
was taken. Unfortunately, the authors did not report any rewards they achieved on Breakout, hence
it was not possible for us to compare model performances.

3 Combination of Reinforcement and Representation Learning
Objectives

In this section, we will first revisit the fundamentals of RL and VAEs and discuss their different
objective functions. Then, we propose a joint objective function that allows for joint training of
both models using gradient descent based learning methods.
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3.1 Reinforcement Learning with Policy Optimization

RL tries to optimize a Markov Decision Process (MDP) [33] that is given by the tuple 〈S,A, r, p, γ〉.
S denotes the state space, A the action space and p : S × R × S × A → [0, 1] the environment’s
dynamics function that, provided a state-action pair, gives the state distribution for the succes-
sor state. r : S × A → R is the reward and γ ∈ [0, 1) the scalar discount factor. The policy
πθ(a|s) is a stochastic function that gives a probability distribution over actions for state s. θ
denotes the policy’s parameter vector which is typically subject to optimization. A trajectory
τ = (s0, a0, ..., sT , aT ) consisting of an alternating sequence of states and actions can be sampled
in the environment, where T stands for the final timestep of the trajectory and ai ∼ πθ(ai|si).

The overarching goal of RL is to find a policy that maximizes the average collected reward over
all trajectories. This can be expressed as the optimization problem maxEτ∼p(τ)

[∑
t r(s, a)

]
, which

can also be written in terms of an optimal policy parameter vector θ∗ = arg maxθ Eτ∼p(τ)

[∑
t r(s, a)

]
.

When trying to optimize the policy directly be searching for θ∗, policy optimization algorithms
like A3C, Actor-Critic with Experience Replay (ACER) [34], Trust Region Policy Optimization
(TRPO) [35] or Proximal Policy Optimization (PPO) [36] are commonly used. The fundamen-
tal idea behind policy optimization techniques is to calculate gradients of the RL objective with
respect to the policy parameters:

∇θJ(θ) = E
τ∼p(τ)

[
∇θ logπθ(τ) r(τ)

]
(1)

where we defined
∑T
t=0 r(s, a) = r(τ) for brevity. However, most policy optimization methods in-

troduce heavy modifications to this vanilla gradient in order to achieve more stable policy updates.
Throughout our work, we have used PPO as RL algorithm because it is quite sample efficient and
usually produces stable policy updates. For an in-depth description of PPO, we refer to our A.1
or the original work [36].

3.2 Learning Representations using Variational Auto-Encoders

[10] introduced the VAE as a method to perform Variational Inference (VI) [37] using function
approximators, e.g. deep neural networks. VI tries to approximate a distribution over the generative
factors of a dataset which would otherwise involve calculating an intractable integral. The authors
present an algorithm that utilizes the auto encoder framework, an unsupervised learning method
which learns data encodings by reconstructing its input. Therefore, the input is first compressed
until it reaches a given size and is afterwards decompressed to its original size. When using deep
neural networks, these transformations can be achieved by using for example fully connected or
convolutional layers. In order for the VAE to approximate a distribution over generative factors,
the authors used the so called ”reparametrization trick”. It allows for gradient based optimization
methods to be used in searching for the distribution parameters. For training the VAE, a gradient
based optimizer tries to minimize the following loss:

LV AE(x, φ, ψ) = −DKL(qφ(z|x) || p(z)) + E
qφ(z|x)

[
log pψ(x|z)

]

with z = l(µ,σ, ε) and ε ∼ p(ε)
(2)

where DKL denotes the Kullback-Leibler Divergence (KL) [38] of the approximated distribution
over generative factors produced by the encoder qφ(z|x) and some prior distribution p(z). The
expectation is often referred to as reconstruction loss that is typically calculated on a per-pixel basis.
Lastly, l(µ,σ, ε) is a sampling function that is differentiable w.r.t. the distribution parameters, for
example z = u+ σε.

3.3 Joint Objective Function

Combining both loss functions such that both models can be trained at the same time is rather
straight-forward. Adding both individual losses and using an optimizer such as ADAM [39] to
minimize them is sufficient to achieve joint training. During backpropagation, gradients from the
policy and the VAE are combined in the latent space. Due to different topologies of the networks,
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gradient magnitudes differ significantly. Therefore, we introduced the hyperparameter κ which can
be used to either amplify or dampen the gradients and we arrive at the following loss:

Ljoint = κLPG(θk, θk−1, φk) + LV AE(x, φ, ψ, β) (3)

where LPG is some policy gradient algorithm’s objective function. As mentioned before, we used
PPO’s loss LPPO (equation 4 in the appendix).

4 Experiments

In order to test our model with the combined objective function given by Equation 3, we have
used the well-known benchmark of Atari Breakout. This environment has several properties that
make it appealing to use: it is easily understandable by humans, used often as a RL task and the
conventional pre-trained methods fail at mastering it. The ball is the most important feature that
is required to be encoded in order to perform well, is heavily underrepresented (approximately
0.1% of the observation space). Therefore, the VAE’s incentive to encode it is very low whereas
our model succeeds in encoding it. In the following, we compare the pre-trained approach to two
different continuously trained models that use the loss from Equation 3.

4.1 Data Collection and Pre-Processing

The raw RGB image data produced by the environment has a dimensionality of 210 × 160 × 3
pixels. We employ a similar pre-precessing as [1], but instead of cropping the grey-scaled frames,
we simply resize them to 84 × 84 pixels. As we will first train models similar to those introduced
in previous works with a pre-trained VAE, we needed to construct a dataset containing Breakout
states. We used an already trained policy to collect a total of 25, 000 frames, the approximate
equivalent of 50 episodes.

X
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PPO

VAE

Fig. 2: Model combining PPO and a VAE. Depending on the model configuration, the colored parts
are trained differently. X is the VAE’s input and X̂ the reconstructions. PPO receives the mean
vectors U as input and calculates a distribution over actions π. Note that we use capital letters in
the VAE to emphasize that we pass n frames at the same time when a policy is trained.

71



6 Lach, Korthals, Ferro, Schilling and Ritter

4.2 Pre-training the Variational Auto-Encoder

Our first model is based on those of the previously introduced works which involve isolated pre-
training the VAE on a static dataset. Figure 2 shows the individual parts of the complete training
process. For the first model, PPOfixed, the encoder and decoder (shown in orange and red) are
pre-trained before policy training. During this phase, there is no influence from the RL loss. Once
the VAE training is finished, the decoder shown in red in Figure 2 is discarded completely. Later
during policy training, we use n instances of the same encoder with shared weights that receive a
sequence of the last n frames as input. Stacking allows us to incorporate temporal information and
for the policy to predict the ball’s trajectory. By sharing the weights, we ensure that the resulting
encodings originate from the same function. U then represents the concatenated encodings of the
sequence.

Prior to policy training, we trained the VAE on the dataset we have collected before, with
hyperparameters from Table 1. Once pre-training was finished, we discarded the decoder weights
and used the stacked encoder as input for the policy MLP. The MLP was then trained 10M steps
with hyperparameters from Table 2. During this training, the encoder weights were not changed
by gradient updates anymore but remained fixed.

The second model we introduce is called PPOadapt, which has the same structure and hyper-
parameters as the first model. For this model, we also train the VAE in isolation first, however the
encoder weights are not fixed anymore during policy training. Gradients from the RL objective are
back propagated through the encoder, allowing it to learn throughout policy training. We hypoth-
esize that features that are important for policy performance can be incorporated in an already
learned representation.

Figure 3 compares the median rewards of three rollouts with different random seeds for all
models. PPOfixed was not once able to achieve a reward of 10 or higher, while PPOadapt steadily
improved its performance with final rewards well over 50. The learning curve of PPOadapt shows
that the model is able to learn how to act in the environment, whereas PPOfixed does not. The
non-zero rewards from PPOfixed are similar to those of random agents in Breakout. From these
results, we can assume that training the VAE in isolation on a static dataset for Breakout results
in a deficient representation for RL. Therefore, using policy gradients to adapt an already learned
representation can be beneficial in environments where the VAE fails to encode task-relevant
features.
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Fig. 3: Reward of the three proposed models across three random seeds each. PPOfixed is not able
to achieve high rewards while the other two models consistently improve their performance.
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4.3 Jointly Learning Representation and Policy

The last model we introduce, PPOVAE, combines a complete VAE with a policy MLP that receives
U, the concatenated state encodings, as input. As opposed to the first two models, all weights
are initialized randomly before policy training and the VAE is not pre-trained. For this procedure
an already trained agent that gathers a dataset for the VAE beforehand is not necessary. The
decoder is trained exactly as in the isolated setting, meaning its gradients are also only computed
using the VAE’s loss function. During backpropagation, the gradients coming from Z and h1 are
added together and passed through the encoder. This model has the same network configuration
and hyperparameters as the first two, with the only difference that we also evaluated different
values for κ from the joint loss 3 (see A.3). For the results reported here, we chose κ = 20. All
hyperparameters can be found in Table 3.

By simultaneously training representation and policy, we expect the VAE to learn task-relevant
features from the beginning of training. This assumption is supported by the learning curve shown
in Figure 3, which compares PPOVAE to the previous two models. The curve shows a steady
increase in reward over the course of training with PPOVAE achieving slightly higher rewards
than PPOadapt in the beginning. This characteristic changes after less than 1M steps and from
that point on PPOadapt consistently outperforms PPOVAE. This difference in performance is likely
attributed to the fact, that in PPOVAE the decoder is trained throughout the complete training.
The gradients of PPOadapt can change the latent space without restrictions and they only optimize
the RL objective. In PPOVAE however, gradients are also produced by the decoder that presumably
do not contain information about the ball. Therefore PPOVAE’s latent space is constantly changed
by two different objectives, thus leading to lower rewards for the RL part.

4.4 Analyzing the Value Function Gradients

Fig. 4: The Jacobian of PPO’s
value function. Highlighted areas
mean high importance in terms
of future rewards. Note the high
Jacobian values around the ball
and the blocks.

So far, the results imply that PPOVAE and PPOadapt do indeed
learn encodings of the ball. One difficulty when analyzing the rep-
resentation is, that the decoder still has no incentive to reconstruct
the ball, even if it is present in the latent space. In a work that
enhances DQN algorithm [40], the authors visualized the Jacobian
of the value function w.r.t. the input images. These visualizations
showed which features or regions from the input space are con-
sidered as important in terms of future reward. As we also learn
a value function, we did the same and visualized what our model
considered important and what not.

In Figure 4 we illustrate a pre-processed frame and added the
values of the Jacobian to the blue channel if the were greater
than the mean value of the Jacobian. Only visualizing above-mean
Jacobian values removes some noise in the blue channel makes the
images much easier to interpret and only highlights regions of high
relevance. We can clearly see, that the Jacobian has high values
at missing blocks as well as around the ball, meaning that these
regions are considered to have high impact on future rewards.
By visualizing the Jacobian we have confirmed that the policy
gradients encourage the VAE to embed task-relevant features.

5 Conclusion

This paper focused on the issue of pre-training VAEs with the
purpose of learning a policy for a downstream task based on the VAE’s representation. In many
environments, the VAE has little to no incentive to learn task-relevant features if they are small
in observation space. Another issue arises if the observation of these features depends on policy
performance and as a result, they are underrepresented in a dataset sampled by a random agent. In
both cases, fixing encoder weights during policy training prevents the VAE to learn these important
features and policy performance will be underwhelming.
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We carried out experiments on the popular RL benchmark Atari Breakout. The goal was to
analyze whether policy gradients guide representation learning towards incorporating performance-
critic features that a VAE would not learn on a pre-recorded dataset. First experiments confirmed,
that the common pre-trained approach did not yield well-performing policies in this environment.
Allowing the policy gradients to adapt encoder weights in two different models showed significant
improvements in terms of rewards. With policy gradients guiding the learned representation, agents
consistently outperformed those that were trained on a fixed representation.

Out work verifies the fundamental issue with pre-trained representations and provides methods
that overcome this issue. Nonetheless, future work can still explore a variety of improvements
to our models. For once, training not only the encoder but also the decoder with RL gradients
can improve interpretability of the VAE and enable it to be used as a generator again that also
generates task-relevant features. Another direction is to impose further restrictions on the latent
space during joint training of VAE and policy. The goal there would be to maintain the desired
latent space characteristics of VAEs while still encoding task-relevant features.
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A Appendix

A.1 Stable Policy Learning with Proximal Policy Optimization

Most actor-critic algorithms successfully reduce the variance of the policy gradient, however they
show high variance in policy performance during learning and are at the same time very sample
inefficient. Natural gradient ([41]) methods such as TRPO from [35] greatly increase sample effi-
ciency and learning robustness. Unfortunately, they are relatively complicated to implement and
are computationally expensive as the require some second order approximations. PPO ([36]) is a
family of policy gradient methods that form pessimistic estimates of the policy performance. By
clipping and therefore restricting the policy updates, PPO prohibits too large of a policy change
as they have been found to be harmful to policy performance in practice. PPO is often combined
with another type of advantage estimation ([42]) that produces high accuracy advantage function
estimates.

We define the PPO-Clip objective is defined as

JPPO(θk, θk−1) = E
[
min
(
o(θ)Aπθk (s, a), clip

(
o(θ), 1− ε, 1 + ε

)
Aπθk (s, a)

)]

s.t. δMB < δtarget

(4)

where o(θ) =
πθk (a|s)
πθk−1

(a|s) denotes the probability ratio of two policies.

This objective is motivated by the hard KL constraint that TRPO enforces on policy updates.
Should a policy update result in a policy that deviates too much from its predecessor, TRPO per-
forms a line search along the policy gradient direction that decreases the gradient magnitude. If the
constraint is satisfied during the line search, the policy is updated using that smaller gradient step.
Otherwise the update is rejected after a certain number of steps. This method requires to calculate
the second order derivative of the KL divergence, which is computationally costly. PPO uses its
clipping objective to implicitly constrain the deviation of consecutive policies. In some settings,
PPO still suffers from diverging policy updates ([43]), so we included a hard KL constrained on
policy updates. The constraint can be checked after each mini-batch update analytically and is
therefore not very computationally demanding.

PPO extends the policy gradient objective function from [44]. With the probability ratio o(θ), we
utilize importance sampling in order to use samples collected with any policy to update our current
one. Thereby we can use samples more often than in other algorithms, making PPO more sample
efficient. Using importance sampling, we still have a correct gradient estimate. Combining the
new objective with actor-critic methods yields algorithm 1. K denotes the number of optimization
epoch per set of trajectories and B denotes the mini-batch size. In the original paper, a combined
objective function is also given with:

LPPO(θk, θk−1, φk) = E
[
c1J

PPO(θk,θk−1)− c2LV
πθ

(φk) +H(πθk)
]

s.t. δMB < δtarget

(5)

where H(πθk) denotes the policy entropy. Encouraging the policy entropy not to decrease too
much prohibits the policy from specializing on one action. As discussed in [43], there are two cases
for JPPO(θk, θ): either the advantage function was positive or negative. In case the advantage is
positive, it can be written as:

JPPO(θk, θ) = E
[

min (o(θ), (1 + ε))Aπθk (s, a)
]

(6)

Aπθk (s, a) > 0 indicates that the action yields higher reward than other actions in this state, hence
we want its probability πθk(a|s) to increase. This increase is clipped to (1 + ε) once πθk(a|s) >
πθk−1

(a|s)(1 + ε). Note however, that updates that would worsen policy performance are neither
clipped nor bound. If the the advantage is negative, it can be expressed as:

JPPO(θk, θ) = E
[

max (o(θ), (1− ε))Aπθk (s, a)
]

(7)

This equation behaves conversely to 6: Aπθk (s, a) < 0 indicates that we chose a suboptimal action,
thus we want to decrease its probability. Once πθk(a|s) < πθk−1

(a|s)(1 − ε), the max bounds the
magnitude by which the action’s probability can be decreased.
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Algorithm 1 Proximal Policy Optimisation with KL constraint

1: Initialize policy parameters θ0 and value function parameters φ0

2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} with πθk and compute R̂t
4: δMB ← 0
5: for 0, 1, 2, ...K do
6: for each mini-batch of size B in {τi} do
7: Update the policy by maximizing the PPO-Clip objective 4
8: Minimize LV πθ on the mini-batch
9: end for

10: end for
11: if δMB > δtarget then
12: θk+1 = θk
13: end if
14: end for

A.2 Hyperparameter Tables

Parameter Value

epochs 100
batch size 128
input size (84, 84, 1)
optimizer ADAM

learning rate 1× 10−4

encoder Conv2D 32 × 4 × 4 (stride 2) - 64 × 4 × 4 (stride 2) -
FC 512 (ReLU)

latents 20 (linear)
decoder FC 512 (ReLU) - 64× 4× 4 (stride 2) - 32× 4× 4 (stride

2) Conv2D Transpose

Table 1: Hyperparameter table for VAE training on Breakout

Parameter Value

timesteps 1× 107

environments 16
batch size 32
tmax 2048
K 10
c1 1.0
c2 0.5
c3 0.0
γ 0.99
λ 0.95

network FC 64 (tanh) -
FC 64 (tanh)

optimizer ADAM
learning rate 3× 10−4

Table 2: Policy hyperparameters of PPOfixed

and PPOadapt

Parameter Value

timesteps 1× 107

environments 16
batch size 32
tmax 2048
K 10
c1 1.0
c2 0.5
c3 0.0
γ 0.99
λ 0.95

network FC 64 (tanh) -
FC 64 (tanh)

optimizer ADAM
learning rate 3× 10−4

κ (1, 10, 20)

Table 3: Policy hyperparameter table of
PPOVAE
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A.3 Choosing appropriate values for κ

In Equation 3, we introduced the hyperparameter κ to balance VAE and PPO gradients. We found
empirically, that tuning κ is straight forward and requires only few trials. In order to simplify
the search for κ, one can evaluate gradient magnitudes of the different losses at the point where
they are merged at U. Our experiments showed PPO’s gradients to be significantly smaller, thus
scaling up the loss function was appropriate. This will likely differ if the networks are configured
differently. Increasing κ from 1 to 10 led to considerably higher rewards, however the difference in
performance was small when increasing κ further to 20. Therefore, we chose κ = 20 in our reported
model performances.
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Fig. 5: Performance comparison of PPOVAE with different values for κ
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ABSTRACT 

The electrical system must handle increasing production from renewable sources that are 

difficult to predict, highly variable and not controllable. This shift in the electrical paradigm 

makes power grid operation, and therefore the exercise of supply/demand balance, 

increasingly complex. Microgrids (MG) enable a more flexible management of the grid. 

These intelligent bidirectional systems allow to reach new sources of flexibility from 

consumers using Demand Response (DR). 

 

Based on Stochastic Optimization and Deep Learning approaches, we propose an optimal 

demand response scheduling under load uncertainty in a residential Microgrid. Our approach 

is based on load forecasting techniques, clustering and pattern recognition procedures and a 

stochastic optimal power flow scheduling algorithm. 

 

For each household in the Microgrid, we forecast the day ahead load profile and perform 

pattern recognition and clustering in order to identify transferable loads and then we evaluate 

household’s micro-flexibilities potential. Thus the flexibility potential of the whole Microgrid 

will be the aggregation of household’s micro-flexibilities. 

 

The Microgrid optimal schedule strategy is obtained by maximizing the Microgrid operator's 

DR payoff while satisfying the load demand and user's comfort constraints. Simulation 

results show that the proposed DR scheduling is beneficial to both service provider's and 

prosumer. 
 

 

Keywords: Microgrid ; Smartgrid ; Demand Response ; Optimal scheduling ; Load 

management ; Optimization. 
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Abstract. This paper considers the application of Bayesian optimi-
sation to the well-known multidimensional knapsack problem which is
strongly NP-hard. For the multidimensional knapsack problem with a
large number of items and knapsack constraints, a two-level formulation
is presented to take advantage of the global optimisation capability of the
Bayesian optimisation approach, and the efficiency of integer program-
ming solvers on small problems. The first level makes the decisions about
the optimal allocation of knapsack capacities to different item groups,
while the second level solves a multidimensional knapsack problem of re-
duced size for each item group. To accelerate the Bayesian optimisation
guided search process, various techniques are proposed including variable
domain tightening, initialisation by the Genetic Algorithm, and optimi-
sation landscape smoothing by local search. Computational experiments
are carried out on the widely used benchmark instances with up to 100
items and 30 knapsack constraints. The preliminary results demonstrate
the effectiveness of the proposed solution approach.

Keywords: Bayesian optimisation · Multidimensional knapsack prob-
lem · Meta-heuristics.

1 Introduction

The Bayesian optimisation (BO) is a powerful machine learning based method
for the optimisation of expensive black-box functions, which typically only allow
point-wise function evaluation [23, 22]. Although BO has been widely used in the
experimental design community since the 1990s [15, 13], it is not until the last
decade that BO has become extremely popular in the machine learning com-
munity as an efficient tool for tuning hyper-parameters in various algorithms,
e.g., deep learning [5, 7], natural language processing [29], and preference learn-
ing [10]. The BO is also embraced by new areas such as robotics [16], automatic
control [1], and pharmaceutical product development [21].

The Multidimensional Knapsack Problem (MKP) is an extension of the clas-
sic Knapsack Problem (KP). It comprises of n items and m knapsacks with
limited capacities. Each item contributes a certain amount of profit if selected
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and consumes “resources” simultaneously in each knapsack. The MKP aims for
a subset of items that achieves the highest total profit while abiding by the ca-
pacities of all knapsacks. The MKP is a well-known, and strongly NP-hard com-
binatorial optimisation problem, and has found applications in many practical
areas involving resource allocation [11, 17]. In spite of the tremendous progress
made in exact solution techniques, many instances from the widely used Chu
and Beasley MKP test set [4] cannot be solved to optimality [8, 12, 28], espe-
cially when the number of knapsacks is large. The best known solutions on the
hard instances are all obtained by specialised meta-heuristics which require ex-
orbitant computation time [24, 25, 27, 3, 6]. The simplicity of problem statement
and computational hardness makes the MKP an ideal test bed for new solution
ideas and techniques [14, 18].

The BO encounters insurmountable issues to solve the MKP. Firstly, the
BO is designed to solve problems with simple feasible set of continuous vari-
ables [9], while the MKP has only binary variables with many knapsack con-
straints. Whereas a lot of efforts have been committed to consider feasible set
with combinatorial structures, all the reported computational studies investi-
gated problems with just a few dozen categorical/integer/binary variables [2,
19]. Secondly, the BO is only efficient for low dimensional problems with less
than 20 variables, while the MKP can have hundreds of binary variables. Al-
though the BO with random embedding can solve problems with billions of
variables, it relies on the “low effective dimensionality” which can be an issue
for MKP [26]. Finally, the MKP has a linear function which is “cheap” to calcu-
late, which makes it hard for the BO to compete with other meta-heuristic and
artificial intelligence algorithms.

Based on the idea of divide and conquer, a novel two-level model for MKP
(TL-MKP) is proposed in this paper to take advantage of the special structure
of MKP, i.e., the number of items (variables) is much larger than the number
of knapsacks (constraints). In particular, the items are divided into groups, and
the knapsack capacities allocated to each group are determined by the first
level, or master problem, of the TL-MKP. With assigned knapsack capacities,
each group can be solved as a MKP of reduced size in the second-level of TL-
MKP, or subproblem. It is shown in Section 2 that the master problem has
a non-continuous, multi-modal, and expensive to evaluate objective function
with simple feasible set, which is suitable for the application of BO. Since the
subproblem has a much smaller number of binary variables, it can be efficiently
solved to optimality with commercial integer programming solvers.

It is essential to incorporate prior knowledge in the BO, which was designed
to be a black-box global optimisation method. Two novel techniques are pre-
sented in this paper to make use of the information provided by mathematical
programming solver and meta-heuristics. Indeed, when a good solution is known,
e.g., by using other meta-heuristics, an efficient heuristic is proposed in this paper
to tighten the domain bounds of the master problem in the TL-MKP. Inspired
by the simulation approach used in robotics control algorithms to initialise the
BO [20], the Genetic Algorithm (GA) is used in this paper to generate initial
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trial points for the BO. To take advantage of the linear structure of the objective
function of MKP, the GA is run on the MKP instead of the master problem of
TL-MKP. These techniques can significantly accelerate the search process of BO
as demonstrated by the computational experiments in this paper.

The paper is organised as follows. The novel two-level model for MKP is pre-
sented with discussion of the properties of the master problem in Section 2. The
BO based optimisation approach and some acceleration techniques are described
in Section 3. The implementation details are discussed in Section 4. Computa-
tional results are presented in Section 5. The conclusion is given in Section 6.

2 Two-level Model for MKP

Given m knapsacks with capacities bi, i = 1, . . . ,m, and a set of n items I =
{1, 2, . . . , n}, each item j requires a resource consumption of ai,j units in the i-th
knapsack, i = 1, . . . ,m, and yields cj units of profit upon inclusion, j = 1, . . . , n.
The goal is to find a subset of items that yields maximum profit, denoted by
z∗, without exceeding the knapsack capacities. The MKP can be defined by the
following integer linear programming model:

(MKP) z∗ = max{cTx : Ax ≤ b, x ∈ {0, 1}n}, (1)

where c = [c1, c2, . . . , cn]T is an n-dimensional vector of profits, x = [x1, x2, . . . , xn]T

is an n-dimensional vector of 0-1 decision variables indicating whether an item is
included or not, A = [ai,j ], i = 1, 2, . . . ,m, j = 1, 2, . . . , n is an m×n coefficient
matrix of resource requirements, and b = [b1, b2, . . . , bm]T is an m-dimensional
vector of resource capacities. It is further assumed that all parameters are non-
negative integers.

Assume the items are divided into two groups, i.e., I = I1 ∪ I2, and I1 ∩ I2 =
∅. Each group is formulated as a MKP with profit vector ci = cIi , resource
requirement matrix Ai = AIi , and capacity vector bi ∈ Rm. The two groups
share the capacities of the m knapsacks, i.e.,

b1 + b2 = b (2)

The first level of the TL-MKP (the two-level model for MKP), or the master
problem is defined as

(L1-MKP) f∗ = max{f(t) : t ∈ Rm, 0 ≤ t ≤ b}, (3)

where

f(t) = z∗1(t) + z∗2(b− t) (4)

is calculated by solving the second level of the TL-MKP, or subproblems:

(L2-MKP) z∗i (u) = max{cixi : Aixi ≤ u, xi ∈ {0, 1}|Ii|}, i = 1, 2 (5)
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Since each solution of the TL-MKP can be easily converted to a solution to
the MKP with the same objective value, and each solution of the MKP can be
used to define a value of t for the master problem of TL-MKP (3), the following
proposition holds.

Proposition 1. (t∗ = A1x1∗, x1∗, x2∗) is an optimal solution of TL-MKP if and
only if x∗, defined as x∗N1

= x1∗ and x∗N2
= x2∗, is an optimal solution of MKP.

Furthermore, f∗ = z∗.

Example 1. Consider an instance of MKP with three items and one knapsack,
where c = [1, 2, 3], A = [1, 2, 3], and b = 4. The two groups are I1 = {1, 2} and
I2 = {3}. It is straightforward to show that the first level objective function is

f(t) =





3 t ∈ [0, 1)

4 t = 1

1 t ∈ (1, 2)

2 t ∈ [2, 3)

3 t ∈ [3, 4]

.

Example 2. Consider an instance of MKP with 20 items and two knapsacks. The
two groups have the same number of items. Fig. 1 shows the contour graph of
the first level objective function f(t). The optimal value is equal to 75.
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Fig. 1. Contour of the first level objective function f(t); t1(t2) is the capacity allocated
to group 1 from knapsack 1 (2).
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Examples (1) and (2) clearly demonstrate that the objective function of the
master problem in TL-MKP is non-continuous, and can have many local optima.
Although the subproblems have much smaller sizes, they are still more expensive
to evaluate than the linear function of MKP.

It can be observed that f(t) is not differentiable when at least one knapsack
has no slack capacity in one of the subproblems. That leads to the following
proposition,

Proposition 2. f(t) is differentiable almost everywhere in the sense of Lebesque
measure with f ′(t) = 0.

Although f(t) is differentiable almost everywhere, the derivative is constantly
zero and consequently, useless for the design of optmisation algorithms.

3 Bayesian Optimisation and Acceleration

The BO is a promising option to deal with the challenges presented by the
master problem of TL-MKP such as no closed form, non-continuity, multiple
local optima, absense of useful derivatives, and high cost of function evaluation.
In this section, the basic principles of BO are described first [9], then followed
by techniques to incorporate prior knowledge to accelerate the search process.

The BO builds a probabilistic model for the unknown f(t) of the master
problem of TL-MKP. In particular, f(t) is assumed to be drawn from a Gaussian
process (GP), which is determined by a mean function µ0 : Rm → R, and a
positive definite covariance function k0 : Rm×Rm → R, also known as the kernel
of the GP. The BO sequentially generates points to evaluate within the feasible
region of TL-MKP. Assume that n points have been evaluated with observations
Dn = {(t1, f(t1)), (t2, f(t2)), . . . , (tn, f(tn))}. Using Bayes’ rule, the conditional
distribution of f(t) is derived as a Normal distribution:

P (f(t)|Dn, t) = N (µn(t), σ2
n(t)) (6)

µn(t) = Σ0(t, t1:n)Σ0(t1:n, t1:n)−1(f(t1:n)− µ0(t1:n)) + µ0(t) (7)

σ2
n(t) = k0(t, t)−Σ0(t, t1:n)Σ0(t1:n, t1:n)−1)Σ0(t1:n, t) (8)

where f(t1:n) = [f(t1), . . . , f(tn)]T , µ0(t1:n) = [µ0(t1), . . . , µ0(tn)]T , and

Σ0(t1:n, t1:n) =



k0(t1, t1) · · · k0(t1, tn)

...
. . .

...
k0(tn, t1) · · · k0(tn, tn)


 .

The BO selects the next most promising point to evaluate, i.e., tn+1, by opti-
mising an acquisition function, which balances exploration (uncertainty σn(tn+1)
is large) against exploitation (objective expected value µn(tn+1) is large). Differ-
ent types of acquisition function have been proposed in the literature, while the
most commonly used is Expected Improvement (EI). The EI acquisition function
is defined as

EIn(t) = En(max(f(t)−maxni=1f(ti), 0)), (9)
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where En(·) is the expectation taken under the posterior distribution (6).
The next point to evaluate is selected as

tn+1 = argmaxtEIn(t). (10)

With new point (tn+1, f(tn+1)), the conditional probability of f(t) can be up-
dated according to (6), and the iterative process stops when a sampling budget
is reached.

3.1 Variable Domain Tightening

The efficiency of BO depends on the size and dimensionality of the search space
of TL-MKP, which is defined in (3) as [0, b] ⊂ Rm. If a good lower bound of
MKP fL is known, e.g., through a quick meta-heuristic, the search space can
be reduced to F = {t|f(t) ≥ fL, t ∈ [0, b] ⊂ Rm}. However, this will make
the EI acquisition function harder to optimise in (10) since F has no simple
representation. In this paper, an optimisation based approach is employed to
find the smallest hypercube H = [tL, tU ] that contains F , i.e., F ⊂ H. The
upper bound of H along the i-th coordinate, tUi , i = 1, . . . ,m, can be obtained
by solving

tUi = max{A1x1 : cTx ≥ fL, Ax ≤ b, x1 = xI1 , x ∈ {0, 1}n}. (11)

The lower bound of H along the i-th coordinate, tLi , i1, . . . ,m, can be obtained
by solving

tLi = min{A1x1 : cTx ≥ fL, Ax ≤ b, x1 = xI1 , x ∈ {0, 1}n}. (12)

The exact solution of (11) and (12) is time-consuming. Therefore, tU (tL) can
be replaced by a upper (lower) bound of (11) ((12)), e.g., using the linear pro-
gramming relaxation by replacing x ∈ {0, 1}n with x ∈ [0, 1]n.

3.2 Initialisation with Genetic Algorithm

The BO randomly generates the initial trial points in the search space which
can lead to slow convergence. In this paper, The GA is used to generate initial
points that have good solution quality as well as diversity in the search space. The
GA is a population based meta-heuristic which evolves by generations through
genetic operators such as cross-over and mutation. In the early stage of GA the
population has good diversity but low percentage of good solutions; while in the
later stage, the population has high percentage of good solutions but with less
diversity.

It is computationally infeasible to run GA on the TL-MKP since the objec-
tive evaluation involves solving two MIP problems and consequently expensive.
Instead, the GA is directly run on the MKP, and the population is mapped to
initialise the BO for TL-MKP. In particular, let x̃ be a solution from a population
of GA. The mapped solution for TL-MKP becomes

t̃ = A1x̃N1 . (13)
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It is easy to see that

f(t̃) ≥ cT x̃. (14)

3.3 Optimisation Landscape Smoothing

At each sampling point of BO, a feasible solution to the MKP is also generated
according to Proposition 1. This solution can be improved by a local search
which is efficient to cope with large number of items and constraints. We define
the neighbourhood of a solution x as the set of solutions with at most k different
items:

Nk(x) = {y ∈ {0, 1}n : Ay ≤ b, ‖|x− y|‖1 ≤ k}. (15)

For Example 1, with k = 1, the first level objective function becomes

f(t) =

{
4 t ∈ [0, 2)

3 t ∈ [2, 4]
,

which is ”smoother” in terms of the optimisation landscape.

4 Implementation

The BO approach for the MKP (BO-MKP) can be described as in Alg. 1, and
a prototype of BO-MKP was implemented in Matlab R2020b. In Step 1 of BO-
MKP, the linear relaxation of (11) and (12) are solved to tighten the bounds of
the feasible set of TL-MKP using the function linprog in Matlab Optimization
Toolbox. Using the function ga in the Global Optimization Toolbox of Matlab,
an initial set of trial points are generated in Step 2 as input for BO according to
(13). In Step 3, the BO is implemented with the function bayesopt in the Global
Optimization Toolbox of Matlab. The acquisition function is set to “expected-
improvement”, and the maximum number of evaluation, “MaxObjectiveEvalu-
ations”, is set to N which is a user specified parameter. The subproblems of
TL-MKP (5) are solved by the mixed integer programming solver intlinprog in
Matlab Optimization Toolbox. In Step 4, The best solution of TL-MKP found
by BO is converted to a solution of MKP with the same objective function value
according to Proposition 1.

The selection of kernel function for GP can have a strong influence on the
performance of BO. bayesopt uses the ARD Matérn 5/2 kernel

k(xi, xj |σf , σl) = σ2
f (1 +

√
5r

σl
+

5r2

3σ2
l

) exp (−
√

5r

σl
)

where r =
√

(xi − xj)T (xi − xj), and the parameters are estimated by Gaussian
process regression fitrgp.
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Algorithm 1: The BO approach for the MKP (BO-MKP).

Input: MKP, item groups I1 and I2, lower bound of MKP fL,
maximum number of evaluation N for BO.

Output: a feasible solution of MKP.
Step 1: tighten the bounds of feasible set of TL-MKP based on fL;
Step 2: generate initial trial points using GA;
Step 3: search for the global optimum of TL-MKP using BO within a
sampling budget of N evaluations;

Step 4: convert the best solution found by BO to the solution of MKP;
return

5 Computational Experiments

All experiments are carried out on the widely used Chu and Beasley MKP test
set in [4]. The Chu and Beasley test set contains classes of randomly generated
instances for each combination of n ∈ {100, 250, 500} items, m ∈ {5, 10, 30}
constraints, and tightness ratios α ∈ {0.25, 0.5, 0.75} with smaller α representing
tighter resource capacities. In the Chu and Beasley MKP test set, the resource
consumption values aij are integers uniformly chosen from (0, 1000), which leads
to large values of the knapsack capacities b. Since the search space of BO for TL-
MKP is defined by b in (3), the Chu and Beasley MKP test set is an challenging
test bed for the proposed BO approach.

To show the effect of tightening bounds in section 3.1, the BO is tested on
three selected instances with n = 100, and the results are reported in Table 1.
The rows correspond to the instances with the number of knapsack constraints
m = 5, 10 and 30. The optimal values of these instances are obtained by CPLEX
and reported in the column titled “Opt.” The columns are divided into two
groups for the BO results, one for the cases without bound tightening (“With-
out tightening”) and the other one for the cases with bound tightening (“With
tightening”). To have a better understanding of the convergence behavior of BO,
two values are applied for the maximum number of evaluations, i.e., N = 25, 50.
Since the BO is a stochastic algorithm, the average objective function value of 5
runs is reported for each pair of (m,N) in the columns titled “Ave.”. The rela-
tive gap for the solution found by the BO is calculated as 100× (z∗− f)/z∗ and
reported in the columns titled “gap(%)”. It can be seen that the performance of
BO deteriorates dramatically when m increases. When m = 30, the BO reaches
a massive relative gap of 63.8% after 50 function evaluations. This observation
is consistent with BO’s behavior for other optimisation problems. When bound
tightening technique is applied, the performance of BO is improved on all (m,
N) pairs. The improvement is more dramatic when m becomes large. For m = 10
and N = 50 the relative gap is reduced from 9.8% to 4%. However, the solution
quality for m = 30 is still not satisfactory with a large gap of 31.8%.

Table 2 presents the results of BO-MKP which initialises the BO with GA.
The initial trial points provided by the GA should be diverse enough while also
having good solution quality. Therefore, the maximum number of iterations of
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Table 1. Effects of bound tightening for BO on the TL-MKP.

Without tightening With tightening
N = 25 N = 50 N = 25 N = 50

m Opt. Ave. gap(%) Ave. gap(%) Ave. gap(%) Ave. gap(%)

5 24381 22897 6.1 23849 2.2 23913 1.9 24017 1.5
10 23064 17145 25.7 20806 9.8 20581 10.8 22149 4.0
30 21946 5710.2 74.0 7955 63.8 14659 33.2 14978 31.8

GA is limited to 55 in BO-MKP. It can be seen that the GA initialisation is not
helpful when m = 5, which suggests that the BO has strong global search capa-
bility when the dimension is low. In sharp contrast, the BO-MKP dramatically
reduces the relative gap for larger dimension. Indeed, the relative gap is just 4%
for m = 30 with 50 function evaluations.

Table 2. Effects of GA initialisation for BO on the TL-MKP.

N = 25 N = 50

Opt. w/o GA Ave. gap(%) w/o GA Ave. gap(%)

m = 5 24381 23913 23928 1.9 24017 24063 1.3
m = 10 23064 20581 22471 2.6 22149 22396 2.9
m = 30 21946 14659 20727 5.6 14978 21060 4.0

Table 3 shows the impact of employing the local search in solving the BO-
MKP. With k = 5 for the neighbourhood defined in (15), the three instances
with m = 5, 10 and 30 are all solved to optimality.

Table 3. Effects of local search for BO on the TL-MKP.

N = 25
Opt. w/o LS with LS gap(%)

m = 5 24381 23928 24381 0.0
m = 10 23064 22471 23064 0.0
m = 30 21946 20727 21946 0.0

The overall performance of BO-MKP on all the 90 instances with 100 items,
i.e., n = 100 is presented in Table 4. For the groups with m = 5 and m = 10,
we set N = 25 and k = 5. For all instances with m = 5 and 26 instances
with m = 10, the optimal solutions are obtained. The remaining 4 instances
in the group with m = 10 can also be solved to optimality by increasing N
to 50. We set k = 10 and N = 50 for all instances with m = 30. This group
of instances is particularly challenging to BO due to the high dimensions of
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the search space. However, with a strong local search procedure to smooth the
optimisation landscape, high quality solutions are obtained on all instances.

Table 4. Computational results for all instances with 100 items.

α = 0.25 α = 0.5 α = 0.75

m = 5

Average 24197.2 43252.9 60471.0
Best 24197.2 43252.9 60471.0
Opt. 24197.2 43252.9 60471.0

gap % 0.0 0.0 0.0
time 146.7s 128.8s 83.3s

m = 10

Average 22601.0 42660.2 59555.6
Best 22601.9 42660.6 59555.6
Opt. 22601.9 42660.6 59555.6

gap % 0.0 0.0 0.0
time 191.5s 195.3s 152.3s

m = 30

Average 21638.2 41420.3 59201.8
Best 21652.9 41427.2 59201.8
Opt. 21660.4 41440.4 59201.8

gap % 0.1 0.0 0.0
time 359.0s 359.3s 311.3s

6 Conclusion and Future Work

In this paper, a two-level model is presented for the multidimensional knap-
sack problem. The master problem has much smaller dimensions, which makes
it amenable to Bayesian optimisation. Three techniques are introduced to accel-
erate the search process of BO. Preliminary test results show the effectiveness of
the proposed approach. It strongly demonstrates that incorporating prior knowl-
edge and smoothing the optimisation landscape by the local search are crucial
for the success of BO for large MKP.

Future work includes the investigation of the proper kernels in BO for combi-
natorial optimisation problems, the automatic tuning of hyper-parameters, and
comparison with other meta-heuristics. It is also interesting to extend the models
to combinatorial optimisation problems with more complex structures.
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1 Introduction 

Within the Crowd for the Environment (C4E) project, several emerging information technologies are 

integrated in an innovative framework to discover and monitor illegal dumping sites. Such dumps typically 

contain urban or agricultural waste and often flammable materials, then they could be open-burned because 

spontaneous combustion or malicious intents. In any case, the open-burnings are source of cancerogenic and 

toxic substances, causing many diseases in the neighbor population. Such hazardous dumping sites, once 

detected by citizens or by some technologies, must be confirmed and characterized on the field by 

environmental authorities. In particular, in the C4E project, the detection of the dumping sites comes from 

spontaneous reports of citizens (that use a specific mobile app), social network crawlers (that process natural 

language in order to extract synthetic reports) and periodic satellite image acquisitions (artificial intelligence 

extracts areas potentially affected by illegal dumping). The characterization performed by the authorities, in 

terms of volume and composition, is used to assess the health risk on the neighborhood in case of fire. The 

risk analysis is needed for remediation, that can be planned when the characterization of a confirmed site is 

sent to the local government. The C4E project proposes to perform a risk analysis also before a site is 

confirmed, in order to establish a priority for the of-field inspections. In fact, the resources that can be 

deployed on the territory (men, cars, drones) are expensive and limited then they should be used in an 

optimized way in order to mitigate the risk of open-fires near populated zones. The number of sites can be 

very large and also the vehicles used for the inspections can be numerous, as well as heterogeneous and even 

starting from different depots. Moreover, usually the patrols have to respect some time constraints 

(represented by the work shift, for example), considering both the travel time and the time needed to inspect 

the site, hereafter referred as “time to collect its priority”. For the above reasons, the problem of finding the 

vehicles routes, in such a way that a “priority index” referred as “the overall collected priority” is maximum, 

is very hard to solve, unless the sites are very few. Currently, the tours are assigned by human operators 

according to their own experience but this way forward takes much effort and often underperforms. 

Consequently, it is strongly desired a fast and effective algorithm capable to find at least a quasi-optimal 

solution. Indeed, being the problem belonging to the class of the NP-hard problems, it cannot be solved 

exactly in reasonable time, already when the dimensionality (sites number) is moderate. 

In this work an approximated method from Literature [1] is properly modified and evaluated. It has 

shown good accuracies ensuring, at same time, acceptable computational load, i.e. compatible with 

interactions with human operators. Common requirements for the solution error and for the computation 

time are approximately not greater than 20% and half an hour, respectively. 

2 Problem formulation 

Our problem is to maximize the priority index over n geographical points within a time deadline T, 

using not more than m available vehicles, starting from the same depot. It is worth to note that both the order 

of visit and the subset of nodes to be visited must be found, being often impossible to visit all of them due to 

the limited available resources. Since the cardinality of the problem is usually very high (hundreds of 

thousands of places to be visited), a decomposition in strategic and tactical sub-problems comes to help. In 

this work, only the strategic phase is considered: the waste places are initially grouped in geographical 

zones, characterized by their own centroids identifying the nodes mentioned in this work. All the priorities, 
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all the trip times and all the collection times of the original places are assumed cumulated in these nodes. 

Moreover, each node can be visited by one vehicle only and only once. When the strategic step is concluded, 

all the places within the selected zones must be visited (the Floyd-Warshall algorithm [2] could be used to 

solve the tactical phase). 

Hereafter we formulate the problem for homogeneous vehicles starting from a unique depot (0) 

because the general case could be decomposed in problems like this. Then, let us define a complete graph 

G=[N,A] where N={0,1,…,n} is the set of nodes (centroids) and A={aij} is the set of the arcs between the i-

th and j-th nodes (i,jN-{0}). Furthermore, we assume that D={dij}={dji} is the “time matrix” composed by 

the trip times between i-th and j-th nodes, pi is the priority of the node i-th and bi is time required to collect pi 

(p0=b0=0). A tour is defined as feasible through a subset of G if starts and ends in the depot, if visits each 

node not more than once and if ends within the given maximum time T. Hence we must find the feasible 

tours (not more than m) such that the priority index – collected over all tours – is maximized. 

3 Algorithm description 

The described problem of combinatorial optimization is classified as NP-hard, therefore it is 

unlikely that there is an optimal polynomial algorithm for problem instances with more than a dozen of 

nodes. The selected approximated algorithm is known as MAXIMP ([1]), working deterministically and 

independently for each tour. Basically it relies on the idea that, in order to maximize the collected priority, 

each patrol has to spend more possible time, in compliance with the time constraint. This means that the aim 

of the routine is to maximize the priority in the time unit. Actually, not all the time units will be used to 

collect priorities but nevertheless this approach quickly provides “good” solutions for our application.  

Two different types of weights are defined, both depending on the collected priority (pi+pj) in the 

elementary loop tour composed by the depot, the i-th node, the j-th node, and the depot again. They are 

defined as W1ij=((pi+pj)/T)tij and W2ij=((pi+pj)/tij)T, where tij=d0i+dij+dj0+bi+bj is the overall travel and 

collection time. These weights make us know the best pairs of nodes in terms of the largest priority collected 

in the time required to be visited (tij/T) and in terms of the time needed to be collected, respectively. 

Consequently, W1ij and W2ij will tend to select the pairs farther from and closer to the depot. Moreover, each 

pair of nodes has associated a convex combination of these weights defined as Wij(α)=αW1ij+(1-α)W2ij and 

providing the definitive ranking of the graph pairs. In its definition, α[0,1] is a tradeoff parameter, 

unfortunately providing optimal results for one geometry only. As a rule of thumb, α<0.5 should be used for 

n>20. A tour is built scrolling the array composed by the Wij values and looking for additional nodes 

satisfying the time constraint.  

In this work some modifications to [1] are carried out, obtaining a custom MAXIMP algorithm. If 

the weights’ array does not remain fully empty (very probable for large n), a brute force algorithm is applied 

on the remaining nodes. Furthermore, different α parameters are used to provide different solutions to 

choose from, after selecting a statistics (Maximum, Standard Deviation, RMS, etc.) of the times of the used 

patrols, to be minimized or maximized in order to find a unique solution (0, 0.25 and 0.5 are used instead of 

0.1). As expected, these upgrades strongly improve the optimization accuracy but require additional 

computation time, therefore they can be applied only for less than about 100 nodes. 

4 Performance assessment 

In this section, the standard and custom MAXIMP algorithms are compared in terms of solution 

accuracy and computational load. The reported assessment involves, as reference, a brute force algorithm 

(i.e. based on an exhaustive evaluation of all possible tours in order to find the optimal solution). 

The Monte Carlo (MC) methodology is applied in order to try filtering the effects of different graph 

geometries. The parameters scattered within a session are the time matrix (D), the priorities and the 

collection times (pi, bi with i=1, … , n) of the nodes. Instead, the number of nodes (n), the numbers of patrols 

(m=3) and the deadline (T=10000) are constant over the 100 simulations performed for each session. For less 

than 10 nodes, the brute force can be used as reference because capable to find the optimal solution in 

reasonable time. For more nodes, only some random runs can be performed and, by this way, the custom 

MAXIMP performances are generalized.  
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In Fig. 1 the performances of the standard and custom MAXIMP are reported for few nodes. Note 

that the brute force takes about 15 min already for n=9, after that it cannot be used easily (Intel® Core™ i7-

8665U CPU @ 1.90-2.11GHz, 8GB RAM). Zero error means that the set of the visited nodes is optimal but 

the order of visit and/or the patrol assignment could change with respect to the exact algorithm. Indeed, the 

brute force is implemented to use less time as possible, while MAXIMP tends to use the whole time span 

(actually, different sets of nodes may generate the same total priority but this case is very rare). Sometimes, 

for particular graph geometries, the standard MAXIMP finds a zero overall priority because, in the sorted 

array of weights, there is no tour compliant with the time constraint (the custom MAXIMP overcomes this 

situation). In other words, the standard MAXIMP fails more than the modified one because of the unique α 

value that cannot manage all the nodes configurations. As the number of nodes increases, the standard 

MAXIMP is the only tool capable to provide a solution in acceptable time (Fig. 2). A simple way to take 

advantage of the very good accuracy of the custom MAXIMP is to perform an appropriate initial clustering, 

generating a limited number of nodes. 

 

Fig. 1 Accuracies of standard and custom MAXIMP algorithms 

 

Fig. 2 Computation times of standard MAXIMP algorithm 

5 Conclusions 

In the field of environmental monitoring, some vehicles have to visit many critical waste sites within 

a specified deadline, trying to maximize the overall priority index. Currently human operators provide 

themselves these paths but this is a challenging issue, being the tour optimizations in the NP-hard class 

problem. Thus, it is strongly desired to dispose of an algorithm capable to provide good solutions in 

reasonable times. In this work, a multi-tour time-constrained algorithm from Literature has been applied, 

also with some modifications. The reported performance evaluation confirms that the MAXIMP algorithms 

are highly promising to achieve the abovementioned objective, in terms of simplicity, limited computation 

time (~12 min for 500 nodes, in its standard version), and fair accuracy (~10%) regardless of geometry and 

matrix time. The standard version of MAXIMP is best suited for handling hundreds of nodes and if a high 

accuracy is not required. On the other hand, custom MAXIMP can be applied when, for less nodes, a quasi-

optimal solution is desired in reasonable time, also achieving high accuracy (~2%). The use of the custom 

MAXIMP is facilitated applying a low dense clustering of the initial waste places, in order to obtain a graph 

with a moderate number of nodes. 
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1 Introduction

Nowadays, in textile industry as in other industries facing the industry 4.0 revolution, the work is
changing. This study takes place in the original factory of a famous company created in 1893, a
textile industry located in Troyes (France). This factory is facing a market trend evolution and have
to adapt his production process. The company is very known for its high quality baby’s clothing.
They also develop adults garments collection. The product diversity increases while the total
volume decreases. This allows a permanent renewal of the products displayed. Furthermore, the
development of online-business requires more and more flexibility and reactivity. This distribution
channel is more important during COVID 19 crisis context as e-business have greatly increased.
The adaptation needed is reflected in the entire process of the clothing manufacturing industry
from the knitting of the fabric to the assembling stage. Figure 1 shows the three principals stages
in textile factory.

Fig. 1. The three fabrication stages in textile industry

This study focuses on the first production stage: the knitting workshop. This workshop needs a
new organization in this context. In the past, all machines worked at the same time. Nowadays,
only some machines work simultaneously. A rotation between the machines takes place regularly.
This work is related to a previous one [2] which focused on a dynamic layout of such as workshop.
The main subject was about the creation of groups of machines. The objective was to balance
the workload between all the operators and to propose a new implementation method. A good
workshop layout was a prerequisite before optimizing the scheduling
An other study has been conducted previously on the scheduling problem of this workshop. A
method to solve the unrelated parallel machines scheduling problem with setup time and limited
resources has been implemented on the industrial partner workshop.
In order to go further on this subject, the study propose in this study focuses on the rescheduling
of the knitting workshop. The problem tackled is to propose a method to adapt the production
scheduling when disruption occurs with a limited impact on the workshop organization and the
performance of productivity.

The rest of the study is organized as follows. Section 2 gives a description of the industrial
problem. The third section gives a literature review on this kind of problem. Section 4 provides
contribution of this study. A conclusion and future research directions end up the study in section
5.
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2 Problem description

The main objective of this study is to improve the scheduling software implemented on the knitting
workshop by proposing a rescheduling module to adapt the production scheduling to any disruption
that can occur. This, in the main objective of helping the knitting workshop manager to make better
and quicker decisions in his daily work at any time.
The workshop is composed of M unrelated parallel machines. An example of a circular knitting
machine is given in the figure 2. The machines are grouped in W areas. The notation Ziw is used

Fig. 2. Circular knitting machine

to define the assignment of machine i to the area w. Each operator is monitoring a machine area.
The number of machines able to run at the same time in the area w is denoted by Uw. This is
the guarantee of good quality fabrics. The operators are not able to manage more machines than
a specific number due to his qualification level. The objective is to schedule a known number of
N jobs on the machines in a time horizon of H discredited in different t slots. The machines are
considered as unrelated as the processing time pij of product j on machine i of each job are not
related neither to the machine i or the product j. Their is no relation between processing time of an
identical product on two different machines. Furthermore, this study takes into account machines
and sequence dependent setup times sijk. The data sijk is the necessary time to make the transition
when the job j preceding the job k on the machine i. The setup adjustments are made by members
of a crew. So, this study has to consider them as limited resource. The notation Bt is the number of
this resource type available at the moment t. This study is also tackled with a machine restriction
constraint. Only the product j with a data eij equal to 1 can be processed by the machine i.
An initial production planning is provided by the scheduling algorithm already implemented in
the software. However, perfect production conditions are very unrealistic, disruption can occurs
and the initial planning is no longer up to date. The different disruptions that can occurs in this
problem are:

– Arrival of a new job
– Deleting a job
– Machine breakdown
– Lack of human resources

The rescheduling objective is to find the best possible planning to finish all the jobs as soon as
possible by keeping stability in the planning initially provided. This is why this study is focused
on the objective of maximizing performance (min cmax) while maintaining stability.
To summarize this study investigate an unrelated parallel machine rescheduling problem with se-
quence and machine dependent setup times. Machine eligibility restrictions and two different types
of common server (operators and adjusters) are included. Four different disruptions can occurs.
The objective is to minimize the maximum completion time while maintaining stability between
the initial production scheduling and the rescheduling one.

97



Rescheduling in textile industry : an unrelated parallel machines problem with setup times 3

3 State of the art

In order to position the problem regarding to the literature, a review of the parallel machines
rescheduling problem has been done. Different rescheduling approaches are proposed in the litera-
ture.
The first one is to use a standard scheduling method with the new data after disruption. This
can rich high quality solution on the performance objective. However, stability on solution are not
guarantee ([4]). On real life production, getting a totally different schedule is very unfavourable to
a good workshop organization and management.
The second one is to use a proactive scheduling. This is generated by inserting idle time between
the pre-scheduling activities, enabling the disruptions to be smoothed out through the system in
order to maintain the schedule quality ([1]). Stochastic approaches is an other way to do it.
The last one is reactive scheduling, commonly referred to as rescheduling. It is a procedure to
modify the existing schedule during processing to adapt to changes in a production or operational
environment. Kim ([3]) recently studies a rescheduling problem of unrelated parallel machines with
job-dependent setup times under forecasted machine breakdown.
On a majority of studies, two conflicting objectives are taken into consideration: performance and
stability. Multiple indicators in the literature are proposed. However, each industry has its own
characteristics that involves specific indicators.

4 Contribution

The contribution of this study is to explore different performance evaluation of rescheduling solu-
tion in the specific case of textile industry production. The resolution method is based on a genetic
algorithm developed for this specific problem. The performance measure is the minimization of
completion time (cmax). The stability in rescheduling is more complex to evaluate. Different indi-
cators are explored and combination of them are analysed in order to propose the most pertinent
and efficient rescheduling planning to the company. These different indicators can be compare to
a limit parameter. If the limit is crossed so the objective function will be penalized. This allows a
tolerance and plays up on the performance objective.

5 Conclusion

The originality of the problem studied in this paper is the specific application to textile industry.
New evaluation method of stability in rescheduling problem will be tested in order to propose to
the industrial partner an efficient solution. This work will be based on the previous study with
this company on the unrelated parallel machines scheduling problem with setup time and limited
resources. The continuity of this study is to allow to the company to rescheduling the workshop
production every time an unpredictable disruption occurs. It is a very import prerequisite to have
an agile and reactive production. It is also a first step on the road to the 4.0 factory transformation.
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Abstract. In this paper, we consider the one-commodity travelling sales-
man problem. One vehicle has to visit n customers to deliver small con-
tainers of ready-mixed concrete or pick them up after they have been
used. Unexpected detours to recycling centres are considered, which
makes tours uncertain beforehand and involves dealing with stochastic
and dynamic tours.
We propose two approaches to tackle the problem. An estimation-based
local search that generates a priori optimized tours considering potential
detours that may occur, and an online approach which starts from an
initial a priori tour and adapts it to fit the unexpected detours dynami-
cally. We provide some experimental results that show the effectiveness
of our approaches, especially when detours are more likely to occur.

Keywords: Dynamic vehicle routing · stochastic vehicle routing · local
search · pickup & delivery problems...

1 Introduction

This work is carried out in collaboration with a company which specializes in
the sale of ready-mixed concrete.
Ready-mixed concrete is normally delivered in mixer trucks. This type of truck
is heavy, cumbersome, expensive, and can be disproportionate in some cases,
especially when delivering small quantities of concrete.
Therefore, the company wants to propose a new delivery method using small
containers (500 litre bins) to reduce delivery costs and deal more effectively with
orders of small quantities. This new method is a two-step process. A vehicle
delivers a number of bins of concrete to the customer, then, returns the next day
to pick them up after they have been emptied by the customer.
To ensure the profitability of this method, the company needs a decision support
system that can generate efficient pickup & delivery tours taking into account
the vehicle capacity constraint and recycling constraint. Thus, if a bin is
empty and clean when it is picked up from a customer, it could be directly
supplied to another customer. Otherwise, it must be immediately routed to a
recycling centre before it can be delivered again (unconsumed concrete is then
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recycled and the bin cleaned). Knowing that the state of a bin is uncertain before
the vehicle arrives at the customer’s location, the a priori planned vehicle route
may change during the time to include recycling centres whenever necessary.
This uncertainty involves dealing with stochastic vehicle routing.
This paper aims to provide efficient approaches to build pickup & delivery tours
minimizing the total travel distance by minimizing the loss of quality caused by
potential detours to recycling centres.
The paper is structured as follows. Section 2 provides a description of pickup
& delivery and stochastic/dynamic vehicle routing problems. Section 3 gives a
formulation for the problem tackled in this work. In section 4, we present our
first heuristic which is an estimation-based local search that provides a priori
optimized tours. Section 5 describes our dynamic online algorithm that provides
a priori optimized tours that can be dynamically adjusted to fit recycling centres
detours. Section 6 proposes some experimental results, and section 7 concludes
the paper.

2 Literature Review

We consider the One-Commodity pickup & delivery travelling salesman problem
in a dynamic context.

2.1 Pickup & Delivery Problems

There are three main classes of pickup & delivery problem in the literature :

One-to-One Problems One or more vehicles have to carry n commodities,
where each commodity has an origin and a destination. One of the best known
examples of this class is the Dial-a-ride problem which consists of transporting
people from an origin to a destination.

One-to-Many-to-One Problems Commodities are divided into ”delivery com-
modities” and ”pickup commodities”. One or more vehicles have to carry the
delivery commodities from the depot to the customers and the pickup com-
modities from the customers to the depot. Assuming that np is a set of pickup
customers, and nd a set of delivery customers, two cases have been distinguished
for these problems : single demands, where np∩nd = ∅, and combined demands,
where np ∩ nd 6= ∅. Several heuristics have been proposed for both single and
multi-vehicle cases [10, 5]...

Many-to-Many Problems One or more vehicles have to transport goods be-
tween customers knowing that each customer can be a source or a destination of
any type of good. Among the problems of this class, the One-Commodity pickup
and delivery travelling salesman problem was introduced in [8]. A single vehicle
with a known and finite capacity has to carry a single commodity between pickup
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customers and delivery customers. Picked up commodities can be supplied to de-
livery customers. This problem is known to be NP-Hard. Moreover, checking the
existence of a feasible solution is an NP-Complete problem [7]. Studies on such
problems are relatively scarce. A branch and cut algorithm has been proposed
in [8] for small instances, and two heuristics have been developed in [9] to tackle
larger instances.
For a detailed survey on pickup and delivery problems, we refer the reader to
[1].

2.2 Stochastic/Dynamic Vehicle Routing Problems

Vehicle routing problems can be classified according to the information quality
and evolution. Thus, an input information can be deterministic or stochastic,
and it can be known in advance or revealed during the tour.
A taxonomy of vehicle routing problems based on these two dimensions is pro-
posed by [12]. Four types of vehicle routing problems are then distinguished
:

Static and Deterministic Problems Input is known in advance and doesn’t
change over time. This is the most studied type of problem, but it gener-
ally doesn’t fit with real-world applications, where some information cannot be
known beforehand.

Static and Stochastic Problems Here, some information is a stochastic vari-
able which is revealed gradually during the execution of the tour. However, the
a priori planned routes cannot change during the execution of the tour except in
some special cases. For example, if the stochastic variable considered is the cus-
tomer’s request, or in other words, if customers may request a visit with a certain
probability, the a priori planned route may change only to skip customers that
do not require a visit. Several types of stochastic variables have been studied in
the literature : stochastic travel times [11], where travel times between customers
is a random variable, stochastic customers, where customers may request a visit
with a certain probability [3]...

Dynamic and Deterministic Problems Some information is totally un-
known beforehand and is revealed only during the execution of the tour. Vehicle
tours are then changed in real time, during the execution of the tour according
to new information.

Dynamic and Stochastic Problems This type of problem is a combination
of the latter two types described above. Some information is a stochastic variable
that can be used to build a priori tours taking into account possible future events,
and routes are adapted in real time according to information changes.
For more details on stochastic and dynamic vehicle routing problems, we refer
the reader to the surveys of [12] and [13].
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2.3 Stochastic/Dynamic Pickup & Delivery Problems

Most studies tackling pickup & delivery problems consider the static case in
which all information is known beforehand and does not change during the time.
However, some papers deal with the dynamic case where some information is only
revealed during the tour and the a priori tour is adapted progressively in real
time. A few of these works exploit stochastic information to anticipate future
events, [2] present some of these papers. However, to the best of our knowledge,
there is no work dealing with the one-commodity travelling salesman problem
in a stochastic case.
The problem considered in this paper can be classified as a stochastic one-
commodity travelling salesman problem. It is stochastic because we have proba-
bilistic information through historical data about potential future detours. It is a
one-commodity travelling salesman problem because a single vehicle has to carry
one commodity from a set of pickup customers to a set of delivery customers.

3 Problem Formulation

The pickup & delivery travelling salesman problem(1-PDTSP) can be defined
on a complete graph G = (V,E) as follows :

– V = {0, 1, ..., n} is a set of n + 1 nodes representing the n customers (n =
nd + np, where nd is the number of delivery customers and np the number
of pickup customers). Node 0 represents the depot ;

– E = {(i, j), i, j ∈ V, i 6= j} is a set of edges representing connections between
customers ;

– C = {ci,j , (i, j) ∈ E} represents the travel distance between customer i and
customer j (ci,j = cj,i,∀(i, j) ∈ E) ;

– D = {di, i ∈ V } is a set of customers’ demands (|di| is the number of bins
to deliver to / pick up from a customer i, di < 0 for delivery customers and
> 0 for pickup customers ) ;

Given a vehicle with a known and finite maximum capacity Q, and assuming
that :

– xi,j is a boolean variable such that xi,j = 1 if customer j is visited immedi-
ately after customer j, 0 otherwise ;

– qi the number of bins in the vehicle after his visit to the customer i.

Our objective is to find a Hamiltonian cycle that minimizes the total travel
distance, i.e. :

min
n∑

i=0

n∑

j=0

xi,jci,j (1)
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Subject to :
∑

j∈N
xi,j = 1 ∀i ∈ {D1} ∪N (2)

∑

i∈N
xi,j = 1 ∀j ∈ {D1} ∪N (3)

∑

j∈Nd

yi,j = 1 ∀i ∈ {D2} ∪Nd (4)

∑

i∈Nd

yi,j = 1 ∀j ∈ {D2} ∪Nd (5)

xi,D2 = 0 ∀i ∈ {D1} ∪N (6)

xD2,i = 0 ∀i ∈ {D1} ∪N (7)

yi,j = 0 ∀i, j ∈ {D1} ∪Np (8)

xi,j(qi + dj − qj) = 0 ∀i, j ∈ {D1} ∪N (9)

qi ≤ Q ∀i ∈ {D1} ∪N (10)

qi ≥ 0 ∀i ∈ {D1} ∪N (11)

qD1 = Qinit (12)

Constraints (2) and (3) ensure that each customer is visited exactly once, while
constraints (4) and (5) relate to vehicle capacity.
Picked up bins can be supplied to a delivery customer if necessary. However,
if a bin is not totally clean and empty when it is picked up from a customer,
it must be firstly routed to one of the R available recycling centres around
the customer’s location before it can be supplied again. We can consider the R
available recycling centres as a ”priority customer” that may require a visit after
each of the np pickup customers.
Thus, we define for each customer i :

– ωi such that ωi = 1 if a detour is required immediately after i, 0 otherwise
(note that the value of ωi is unknown beforehand) ;

– pi, the probability to require a detour immediately after customer i, or, in
other words, the probability that ωi = 1 (note that pi = 0 for all delivery
customers).

4 A priori Optimization Approach

To tackle the 1-PDTSP described above, we first propose an a priori optimization
approach which considers potential detours to recycling centres to build static
vehicle tours. The proposed algorithm is an estimation-based heuristic adapted
from the approach presented in [4] for the probabilistic travelling salesman prob-
lem.
This approach is based on a local search method which starts from an initial
feasible solution S, and tries to improve it by moving to S′, a feasible neigh-
bouring solution of S, such that f(S′) < f(S). The process is repeated until no
improvement can be found.
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4.1 Neighbourhood Structure

We use the 1-shift algorithm introduced in [3] to generate the neighbourhood of
a given solution S. This method consists in changing the position of a customer
in a tour from i to j. Customers who are in positions i+ 1, i+ 2, ..., j of the tour
are then shifted backwards (see Fig. 1).

4.2 Feasibility Checking

For each generated solution, we ensure that capacity constraints described in
section 3 are respected. A feasible solution is a tour in which the number of bins
loaded on the vehicle never exceeds the maximum capacity Q of the vehicle, and
is never negative. Assuming that qi is the number of bins in the vehicle after
visiting customer i, Fig.1 presents an example of a feasible and an infeasible
solution.
Given a feasible solution S and a 1-shift neighbouring solution S′ of S obtained

Fig. 1. 1-Shift algorithm

by shifting a customer from position i to j. It can easily be shown that S′ is
feasible if and only if the partial tour from customer i to customer j is feasible.
Indeed, to check the feasibility of a neighbouring solution, we only check the
feasibility of the tour between position i and position j.

4.3 Objective Function

In our case, the objective function f to minimize is the total travel distance of
the vehicle. However, since we cannot know in advance the travel distance of
an a priori solution S due to potential detours to recycling centres (see Fig. 2),
we use the following unbiased estimator of f(S) as a criterion to move from a
solution to another one :

f̂M (S) =
1

M

M∑

r=1

f(S, ωr)
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This estimator was proposed by [4] for the probabilistic travelling salesman prob-
lem. The idea is to estimate the quality of an a priori solution S from a set of M
simulations of possible a posteriori solutions. An a posteriori solution is obtained
by associating a binary vector ω with the a priori solution such that ω[i] = 1 if
a detour to a recycling centre is required immediately after visiting a customer
i, 0 otherwise (see the vector ω in Fig. 2).
Thus, given an a priori solution S (that does not include recycling detours) :

1. M possible a posteriori solutions (including potential detours) are generated
by associating M vectors ω with the a priori solution S;

2. For each generated a posteriori solution, f(S, ωi), the travel distance of the
a posteriori solution given by ωi is calculated. f(S, ωi) = f(S) + TDL −
n∑
i=1

n∑
j=1

ωixi,jci,j , where :

– f(S) is the travel distance of the a priori solution S (without detours) ;
– TDL is the Total Detour Length of the a posteriori solution (see the

example in Fig. 2).

3. f̂M (S) = 1
M

M∑
r=1

f(S, ωr) is calculated and considered as an estimator of f(S).

Fig. 2. A priori solution VS a posteriori solution

Note that ω is generated according to the set P = {pi, i ∈ V } of probabilities
of requiring detour after visiting customer i. Therefore, ω[i] = 0 for all delivery
customers because detours may occur only when picking up bins.

4.4 Recycling Centre Choice

Since we consider R available recycling centres in our problem, each time a
detour to recycling centre is required, we must choose among the R possibilities
we have. Therefore, we calculate the travel distance caused by the detour to each
of the R available recycling centres to choose the one that minimizes the detour
length.
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5 Online Optimization Approach

The second proposed approach is a dynamic algorithm that starts from an initial
a priori optimized tour and adjusts it during the time whenever it is necessary
(before each detour).

Algorithm 1 Dynamic routing algorithm

1: InitialSolution← GenerateIntialSolution()
2: // generate an initial optimized a priori solution including the n customers
3: S ← LocalSearch(InitialSolution)
4: // during the tour, at each customer’s location...
5: for (i ∈ S) do
6: // if a detour is required...
7: if (ωi = 1) then
8: BestSubSolution← nil
9: // for each available recycling centre...

10: for Rj ∈ R do
11: // extract the sub-tour Sj that has not been travelled yet (from i+ 1 to n)
12: Sj ← SubSolution(i+ 1, n)
13: // add Rj at the beginning of Sj

14: Add(Sj , Rj)
15: // start a local search with Sj as an initial solution
16: Sj ← LocalSearch(Sj)
17: if BestSubSolution = nil OR f(Sj) < f(BestSubSolution) then
18: BestSubSolution← Sj

19: end if
20: end for
21: // replace the sub-tour i+ 1...n by BestSubSolution
22: Replace(SubSolution(i+ 1, n), BestSubSolution)
23: end if
24: end for

As it is described in Algorithm 1, we start by generating an initial a pri-
ori optimized tour using the local search described in section 4. Then, at each
customer’s location, we check if a detour is needed. If so, the algorithm has to
choose one recycling centre among the R available. To this end, a local search is
performed to find an efficient sub-tour including all customers that do not have
been visited yet with each of the available recycling centres. The best sub-tour
obtained by the R local searches is chosen to replace the current sub-tour. An
example is illustrated in Fig. 3.

6 Computational Results

The two approaches described above were implemented in Java, and executed
on AMD A10-7700K Radeon R7, 3.40 GHz With 8 GB RAM.
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Fig. 3. Dynamic routing example

We tested the performance of our algorithms on the Euclidian PDTSP instances
generated by [6]. The number of customers in these instances varies between
25 and 200. The first four customers of each instance have been chosen to be
the recycling centres, the remaining nodes are assumed to be the customers.
For each customer i, we determined whether a recycling detour is required af-
ter visiting i or not (we determined an ”effective scenario” for each instance).
The boolean variables were generated according to a fixed probability P . We
generated scenarios for P ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Then, our algorithms were
evaluated according to the fixed scenarios.
Furthermore, the first approach (a priori optimization) was tested with different
values for the parameter M , the number of simulated a posteriori solutions (see
section 4.3). Note that for M = 0, the algorithm doesn’t simulate a posteriori
solutions. It is then equivalent to a classic local search which ignores stochastic
information.
Table 1 shows the average solution cost obtained by the a priori optimization
approach for the instances described above (we fixed the neighbourhood size to
200).
First, we observe that, for each class of instances, solution costs increase as

the parameter p increases. This is due to the fact that a higher probability p
involves a greater risk of requiring detours and thus, a greater risk of increasing
the solution cost. However, we can see that this increase is smaller as the number
of a posteriori solutions generated (M) is greater.
Fig. 4 shows the percentage of travel distance due to detours when p = {0.1, 0.3, 0.5, 0.7, 0.9},
and for M = {0, 25, 50, 100}. The results show the effectiveness of our approach
in minimizing the detours’ impact on the solution cost, especially when p ≥ 0, 5.
Indeed, the objective of our estimation-based local search is to anticipate pos-
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Table 1. A priori optimization solutions for the Euclidian PDTSP instances

Number of sample solutions M

Probability Number of customers 0 25 50 100

p = 0.1 25 544,26 555.9 551,5 565,4
50 843,33 895 893.1 860.6
75 1121,1 1119 1138,66 1111,5
100 1414,56 1432,5 1494 1457,5
150 2007,07 2017 2013 1993,3
200 2603,73 2601.1 2496 2489,16

p = 0.3 25 618,5 596 574,26 577,3
50 1020,03 1018,2 1051,3 1001,1
75 1446,9 1474,4 1398,12 1392,8
100 1874,26 1862,2 1813.7 1841,1
150 2673,83 2641,14 2594 2569,4
200 3592,26 3617,14 3504,2 3495,6

p = 0.5 25 706,66 688,3 681.13 680,6
50 1281,33 1210,15 1187 1161,7
75 1848,86 1817,21 1832,2 1804,4
100 2233,96 2214,1 2157 2149,4
150 3416,86 3411,14 3378,9 3386.6
200 4445,53 4431,37 4376,1 4348,4

p = 0.7 25 782,06 771 734,3 746,2
50 1480,83 1535,2 1457,5 1447,3
75 2172 2267,3 2169 2125,2
100 2666,5 2517,3 2500,1 2491,7
150 4047,16 4006,7 4011,6 3992,8
200 5490,2 5397,3 5325,8 5332,3

p = 0.9 25 867,8 804,4 786,4 799,1
50 1682,06 1633,9 1526,1 1589,1
75 2472 2480,4 2366,5 2306,2
100 3108,8 3116,5 2915,2 2903
150 4741,8 4886,3 4605,36 4552,52
200 6457,8 6384,8 6376,6 6301,1

sible detours and take them into account when generating a priori solutions.
Therefore, the more detours may occur during a tour, the more interesting our
approach is. In other words, and as we can observe in Table 1, our estimation-
based heuristic always obtains the best solutions in comparison with the classic
local search (the one with M = 0) when p > 0, 1. Moreover, the results are gen-
erally better when M = 100. Thus, more a posteriori simulations gives generally
a more accurate evaluation of an a priori solution.
Table 2 shows a comparison between the a priori approach and the online ap-

proach (for the first approach, we fixed M = 100 since Table 1 shows better
results for M = 100).
The online optimization heuristic (OOH) clearly outperforms the a priori op-

timization heuristic (APOH), regardless of the detour probability considered.
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Fig. 4. Detour travel distance / Total travel distance (%)

Thus, among all the instances tested, the OOH obtained better results than
APOH in 80% of the cases, and in 100% of the cases for large instances (n ≥ 75).
This is due to the flexibility of this approach which actually changes the tour to
include the recycling centres, contrary to APOH which only tries to anticipate
future detours and minimize their impact.

7 Conclusions

We presented in this paper two approaches to tackle a stochastic one-commodity
pickup & delivery travelling salesman problem. The first approach is an a pri-
ori optimization heuristic. It is an estimation-based local search which exploits
probabilistic information about possible detours that may occur during a tour
to build static vehicle tours that minimize the total travel distance by minimiz-
ing the impact of these unexpected detours. The second approach is an online
optimization heuristic which starts with an initial a priori tour and updates it
dynamically during the tour, whenever it is necessary, to minimize the total
travel distance.
We tested our algorithms on the Euclidian PDTSP instances proposed in [6]. We
adapted the instances to fit our constraints and collected the results considering
different parameter values. The experiments show the effectiveness of our ap-
proaches in minimizing the loss of quality due to unexpected detours, especially
when detours are more likely to occur.
Future works will be devoted to the development of other approaches exploit-
ing other types of metaheuristics, and including other constraints such as time
windows, multiple vehicles...
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Table 2. A priori optimization VS Online optimization

Probability Number of customers A priori optimization Online optimization

p = 0.1 25 565,4 533,16
50 860,6 803
75 1111,5 1043,6
100 1457,5 1218.36
150 1993,3 1613,86
200 2489,16 2091,16

p = 0.3 25 577,3 619,6
50 1001,1 1051,5
75 1392,8 1310,16
100 1841,1 1686,46
150 2569,4 2381,63
200 3495,6 3004,4

p = 0.5 25 680,6 699,43
50 1161,7 1245,4
75 1804,4 1678,7
100 2149,4 2146
150 3386.6 3017,73
200 4348,4 4050,2

p = 0.7 25 746,2 766,83
50 1447,3 1414,93
75 2125,2 2038,33
100 2491,7 2486,8
150 3992,8 3709,5
200 5332,3 5013,5

p = 0.9 25 799,1 864,16
50 1589,1 1578,4
75 2306,2 2287,23
100 2903 2887,73
150 4552,52 4472,4
200 6301,1 6015,7
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Abstract. An increased use of renewable energy could significantly re-
duce greenhouse gas emissions but is difficult to realize since most renew-
able energy sources underlie volatile availability. Making use of storage
devices and scheduling consumers to times when energy is available al-
lows to increase the amount of renewable energy that can be used. For
this purpose, adequate models for forecasting the energy generated and
consumed as well as for the behavior of storage devices are essential.
Many data-based modeling approaches are computationally costly and
therefore difficult to apply in real-world systems. Hence we present a
computationally efficient modeling approach using a least-squares regres-
sion. Besides, we propose to use a hybrid model approach and evaluate
it on real-world data at the examples of modeling the state of charge of
a battery storage and the temperature inside a milk cooling tank. The
experiments indicate that the hybrid approach leads to better forecast-
ing results, especially for modeling more complicated behavior. Also, it is
investigated if the behavior of the models is qualitatively realistic and we
find that the battery model fulfills this requirement and is thus suitable
for the application in a smart energy management system. Even though
forecasts for the hybrid milk cooling model have even lower error values
than the ones for the battery storage, further steps need to be taken to
avoid undesired effects when using this model in such a sophisticated
system.

Keywords: Data-based modeling · Least-squares regression · Hybrid
models · Multiple models

1 Introduction

Even though its greenhouse gas emissions are decreasing, the energy supply
sector is still the sector causing most of these environmentally hazardous emis-
sions [1]. Increased use of renewable energy sources could reduce those emissions
and thus allow climate change to decelerate. However, most of these sources
have volatile availability. On the one hand, there are times where the demand

? This research is based on a project funded by the Federal Ministry for Economic
Affairs and Energy of Germany (project title SmartFarm, project number 0325927).
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is higher than the availability, on the other hand, if the demand is low at times
of high availability, the grid stability might be in danger. To still allow increas-
ing the use of renewable energy sources, the installation of storage devices can
help to absorb this undesired behavior. In this context, storage devices are not
limited to electrical storages but could also include devices that can be used as
thermal storage such as cooling systems or heat pumps. Locally installed smart
energy management systems can now allow using such storage devices in an op-
timal way. For this purpose, models that forecast the local energy generation
and consumption as well as the behavior of storage devices are essential.

Modeling approaches are usually classified into two groups: Physics-based
and data-based modeling [2, 3]. The first aims at finding a model by analyzing
the underlying physical laws and requires a deep understanding of the depen-
dencies in the system while the latter determines a model by data for input and
output values that is recorded during a training horizon and highly depends on
the quality of this data. Their biggest advantage is that they are transferable
to many different devices. For data-based approaches, it is often distinguished
between models based on statistical methods and techniques using artificial intel-
ligence (AI) [4]. AI techniques include fuzzy regression models, artificial neural
networks and support vector machines while examples for statistical methods
are (linear) regression models and autoregressive and moving average models.
All these techniques are often used to model energy generation, consumption or
storage behavior. In [5] and [6], for instance, forecasts for the energy generation
are made by applying regression methods and a neural network, respectively.
In [7–9], models for batteries’ states of charge are determined with a neural net-
work together with a Kalman filter, using a neuro-fuzzy inference system and a
resistor-capacitor model.

In this work, we extend the data-based technique used in [10–12] such that
the model can forecast complex behavior better. To achieve that, a data-based
method based on a least-squares regression is combined with a hybrid model
approach as introduced in [13] allowing multiple models for one device, each
identified on and valid for a subset of the data. This paper investigates the
application of these approaches on real-world data and evaluates if hybrid models
are likely to be more plausible, i.e. to show more realistic qualitative model
behavior.

In Section 2 the modeling approach is presented and the extension to hy-
brid models is explained. The subsequent section deals with numerical results
of applying this modeling approach to real-world data using the examples of a
battery storage and the temperature inside a milk cooling tank. In Section 4 this
work is closed with a conclusion and possible future work is outlined.

2 Data-based Modeling Approach

One approach to data-based modeling is to fit the data by applying a least-
squares regression. This method has two advantages over other data-based tech-
niques. First, it allows fast computation of models even for large data sets which
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is very convenient in case calculations need to be done on locally installed hard-
ware with little computational power. Second, the method can be extended to
include an even more efficient adaptation of the models to new data without
recalculating the model on the entire data set, but only on the newly acquired
data. This method will only be sketched here since it is frequently applied e.g.
in [14] where it is also explained in more detail. In [11] and [10], this method is
applied to a similar problem where it is extended to determining probabilistic
forecasts and analyzing the capability of adapting to new data as well as im-
proving forecasts by taking very recent data into account. In contrast to that,
the focus in this paper is on a hybrid model approach that is explained in this
section.

2.1 Data-based Modeling with Least-squares Regression

When identifying data-based models using a least-squares regression, we want
to find a model f : IRm → IR that best fits to a given data set with output data
yi ∈ IR, i ∈ {1, . . . , n}, measured at n different points in time, and input data
xi ∈ IRm, i ∈ {1, . . . , n} measured at the same time points from m different
inputs x1, . . . , xm.

According to Taylor’s Theorem, such a function f can be approximated
around a point x0 ∈ IRm by its derivatives at that point if it is sufficiently
smooth. Since the function is not given, the derivatives which determine the
coefficients of the polynomial are not available. Nevertheless, assuming a nor-
mally distributed error, the coefficients can be determined as minimizers of the
mean-square deviation between the model f(xi) and the measured output yi at
all times. This problem can be reformulated as a linear least-squares problem
which can be solved by QR-decomposition very efficiently even for large data
sets [15].

2.2 Introducing Hybrid Models

In [10], it is found that high polynomial degrees often result in an overfitted
model, i.e. one that fits very well to the training data but does not generalize
well. It is also mentioned that if the model might be extrapolated to a bigger
data range, a polynomial degree of one is best to use. However, a low polynomial
degree does often not allow to model complex behavior. Using hybrid models is
a possible approach to reduce the chance of overfitting but still allow modeling
complex dependencies. For more details on this, we refer to [13].

Since the behavior of the device to be modeled might be very different in
different phases, i.e. in κ ∈ IN different subsets of the data set, we want to
identify κ different models on the respective subsets, each valid only for these
data subsets. If we denote the κ disjoint data subsets as X1, . . . , Xκ, then we
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can write our model as

f(xi) =





f1(xi) if xi ∈ Xk1

f2(xi) if xi ∈ Xk2

...
...

fκ(xi) if xi ∈ Xkκ .

There exist many different approaches for choosing these subsets (see [13])
and it can be expected that the modeling results are sensitive to the data par-
titioning strategy, although the investigation of the effects is not part of this
paper. Our choice in the following is to divide the data into subsets depending
on the value of one integer input x having κ different values. This input can be
measured data, obtained by a classification algorithm or be generated by hand.
When calculating a forecast for time i, it is determined to which subset Xk the
point xi belongs and the corresponding function fk is chosen for calculating the
forecasted model value at time i, that means f(xi) = fk(xi) if xi ∈ Xk.

3 Experimental Results Comparing Non-hybrid and
Hybrid Models on Real-world Data

3.1 Setup and Data

The modeling approaches are now evaluated on real-world data at the example
of the state of charge of a battery storage and the temperature of a milk cooling
tank. The data was recorded by a measurement system comprised of one- and
three-phase smart meters, current terminals and 1-wire temperature sensors on
two demonstration sites in Lower Saxony, Germany within the scope of a research
project aiming at developing an energy management system that controls storage
devices and shiftable consumers such that the use of self-produced energy is
maximized.

At both demonstration sites, a photovoltaic plant produces energy that can
either be locally used or exported to the grid. One of the sites is a four-person
household in which a lithium-ion battery storage with a capacity of 106 A h, a
usable energy of 5.0 kW h and a one-phase inverter with a maximum apparent
power flow of 6 kV A is installed. Internal values from the inverter can be accessed
via a modbus interface and are also used. On the other site, a milk farm, a milk
cooling tank with an energy consumption of up to 13 kW is installed which can
be used as thermal storage by cooling the milk to a lower temperature within
constraints that guarantee no quality loss.

The data used for the battery storage was recorded on 37 days in April and
May 2017 and interpolated to 30 minutes with a moving average filter to reduce
noise in the measurements. The first 20 days of data are used for training a
model while all other data is used for validating that model. For modeling the
milk cooling tank temperature, active power and temperature data measured
between February 18, 2018 and April 10, 2018 is used and interpolated to five
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minutes again using a moving average filter. Here, further preprocessing was
required since up to eight values per day (i.e. from 1440 values) exceeded all
other values by several orders of magnitude. They were replaced by the value
measured before that value since the data does often not change within a minute.
The 52 days of data are again divided into a training period and a validation
period where the first comprises the first 20 days of that set.

Within that setup, we now want to determine non-hybrid and hybrid models
for the state of charge of the battery and the temperature inside the milk cooling
tank. Both values show a dynamic behavior and depend on the state of charge
or the temperature that was measured before as well as the active power which
is available as a forecast in the energy management system. In the experiments,
the actual measurements of the active power will be used since the quality of the
power forecasts could influence the results. Also, the state of charge or temper-
ature measured one time step before will be used as an input to the model. In
addition to that, setpoints for the milk cooling tank would be determined in an
energy management system indicating whether the cooling is on or off. These
were reconstructed from the power data and are also used in the experiments.

Within the energy management system in which the models presented here
will be applied, forecasts for 24 hours are required. Since the models use the state
of charge or temperature measured one step earlier which is not available at time
points in the future, we evaluate the models iteratively to simulate the models’
predictions within that energy management system. This means for a forecast
starting at time t0 that is one step into the future, we use the state of charge or
temperature measured one step ago which is available. For the next time step
t1 we do not have a measurement at the time t0 to use, but instead calculate
the output value at time t1 using the forecasted value at time t0. This value is
then used as an input to forecasting the output at time t2. This procedure is
continued until the end of the forecast horizon, e.g. until values for 24 hours into
the future are calculated.

Naturally, those forecasts will be more accurate during the beginning of the
forecast horizon since small deviations from the data within the first hours can
propagate and lead to huge differences in the last hours. Thus, the energy man-
agement system requests forecasts minutely and recalculates the optimal oper-
ation schedule to reduce this effect. However, in the following evaluations, we
will consider forecasts for 24 hours since these are of interest to the energy man-
agement system. To allow clear depictions, we will simulate that forecasts are
requested only at midnight.

To evaluate the quality of a model, the deviation between the forecast by
a model and the actual measurements is considered during the training and
the validation period separately. To measure this deviation, we calculate the
normalized root-mean-square deviation (nRSMD) which is the root-mean-square
deviation (RSMD) (often also referred to as root-mean-square error (RSME))
normalized to the biggest value ymax measured for the output y, i.e.

nRSMD =
1

ymax

√∑n
i=1 (yi − f(xi))

2

n
.
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3.2 Comparing Non-Hybrid and Hybrid Models on Real-world
Data

Forecasting the State of Charge of a Battery Storage To identify the
parameters of not only a non-hybrid, but also a hybrid model, the data for the
battery storage device as mentioned above needs to be divided into subsets that
show similar behavior. For this division, we add an input xm+1 to the data that
indicates whether the battery storage is charged or not, i.e. κ = 2 and

xm+1
i =

{
1 if the battery storage is charged at time i

0 otherwise.

Based on this data, one non-hybrid and one hybrid model for the state of
charge of a battery storage device are determined and forecasts are calculated. An
excerpt of the results is depicted in Figure 1 and shows five days at the beginning
of the validation period. It can be observed that on some days the forecast
calculated using the hybrid model (green) is closer to the measured data (purple)
than the one with the non-hybrid model (blue) and on other days they are very
similar. For both models, the forecasts do usually not reach the maximum state
of charge of 90 %. This behavior can similarly be observed on the other days of
the validation period indicating that the model predicts the charging process to
be slower than in the measurements. The discharging, however, can be predicted
better. In total, forecasts from both models are close to the measurements while
the hybrid model seems to yield better predictions than the non-hybrid one.

Fig. 1. Model for the state of charge of a battery storage during five days from the
validation data. Measurements are depicted in purple, the results of the iteratively
computed forecast by the non-hybrid model in blue and the ones obtained by the
hybrid model in green.

This can also be observed in the error values of both models. The nRSMD for
the non-hybrid model is 8.6 % during the training period and 6.9 % during the
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validation period. This indicates that the model is not overfitted to the training
data but generalizes well. The error values for the hybrid model are 8.0 % on the
training data and 6.0 % on the validation data indicating that the hybrid model
has the potential to improve forecasts even for devices in which a non-hybrid
approach already leads to good models. Regarding the fact that the iterative
forecast calculation is determined for a horizon of 24 hours, the error values here
are comparable to the results of other works, e.g. [9] in which the state of charge
of batteries is forecasted with an error of less than 5 %.

Forecasting the Temperature Inside a Milk Cooling Tank To forecast
the temperature in the milk cooling tank, it is interesting to know the general
behavior of the temperature. In the measurements, it can be observed that there
is a pattern that repeats with a periodicity of two days. In Figure 2, the mea-
surements, depicted in purple, are often constantly at about 5 ◦C which is the
temperature at which the milk is stored. In the power data, it can be seen that
the isolation of the tank allows it to keep that temperature constant without
cooling after it is reached. Twice a day, pre-cooled milk is added to the tank
raising the temperature to about 8 ◦C depending on the amount of milk in the
tank. Every other day the tank is emptied and cleaned with warm water re-
sulting in temperatures of up to 53 ◦C. After that, no cooling is activated and
the tank is left open until the next milking. The first milking after the cleaning
procedure occurs while the tank still has a temperature of about 15 ◦C.

From this knowledge an additional input xm+1 is added to the data set
indicating whether it is cleaned, milk is added or none of these, i.e. κ = 3 and

xm+1
i =





1 if milk is added to the tank at time i

−1 if the milk tank is cleaned at time i

0 otherwise

while the cleaning process is considered to start once the tank is cleaned with hot
water and ends when the subsequent milking starts. An addition of milk occurs
when a rise in temperature can be observed even though the power indicates
that the cooling is active.

Based on this indicator vector for the hybrid model, again a non-hybrid and
a hybrid model for the temperature inside the milk cooling tank are determined
based on temperature data from one time step earlier, active power data and
reconstructed setpoints. These results are depicted in Figure 2 which shows four
days from the validation period. First, it can be observed that the non-hybrid
model (blue) is neither close to the measurements (purple) nor able to predict
the behavior. It shows a periodicity of two days but the predicted temperature
decreases when the one in the measurement increases and vice versa.

In contrast, the hybrid model is much closer to the measurements. During
the cleaning process, i.e. when temperatures are above 10 ◦C, it fails to forecast
the decrease in the data but instead predicts a constant temperature of about
25 ◦C. This could be since the model calculated during cleaning times is – as
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Fig. 2. Model for the temperature inside a milk cooling tank during five days of the
validation data. Measurements are depicted in purple, the results of the iteratively
computed forecast by the non-hybrid model in blue and the ones obtained by the
hybrid model in green.

all models – linear in its inputs and can thus not model the decrease in the
data but chooses an average temperature. At all other times it can be observed
that the forecast qualitatively behaves as the measurement: At times where
the measurement is constant, the hybrid model forecasts constant behavior at
the correct temperature and at times where the temperature is changing, this
change is also visible in the forecasts even though the temperature is often lower
than the measurements and decreases to a constant value later than the actual
measurement does.

The hybrid model outperforms the non-hybrid one also when regarding the
error values. The error (nRSMD) of the non-hybrid model during the training
period is 10.6 % which does not seem to be very high. However, during the
validation period, the error is 16.0 % which is much higher and indicates that
this model does not generalize well. The error values of the hybrid model are
much lower, being 4.9 % on the training data and 6.4 % on the validation data.
In [12], the error for the temperature of a milk cooling model is calculated with
an error of 11 % indicating that the hybrid model is not only an improvement
over the non-hybrid model but also better than what other approaches have
achieved.

3.3 Checking the Models’ Plausibility

After finding that the non-hybrid and hybrid models are mostly close to the
actual measurements, it is of interest if they could be used in a smart energy
management system. That requires that the models behave logically correct even
if the storage device is operated differently than in the measurements, e.g. the
battery storage could be charged or discharged at different times than in the
measurement. In case of the milk cooling, a smart system could decide to cool it
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to a slightly lower temperature at times of an energy surplus, such that during
the next milking less energy needs to be used for cooling. To check whether the
models identified above could be used in such a context, we now simulate their
qualitative behavior on artificial data.

For the battery storage, it is checked how the non-hybrid and hybrid model
forecast the state of charge during one day for given power values. For that, the
power is set to 0 W during the first quarter of the forecast horizon, then charging
at constant 200 W is simulated during the second quarter, followed by a quarter
where the active power is −200 W which means that the battery is discharged.
In the last quarter of the forecast horizon, the power is again set to 0 W. This
power curve (black) is depicted in Figure 3 together with the forecasts generated
by the non-hybrid (blue) and hybrid (green) model. Discharging and charging
can be observed in the forecasts as expected. Furthermore, when the simulated
active power is 0 W the state of charge also decreases, but slower than at a
power of −200 W. This passive discharging, i.e. the process of slowly decreasing
the state of charge even though no energy is actively used, matches the actual
behavior of all battery storages. The hybrid model forecasts a slightly slower
passive discharging than the non-hybrid one. The biggest difference between
the non-hybrid and the hybrid model can be observed during the charging in
the second quarter where both models show an increase in the state of charge
which is realistic. However, the hybrid model reaches much higher states of
charge, but since the constant charging with 200 W for a longer time cannot be
found in the measurements, it cannot be assessed which of the models is more
realistic. Nevertheless, the fact that the hybrid model forecasts higher states of
charge after a charging period could explain why in Figure 1 forecasts by the
hybrid model were closer to the measurements than the ones by the non-hybrid
model. In summary, both models show realistic behavior here and could thus
be applied in an energy management system where they would be suitable to
forecast behavior that has not occurred in the data.

For the temperature inside a milk cooling tank, we simulate an additional
cooling period at noon after the temperature has been constant for several hours
to check if the models would predict a decrease in the temperature and stay
at that lower temperature once the cooling is turned off. For simulating the
additional cooling process, we set the active power to 11 850 W, the average
power measured during all cooling processes, and adjust the setpoints to indicate
cooling. The non-hybrid model predicts a decrease in temperature, but is, as in
Figure 2, not able to predict the constant temperature. For the hybrid model, the
simulated additional cooling leads to a rise in temperature once the cooling starts
and the temperature falls to the constant temperature of 5 ◦C once the process
stops. Thus both models are not able to predict an additional cooling process
qualitatively correct and also other choices of the additional input xm+1 do not
lead to better qualitative behavior. This might be since the training data does
not include temperatures below 5 ◦C. Another explanation is that the models
learn that the temperature rises once the cooling starts since at the beginning
of each cooling warm milk is added. Adding data from a flow sensor as an input
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Fig. 3. Model for the state of charge of a battery storage evaluated on data simulating
an active power profile as depicted by the black line. The forecast by the non-hybrid
model is depicted in blue and the one obtained by the hybrid model in green.

could thus be interesting. Also, other data, such as the amount of milk inside the
tank might improve the models. Furthermore, it would be interesting to choose
the subsets for the hybrid model in a more sophisticated way, e.g. by a clustering
approach, or to generate data containing additional cooling periods.

4 Conclusion

In this work it is evaluated to which extent computationally efficient data-based
models can be applied to forecast the behavior of storage devices. The modeling
approach uses a least-squares regression and is extended to hybrid models, where
each submodel is trained on a subset of the data. The division into subsets is
based on integer-valued indicator vectors that are added to the data manually.
These two approaches are evaluated at the examples of the state of charge of
a battery storage and the temperature inside a milk cooling tank. For both
devices, two different models, a non-hybrid and a hybrid one, are calculated
and compared to the actual measurements. It is found that the hybrid model
is closer to the measurements in both cases. For the battery storage device,
the error values of the models are not too far apart, but for the milk cooling
tank, the non-hybrid model fails to forecast the temperature inside the tank
while the hybrid model’s prediction is close to the measurements. Additionally,
it is investigated whether the models show plausible behavior which would be
essential for their application in an energy management system. It is found that
both battery models show realistic behavior while the hybrid model predicts a
higher state of charge after a period of charging. In contrast, the models for the
milk cooling tank both do not show plausible behavior. This can be explained
by the fact that the data might lack information such as the flow of milk into
the tank that influences the temperature heavily or the fact that the model is
extended to data not contained in the training data.
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To tackle this, adding further data would be interesting as well as a repetition
of the experiments once data is available where the milk cooling tank is controlled
and thus includes behavior that could not be predicted in the experiments in this
paper. Additionally, it would be very interesting to evaluate if other divisions
of the data into subsets lead to better results, e.g., if the data is divided into
subsets by a clustering approach.

In summary, we show on real-world data that a hybrid data-based modeling
approach can indeed improve forecasts calculated by models identified using
least-squares regression. However, even though the hybrid models are much closer
to the actual measurements, when applying them in a smart energy management
system it must be carefully checked if their qualitative behavior is plausible.
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Abstract. The 3 stage reducer problem is a point of interest for many researchers. In this
paper, this problem is reformulated to a bi-objective problem with additional constraints to
meet the ISO mechanical standards. Those additional constraints increase the complexity of
the problem, such that, NSGAII performance is not sufficient. To overcome this, we propose
to use BnB-NSGAII [10] method - a hybrid multi-criteria branch and bound with NSGAII
- to initialize NSGAII before solving the problem, seeking for a better initial population. A
new feature is also proposed to enhance BnB-NSGAII method, called the legacy feature. The
legacy feature permits the inheritance of the elite individuals between - branch and bound -
parent and children nodes. NSGAII and BnB-NSGAII with and without the legacy feature
are tested on the 3 stage reducer problem. Results demonstrate the competitive performance
of BnB-NSGAII with the legacy feature.

Keywords: NSGAII · multi-objective · MINLP · branch-and-bound · 3-stage reducer.

1 Introduction

In [3], the design of the 3 Stage Reducer (3SR) optimization problem has been introduced to
illustrate the optimal design framework of the power transmission mechanism. This problem has
been a point of interest for many researchers in different domains. Engineering researchers enhance
the problem for mechanical engineering applications. In [4], the problem is extended to a mixed
variables optimization problem. And recently a similar problem is stated in [5] to illustrate the
optimization of the volume and layout design of 3SR. Due to the problem complexity, optimization
researchers are interested to test optimization methods on it. In [14], the authors use the 3SR
problem to examine the performance of the constraint propagation method.

In this paper, the 3SR problem is reformulated to a bi-objective problem with additional con-
straints to meet the ISO mechanical standards. Those additional constraints increase the complexity
of the problem, such that, the well-known Non-Dominated Sorting Genetic Algorithm 2 (NSGAII)
[1] performance is not sufficient.

In [10], the authors enhance the performance of NSGAII by hybridizing it with the multi-
criteria branch and bound method [12], the proposed method is called BnB-NSGAII. In this paper,
we propose to use the BnB-NSGAII method to initialize NSGAII before solving the 3SR problem,
seeking a better initial population. The initial population seeding phase is the first phase of any
? Supported by organization ERDF, Grand Est and Lebanese University
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genetic algorithm application. It generates a set of solutions randomly or by heuristic initialization
as input for the algorithm. Although the initial population seeding phase is executed only once, it
has an important role to improve the genetic algorithm performance [2].

Furthermore, we propose a new feature to enhance the BnB-NSGAII method, called the legacy
feature. The legacy feature permits the inheritance of elite genes between branch-and-bound nodes.

The rest is organized as follows. Section 2 presents the 3SR problem and its complexity. The
proposed BnB-NSGAII legacy feature is explained in section 3. The computational results are
reported in section 4. Finally, an overall conclusion is drawn in section 5.

2 3 Stage Reducer Problem

The design problem consists in finding dimensions of main components (pinions, wheels and shafts)
of the 3 stage reducer (figure 1) to minimize the following bi-objective problem :

1. The volume of all the components of the reducer :

f1(x) = π

(
s=3∑

s=0
las
ra,s

2 +
s=3∑

s=1

[
bs
m2

ns
2 (Z2

s,1 + Z2
s,2)
])

(1)

2. The gap between the required reduction ratio ū and the ratio of the reducer (tolerance):

f2(x) = 1
ū

∣∣∣∣∣ū−
s=3∏

s=1

Zs,2
Zs,1

∣∣∣∣∣ , ū > 1 (2)

The problem is designed assuming the following are known:

– The power to be transmitted, Pt and the speed rotation of input shaft Ne.
– The total speed rotation reduction ratio ū, the position of the output shaft from the input shaft

position (figure 2).
– The dimension of the casing box.

Fig. 1. Front and back view of a 3 stage reducer with closure.

The 3SR problem is formulated with 2 objective functions, 41 constraints (presented in Appendix
A), 3 categorical variables (gears modules), 6 integer variables (number of teeth), and 11 continuous
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Fig. 2. Detailed view of the 3 stage reducer.

variables. Gears modules have 41 possibilities, pinion number of teeth ranges from 14 to 30 and
wheel number of teeth ranges from 14 to 150. Hence, the combinatorial space of the 3SR problem
consists in 413 + (30− 14)3 + (150− 14)3 ' 8.7× 1014. Thus, the problem is considered a mid-sized
problem concerning the number of variables and constraints, but, huge combinatorial space.

The additional constraints increase the complexity of the problem. This is noticed by solving
the problem using NSGAII with different initial conditions as follows. In first hand, NSGAII is
initialized with 1 feasible individual. On the other hand, NSGAII is randomly initialized. Each was
run 10 times with the same parameters shown in Table 1. Figure 3(a) shows how many run each
method converged to a feasible solution out of 10. Figures 3(a) and 3(b) show that if the initial
population contains at least 1 feasible individual, NSGAII converges to a good approximated Pareto
front every time. Whilst, if NSGAII is initialized with a random population, NSGAII either fails to
converge to a feasible solution, or it converges to a low-quality Pareto front.

Table 1. Parameters used for NSGAII algorithm

Parameters Value
Cross over probability 0.8
Mutation Probability 0.9
Population size 200
Allowable generations 500
Constraint handling Legacy method [1]
Crossover operator Simulated Binary crossover (SBX) [11]
ETAC 100
Mutation operator Partially-mapped crossover (PMX) [11]
ETAM 10
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(a) Number of converged runs.
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(b) Best Pareto front.

Fig. 3. Results of 3SR problem solved by NSGAII with (blue) and without (red) initial feasible seed.

Figure 4 shows part of the domain of the 3SR problem explored by NSGAII with feasible initial
population. The explored domain shows the complexity of the problem, where both feasible and
infeasible solutions share the same domain on the projected objective domain. Moreover, all the
feasible solutions are too near to the infeasible ones.

Fig. 4. Explored portion of the domain, showing the 3SR problem complexity.

To enhance the quality of the solution of this problem - and accordingly any similar problem -
where feasible solutions are not known, our proposal is first to use BnB-NSGAII proposed in [10] to
search for feasible individuals. These individuals are then injected in the random initial population
of NSGAII.
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3 BnB-NSGAII
In [10] the authors proposed the BnB-NSGAII approach. In this approach, Multi-Criteria Branch
and Bound (MCBB) [13] is used to enhance the exploration force of NSGAII by investigating the
mixed-integer domain space through branching it to subdomains, then NSGAII bounds each one.
In this way, MCBB guides the search using the lower bounds obtained by NSGAII. Our proposal
is to furthermore enhance the exploration potential of BnB-NSGAII by adding the legacy feature.

3.1 General Concept of BnB-NSGAII
The general multi-Objective MINLP problem ( PMO-MINLP ) is written as

minimize
x,y

f(x,y) = f1(x,y), . . . , fp(x,y)

subject to
cj(x,y) ≤ 0, j = 1, ...,m
x ∈X, X ∈ Rnc

y ∈ Y , Y ∈ Nni ,

(3)

where p and m are the number of objectives and constraints respectively. X and Y denote the set
of feasible solutions of the problem for nc continuous and ni integer variables respectively.
PMO-MINLP is complex and expensive to solve. The general idea is thus to solve several sim-

pler problems instead. BnB-NSGAII divides PMO-MINLP by constructing a combinatorial tree
that aim to partition the root node problem - PMO-MINLP - into a finite number of subproblems
Pr1, . . . , P ri, . . . , P rn. Where i and n are the current node and the total number of nodes respec-
tively. Each Pri is considered a node. Each node is then solved by NSGAII. Solving a node is to
determine its lower and upper bounds. The upper bound of a node PNi is the Pareto front captured
by NSGAII, which is then stored in an incumbent list PN . Whilst the lower bound is the ideal
point P Ii of the current node.

P Ii = min fk(xi,yi); k = 1, . . . , p. (4)
By solving Pri, one of the following is revealed:
• Pri is infeasible, means that NSGAII didn’t find any solution that satisfies all constraints.

Hence, Pri is pruned (fathomed) by infeasibility.
• Pri is feasible, but, the current lower bound P Ii is dominated by a previously found upper

bound PN . Therefore, Pri is fathomed by optimality.
• Pri is feasible, and, P Ii is not dominated by PN , P Ii ≤ PN . PN is then updated by adding PNi

to it.
In the 3rd case, the combinatorial tree is furtherly branched by dividing Pri into farther subprob-
lems, called children nodes. If a node cannot be divided anymore, it is called a leaf node. Leaves are
the simplest nodes, since all integer variables are fixed such that y = ȳ. NSGAII then solve leaves
as Multi-Objective continuous Non-Linear problem ( PMO-NLP ):

minimize
x, ȳ

f(x, ȳ) = f1(x, ȳ), . . . , fp(x, ȳ)

subject to
cj(x, ȳ) ≤ 0, j = 1, ...,m
x ∈Xi,

(5)
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where Xi denotes the set of feasible solutions of the current node. PNi of each leaf is then added
to PN . The overall Pareto front is obtained by removing the dominated elements from PN .

3.2 BnB Legacy Feature
In NSGAII, the best population is that found in the last generation, since it contains the elite
individuals among all the previous generations. In BnB-NSGAII, each node is solved independently.
The output of each node is the captured Pareto front only. The last population in the node is thus
discarded, although it might be valuable to other nodes.

We propose to permit the legacy between nodes. Where each child node inherits the last popu-
lation from its parent node. The child node then initializes NSGAII by this population.

The children nodes are subproblems of their parent node. Thus, the boundary of parent node
is different than that for the children nodes, Yparent 6= Ychild. Hence, the population is rebounded
before initializing NSGAII. Rebounding the population may lead to the loss of the elite individuals,
though some of the elite genes are still conserved.

3.3 An Application of BnB-NSGAII
BnB-NSGAII is characterized by high exploration potential. Thus, in this paper, BnB-NSGAII is
used to search for at least one feasible solution for the 3SR problem. For this aim, BnB-NSGAII
is properly modified to 1) continue enumeration of the combinatorial tree even if the root node is
infeasible. 2) stop whenever a feasible solution(s) is found. Then, NSGAII is called to solve the 3SR
problem by initializing it with the feasible solution(s) found as shown in Figure 5.

Start

Solve node with
NSGAII

Yes NO
Feasible 
Solution 
Found

Initialize NSGAII with
feasible seed(s)

Solve 3SR problem
with NSGAII

End

NO

Yes

All integer
variables 
are fixed

Add children nodes to
node list

NOYes Node List is
empty

BnB-NSGAII fails to
find feasible solution

Select node from
node list

Fig. 5. Flowchart of BnB-NSGAII application.
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4 Numerical Experiment

NSGAII and BnB-NSGAII with and without the legacy feature were tested on the 3SR problem.
Each method was run 10 times. The test was done using the same parameters for the 3 solvers.
Table 1 shows the parameters used in this experiment.

4.1 Results and Discussion

In this experiment, the evaluation of the performance of each method is limited to how many times
the method finds at least 1 feasible solution over the 10 runs. Figure 6(a) shows the number of times
each method succeeded the test. It can be obviously concluded that BnB-NSGAII legacy method
overcomes the performances of NSGAII and BnB-NSGAII. It should be noted that the computa-
tional effort is not regarded since all the runs converge within 30 minutes. Which is considered an
acceptable time for such a problem.

(a) Number of converged runs (b) NSGAII

(c) BnB-NSGAII (d) BnB-NSGAII Legacy

Fig. 6. Explored domain by (b) NSGAII, (b) BnB-NSGAII and (d) BnB-NSGAII legacy methods. Feasible
and infeasible individuals are plotted in green and red respectively.
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Figure 6(b) shows that NSGAII explored local space of the domain depending on the initial
population. While Figure 6(c) shows that BnB-NSGAII explored random spaces of the domain.
Figure 6(d) shows that the legacy feature guides the exploration force of BnB-NSGAII towards the
feasible solutions.

5 Conclusion

The 3 stage reducer problem is a point of interest of many researchers, either to use/ enhance it
for engineering applications, or to examine the performance of optimization methods. The 3SR
problem is desirable for such experiments for its complexity.

The 3SR problem was reformulated to a bi-objective problem in this paper to demonstrate
a proposed application of BnB-NSGAII. The proposed application is to use BnB-NSGAII as an
initiator of NSGAII, where BnB-NSGAII initially seeks feasible individuals before injecting them
into the initial population of NSGAII.

BnB-NSGAII was enhanced by adding the legacy feature. The legacy feature is a generic feature
that can be implemented in any branch and bound algorithm. Any parameter that is tuned during
the node solving process could be the legacy. In this paper, the legacy was the last population in
the father node in BnB-NSGAII. The latter was then used to initialize the child node.

The performances of NSGAII and BnB-NSGAII with and without the legacy feature were tested
on the bi-objective version of the 3SR problem. Results show that the legacy feature guides the
exploration force of BnB-NSGAII leading it to a better solution than that obtained by NSGAII
and BnB-NSGAII.
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A 3SR Problem Constraints

A.1 Closure condition

Interference and fitting constraints are adopted from [5]. In [4], the closure condition was expressed
with the distance between the terminal point O3 shown in Figure 2 and required position of the
center of the output shaft. The coordinate of O3 can be easily compute with the center distance of
each stage and the angle ξ1, ξ2 and ξ3. But, if we consider that center distance of each stage allow
this closure condition, we can compute the value of ξ2 and ξ3. By this way can reduce he number
of variables in the optimization problem.

For a given value of ξ1 and r1,1, r1,2, center distance of each stage allow a closure if we have :

‖ ~O1O3‖ ≤ ‖ ~O1O2‖+ ‖ ~O2O3‖

Assuming the previous condition is true, we can compute the two intersection of circle of center O1
of ‖ ~O1O2‖ radius and circle of center O3 of ‖ ~O2O3‖ radius.

With a2 = ‖ ~O1O2‖ and a3 = ‖ ~O2O3‖ we have :

{
a2 sinα1 − a3 sinα3 = 0
a2 cosα1 + a3 cosα3 = ‖ ~O1O3‖

which give :

cosα1 = O1H

O1O2
= a2

2 − a2
3 + (O1O3)2

2a2O1O3
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Fig. 7.

Knowing α1, computation of coordinate of O2 and O′
2 is straightforward. if the two position O2

and O′
2 allow the wheel of the 2nd stage to fit in the casing box, then O′

2 is preferred for lubrication
reason.

A.2 Mechanical constraint for one stage of the mechanism

Constraints related to the gear pair Following the recommendation from International Stan-
dard ISO 6336, [6],[7],[8] we can calculate, knowing the geometry of gear pair, the material and the
working conditions the contact and σH the bending stress σF in the gear pair. These stresses must
be less of equal to the respective permissible value σHP and σFP, depending on the material and
the working conditions.

From [8] the bending stress σF is given by (1 for the pinion and 2 for the wheel)::

σF(1,2) = σF0 (KAKVKFαKFβ)

with σF0(1,2), the nominal tooth stress :

σF0(1,2) = Ft
bmn

(YFYSYβYBYDT)

where :

– Ft : is the tangential load from [6].
– b : is the facewidth.
– mn : is the normal module.

Factors KA, KV, KFα, KFβ are related to dynamic ad loading conditions in the gear. Factors
YF, YS, Yβ , YB, YDT are related to the geometry effect on stress.

From [8], the permissible bending stress σFP is given by :

σFP = σFLim
SFmin

(YSTYNTYδrelTYRrelTYX)

with σFLim is the nominal stress number (bending) from reference test gears [9] and SFmin the
minimal required safety factor. Factors YST, YNT, YδrelT, YRrelT, YX are related to the reference test
gears and the geometry and material conditions of the gear pair.
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From [7] the contact stress is given by (1 for the pinion and 2 for the wheel):

σH(1,2) = Z(B,D)σH0
√
KAKVKHαKHβ

with σH0 is the nominal contact stress :

σH0 = (ZHZEZεZβ)
√

Ft
bd1

u+ 1
u

Factors ZH, ZE ,Zε, Zβ are related to the Hertzian theory of contact, and take into account geometry
and material in the gear pair.

From [7] the permissible contact stress σHP is :

σHP = σHLim
SHmin

(ZNTZLZVZRZWZX)

with σHLim is the allowable contact stress number and SHmin is the minimum required safety factor
for surface durability. Factors ZNT, ZL, ZV, ZR ,ZW, ZX are related to lubrication conditions,
surface roughness and hardened conditions and size of the tooth.

So to respect the requirement specification of a given power to be transmitted, the gear pair
must respect :

σF(1,2) ≤ σFP

σH(1,2) ≤ σHP

Considering that σF is proportional to Ft and σH is proportional to
√
Ft for a given gear pair, we

can rewrite these 2 conditions with Pt the power to be transmitted :
σFP
σF(1,2)

Pt ≥ Pt
(

σHP
σH(1,2)

)2
Pt ≥ Pt

Usually, some factors are slightly for the pinion and the wheel so transmitted power is different for
the pinion (1) and the wheel (2). We will keep the minimal value.

So finally, for the stage number s on the reducer, the following conditions must be fulfilled :

min
(

σFPs
σF(1,2)s

)
Pt ≥ Pt (6)

min
(

σHPs
σH(1,2)s

)2
Pt ≥ Pt (7)

Following condition must be respected :
– For the transverse contact ratio : εα ≥ 1.3.
– For the minimal face width : b ≥ 0.1d2
– For the maximal face width : b ≤ d1

In order to use pinion with at least Zmin = 14 teeth, the value of the profile shift coefficient
must be adjusted to avoid gear meshing with the relation :

Zmin ≥
2(1− x1)

sinα2
n
⇒ x1 ≥ 1− Zmin

sinα2
n

2 ⇒ x1 ≥ 0.1812
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Constraint related to shaft’s reducer In each of the 4 shafts of the mechanism, the transmitted
torque produce shear stress. This stress must not exceed the allowable shear of the material of shafts
τmax. We assume here that all the shaft are using the same steel and that all shaft can be consider
as beam. So, with ra,0, the radius of input shaft, and ra,s, s = 1 . . . 3 the radius of output shaft of
the three stages, we have :

τs = 2Cs
πra,s3 ≤ τmax for s = 1 . . . 3 (8)

Cs is the output torque of each stage and Ce the torque on the input shaft, where Zi,1 and Zi,2 are
the number of teeth for pinion (1) and wheel (2) of stage number i:

Cs = Ce

i=s∏

i=1

Zi,2
Zi,1

For the input shaft we have :
τ0 = 2Ce

πra,03 ≤ τmax (9)

The total rotation angle between the initial section of the input shaft and the final section of the
output shaft is :

θ = 2Cela,0
Gπra,03 +

s=3∑

s=1

2Csla,s
Gπra,s3

For some reasons (dynamic behaviour of the reducer, ...) this total rotation angle should be limited
by a maximal value θmax.

θ ≤ θmax (10)
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1 Background

In recent years, machine learning (ML) has proved super-human capabilities in speech recogni-
tion, language translations and image classifications, to name a few [1]. Lately, more and more
combinatorial optimization (CO) problems have been studied under the lens of machine learning
[16]. Among CO problems, NP-hard problems are particularly interesting because solving them to
optimality (via the so-called exact methods) takes exponential time. Smart decisions during the
branch-and-bound process (or other exact methods) could reduce the computation time drastically
([4],[5],[6]). Nonetheless, even a state-of-the-art fine-tuned exact method could take too much time
to output the optimal solution; for this reason, sometimes we need to resort to heuristics. Heuristics
have the disadvantage to not return a guaranteed optimal solution (or to return it in infinite time),
but they have the critical advantage to be extremely fast with respect to exact methods. Even in
the field of heuristics, machine learning has brought new insights and novel ideas ([2],[3]).

When ML is used to quickly generate a single solution from an input instance it is often
called an ‘end-to-end’ method. Among all the machine learning methods to solve for combinatorial
problems end-to-end, deep reinforcement learning (RL) seems to be the most promising one so
far [7]. The general idea behind reinforcement learning (for more details see [8]) is that an agent
interacts with an environment in order to learn a policy according to which it will behave during
the evaluation phase. At each time step (at least in the discrete case), an agent observes the state
of the environment and performs an action. Based on the internal dynamics of the environment
and the action of the agent, the environment will change state and the agent will observe a reward.
The goal of the agent is to maximize its reward. Usually, the agent is modelled by a neural network
(NN) which extrapolates features from a state in order to associate the state with a set of values
(one value for each possible action); then, the evaluation policy is to choose the action which will
lead to states with the highest values.

For large or even medium sized instances of many classes of CO problems, we can obtain good
solutions in reasonable time only with heuristics. This is the case for most vehicle routing problems
(VRPs). In general, VRPs are a class of problems where a set of vehicles has to visit a set of clients
while minimizing the total travelled distance and satisfying capacity, timing and flow constraints.
Among VRPs, we want to talk in more details about the travelling salesman problem (TPS), the
capacitated vehicle routing problem (CVRP) and the pick-up and delivery problem (PDP).

The TSP is probably the most studied problem in CO [9] and it was among the first ones to
be tackled via RL [10]. In the TSP, a single vehicle has to visit a set of clients on a fully connected
Euclidean graph, where capacity and time constraints are never binding. End-to-end methods can
quickly (after training) return high quality solutions for the TSP on medium sized graphs, but
they cannot yet generalise to large graphs [11].

The CVRP is an interesting and practical problem where a set of homogeneous vehicles, all
parked in a depot, has to visit a set of clients, each of which has a demand to be delivered. Clients
may have time windows and the visits to the clients gradually consume the capacity of the vehicles.
To the best of our knowledge, the state-of-the-art for solving the CVRP via RL is detailed in [12].
Their implementation is based on an actor-critic (AC) network with convolutional and recurring
neural networks (CNN and RNN). An AC is a method where a neural network is used to determine
the value of a state (critic) and another neural network is used to determine which action to take
(actor). CNNs are a type of NN able to extrapolate local features based on the values and position
of the elements of a state and RNNs are a type of NN developed to process sequences of inputs.
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Finally, the PDP is a VRP problem where on a graph (G = (N,A)) a set of homogeneous
vehicles (V ) has to visit a set of clients (C) subject to time windows and capacity constraints. The
main novelty being that, in the PDP, clients are determined by pairs of node; one pick-up node
and one delivery. The same vehicle has to visit (in order) both the pick-up and the delivery node
which both have time windows. To the best of our knowledge, there are yet no RL algorithms to
solve the PDP.

These recent advancements in the field of ML for CO has shown that end-to-end methods can be
(after training) as performing and fast as state-of-the-art heuristics; which raises the fundamental
question: will ML based methods outperform conventional heuristics in the future?

Our opinion is that ML based methods will indeed outperform conventional heuristic and this
research focuses its effort in proposing a quite general method for solving the PDP. As said by
[12] while talking about possible extension of their algorithm from the CVRP to more complex
VRPs: ‘..designing such a scheme might be a challenging task, possibly harder than solving the
optimization problem itself’. We decided to investigate the design of such a novel scheme and we
chose the PDP because it is one of the most rich and constrained VRP. Our hope is that, if our
proposed approach works on the PDP, it will most likely work on many other VRPs.

2 Approach

Most end-to-end approaches for CO problems involve CNNs, RNNs or a combination of the two.
We conjecture that, for the PDP, these are not needed or, equivalently, the effectiveness of an
algorithm does not lie within those structures.

Although CNNs are an excellent tool to extract local features [13], they are useful when there
is a clear ordered object structure (for instances, pixels in an image). In the PDP, and in most CO
problems, there is no clear ordered object structure. Even if we introduce an arbitrary order in the
sets of vehicles and customers, the problem would be permutation invariant. In fact, a permutation
of the elements of either set would not change the optimal solution of the problem or its structure.
In theory, local features could be extracted from the graph itself (where a structure is indeed
present), but this is not a standard practice and it is not clear how graph features would propagate
into solutions features.

The idea behind RNNs is to sequentially embed a sequence of inputs, where the output of
an input depends also on the sequence of inputs before it. This is very useful when there is an
underlying sequentiality of the problem as, for instance, in a written text [14]. It is possible to argue
that in end-to-end problems there is often sequentiality. Indeed, the most commonly used method
relies on choosing one action at a time, update the state, and repeat until the end of the task.
Nevertheless, the majority of problems satisfy the Markov property; i.e. the distribution of future
states depends only on the current state and not on past ones. For example, given a vehicle at any
time instant, to choose the next node to visit, it does not matter the order in which other clients
were visited previously. What matters is the vehicles current position, its remaining capacity, the
unvisited clients and the set of clients required to be visited (consequences of pick-ups), all of which
can be modelled into the current state. This memoryless property makes the problem Markovian;
hence, we conjecture that RNNs would not increase the performance of our algorithm.

Thus, given the Markovian property of our problem and the absence of an underlying ordered
structure, we decide to base our implementation on a variation of the transformer [15] without
relying on CNNs or RNNs as the previous methods. The transformer, which in turn is based on
the self-attention mechanism, has the property of being permutation invariant and is not sensitive
to the input dimension (except for the softmax operation). The transformer is a fundamental object
in the state-of-the-art language translation and has proven its effectiveness in many other fields.
The transformer is composed by a series of multi-head attention mechanisms in a layer structure.
In ML, attention is a powerful mechanism that allows to look at the input and generate a context
vector based on how much each part of the input is relevant for the output. Doing so, the algorithm
learns to isolate from a set of input features the one(s) relevant for that particular state.

We plan to implement and test a double Q-learning (DQN) algorithm [17] able to solve the PDP
in a very short time (after training), where the deep layers are mostly based on the transformer
architecture. We hypothesise that this algorithm will be competitive with state-of-the-art ones
both for time and solution quality.
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3 Conclusion

More and more CO problems are being tackled via ML techniques, and RL seems to be the most
effective end-to-end method. We want to give our contribution to this field by solving the PDP,
which is a complex NP-hard problem. Due to the PDP richness, we hope that a method for the
PDP could quite easily generalized to other VRPs (where the Markovian property holds). Given
the Markov property of the problem and the absence of an underline ordered object structure, our
implementation will be based on a DQN framework with a transformer-based NN as the main deep
component.
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Abstract. Boolean Networks (BNs) are a simple formalism used to
study complex biological systems when the prediction of exact reaction
times is not of interest. They play a key role to understand the dynamics
of the studied systems and to predict their disruption in case of complex
human diseases. BNs are generally built from experimental data and
knowledge from the literature, either manually or with the aid of programs.
The automatic synthesis of BNs is still a challenge for which several
approaches have been proposed. In this paper, we propose ASKeD-BN,
a new approach based on Answer-Set Programming to synthesise BNs
constrained in their structure and dynamics. By applying our method on
several well-known biological systems, we provide empirical evidence that
our approach can construct BNs in line with the provided constraints. We
compare our approach with three existing methods (REVEAL, Best-Fit
and caspo-TS) and show that our approach synthesises a small number of
BNs which are covering a good proportion of the dynamical constraints,
and that the variance of this coverage is low.

Keywords: Boolean Network Synthesis · Answer-Set Programming.

1 Introduction

Models of biological systems are important to understand the underlying pro-
cesses in living organisms [10]. Once built, the model is an artefact that can be
used to study a system through simulation. Several formalisms have been pro-
posed to model biological systems [11], and they all have their own strengths and
weaknesses. The choice of a formalism is guided by the question at hand: the best
formalism is the most abstract formalism which can answer the question [3]. For
example, differential equations are a formalism suited to run detailed dynamic
simulations because they contain information on kinetic parameters. However,
they do not scale to large systems.

Boolean Networks (BNs) are a formalism used to study complex biological
systems where prediction of exact reaction times is not of interest [1]. They
play a key role to understand the dynamics of biological systems and predict
their disruption in case of complex human diseases [2]. The key notions of BNs
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are presented in Section 2.2. BNs are built from available knowledge about the
structure of the system and data about the behaviour of its components (Sec-
tion 2.3). The knowledge and data are used as constraints for the BN synthesis.
The automatic synthesis of BNs from biological data and knowledge is still a
challenge for which several methods have been developed. In Section 3, we review
three state-of-the-art approaches: REVEAL, Best-Fit and caspo-TS.

In Section 4, we present ASKeD-BN, a new automatic approach for the synthesis
of BNs constrained in their structure and dynamics. We rely on the Answer-Set
Programming framework to generate non-redundant BNs fulfilling the given con-
straints. We compare the performances of our approach with REVEAL, Best-Fit
and caspo-TS on several biological systems with experimental and synthetic
data (Section 5). Finally, we discuss the results and conclude.

2 Boolean Networks and their Synthesis

2.1 Prior Knowledge Network (PKN)

Part of the knowledge one has about a biological system is the list of components
(genes, proteins. . . ) constituting the system and how these components influence
each other. Influences have a polarity: activation (polarity “+”) or inhibition
(polarity “−”). The parents of a component X are the components which
influence X. A Prior Knowledge Network (PKN) encodes this knowledge.
The nodes of the network are the components of the system. The edges are
directed from parent components to child components and labelled “+” or “−”
according to the polarity of the influences. Fig. 1 shows an example PKN for a
system of three components. In this PKN, C and A are the parents of C.

– “A activates C”
– “B interacts with itself”
– “C activates A”
– “C interacts with B”
– “C inhibits itself”

A

B

C

+

±

±
+

-

Fig. 1. PKN example of a three-components system.

2.2 Boolean Networks (BNs)

BNs were introduced by Kauffman [7] to model genetic regulatory networks.
Concepts used in BNs are described in a recent review [17]. Two examples of
BNs are given in Fig. 2.

The components of a BN are the components of the considered biological
system. For example, a BN modelling a system of three proteins called A, B
and C has three components named A, B and C. A configuration of a BN
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B1 =





fA := C

fB := B ∧ ¬C

fC := ¬C

(a) Transition functions of B1

B2 =





fA := 0

fB := (B ∧ ¬C) ∨ (¬B ∧ C)

fC := A

(b) Transition functions of B2

A

B

C

+

+

-

-

(c) Interaction graph of B1

A

B

C

±

±
+

(d) Interaction graph of B2

(e) Synchronous (left) and asynchronous
(right) state transition graphs of B1

(f) Synchronous (left) and asynchronous
(right) state transition graphs of B2

Fig. 2. The transition functions, derived interaction graph, and state transition graphs
according to synchronous and asynchronous update schemes of two BNs.

is a vector which associates a Boolean value (1/active or 0/inactive) to each
component of the BN. A BN with n components has 2n possible configurations.
For example, the 23 = 8 possible configurations of a BN with 3 components are:
000, 001, 010, 011, 100, 101, 110 and 111.

Each component has an associated transition function (Bn → B) which
maps the configurations of the BN to the next value of the component. The
transition functions are usually written as Boolean expressions. In this paper,
these expressions are in Disjunctive Normal Form (DNF), i.e., disjunctions of
conjunctions. The conjunctions are satisfiable, which means they do not contain
a literal and its contrary. The operators ¬, ∧, ∨ represent respectively negation,
conjunction and disjunction. Figs. 2a and 2b show examples of transition func-
tions. The transition function associated with B in B2 states that the value of B
will be 1 if either the value of B or of C was 1 in the previous configuration.

Like for the PKN, the structure of a BN is defined in terms of parent-child
relationships between the components. A component P which appears in the
transition function of a component X is called a parent of X. If the parent
is negated in the DNF, we say that the polarity of the influence of P on X is
negative. Conversely, if the parent is not negated, the polarity is positive. The
Interaction Graph (IG) summarises these relationships as a directed graph.
The directed edge P→ X is labelled with “+” or “−” depending on the polarity
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of the influence P has on X. For example, the IG of B1 contains B
+−→ B and

C
−−→ B because B appears positively and C appears negatively in the transition

function associated with B. As we will see in Section 2.3, the PKN will act as a
hard constraint on the IG of the BNs we want to synthesise.

The BN dynamics is obtained by applying iteratively the transition func-
tions starting from each possible configuration. The order of application of
the transition functions is defined by the update scheme. The synchronous,
asynchronous and mixed update schemes are the most commonly used. In
the synchronous update scheme, the transition functions are applied all at once,
while in the asynchronous scheme, they are applied one by one. In the mixed
update scheme, any number of components can be updated at each step. Thus,
the update possibilities from both the synchronous and asynchronous update
schemes are included in this third update scheme.

The State Transition Graph (STG) is a directed graph whose nodes are
the 2n possible configurations of the BN. In this graph, there is a directed
edge from c to c′ if c′ is the result of applying to c the transition function(s)
according to the chosen update scheme. Fig. 2 shows examples of synchronous and
asynchronous STGs. Later, we discuss how dynamical constraints are enforced in
the STGs, and how we use the mixed STG to quantify how well the synthesised
BNs match the dynamical constraints.

2.3 Synthesis of BNs from PKN and Multivariate TS

In general, BNs that model biological systems have to satisfy two categories of
constraints. On one hand, the BNs have to comply with a PKN. The PKN
constrains the structure of the synthesised BNs by defining which components
can appear as variables in each transition function and the polarity of those
variables. Hence, a component P is allowed to appear in the transition function
of a component X with a polarity s if the PKN contains an edge P

s−→ X. Formally,
a BN is compatible with a PKN if its IG is a spanning subgraph of the PKN.
In other words, the IG of a BN compatible with a given PKN is formed from
the vertices and a subset of the edges of the PKN. For example, the two BNs
presented in Figs. 2a and 2b are compatible with the PKN given in Fig. 1. On
the contrary, a BN containing the transition function fA := B is not, since the

IG of this BN contains the edge B
+−→ A, which is not in the PKN. A BN

having fA := ¬C is also incompatible: despite C being a possible parent of A,
the negative polarity is not allowed, since the PKN does not contain the edge

C
−−→ A.

On the other hand, the synthesised BNs are expected to reproduce as well as
possible the sequence of configurations extracted from an observed continuous
multivariate Time Series (TS) of the concentration of the components over time.
An example of a multivariate TS is given in Table 1. Various strategies for
extracting the sequence of configurations and fitting the transition functions
to the observations have been proposed in the literature, but they all roughly
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result in enforcing the STG of the synthesised BNs to contain specific edges,
corresponding to specific transitions of configuration.

We focus here on the automatic synthesis of BNs that respect the structure of a
given PKN and are designed to reproduce as well as possible the observations from
one given multivariate TS. For each synthesised BN, this ability of reproducing
the observations is measured in terms of coverage proportion, i.e., the proportion
of transitions observed in the multivariate TS that are retrieved by the BN
when computing its STG according to the mixed update scheme. Ideally, an
identification method would only return BNs with a perfect coverage proportion
(i.e., 1).

Table 1. Multivariate TS of the three-components system given as example. The
continuous concentrations of the components have been sampled for 20 time steps. Here,
all the observations range from 0 to 100. The value resulting from the binarisation
with a threshold of 50 is indicated by the colour of the cells: green if the result of the
binarisation is 1 and red if 0. The resulting binary vectors are the configurations. Here
there are four configurations (010, 011, 100 and 001) lasting respectively 4, 3, 3 and 10
time steps. Vertical bars indicate a change of configuration.

configurations sequence:
010 → 011 → 100 → 001

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 0 3 7 13 20 30 49 61 100 63 36 25 2 3 1 1 3 0 0 0
B 100 86 64 57 54 53 51 49 45 37 33 28 22 19 14 12 9 5 2 0
C 0 27 36 42 60 75 54 44 38 48 60 72 88 90 100 100 100 100 100 100

3 State-of-the-Art Methods of BN Synthesis from PKN
and TS

Several studies have been dedicated to the automatic synthesis of BNs from
PKNs and observed multivariate TS. Here, we review three main state-of-the-art
approaches: REVEAL [12], Best-Fit [9] and caspo-TS [16].

For each component of the system, REVEAL tests all the possible combinations
of its parent nodes, and attempts to find the functions that explain all the obser-
vations of the binarised TS. For example with the multivariate TS from Table 1:
REVEAL tries to explain 010→ 010→ 010→ 010→ 011→ 011→ 011→ 100→
. . . Hence, it cannot handle inconsistencies—such as a configuration being as-

sociated to distinct successor configurations. Such inconsistencies are frequent
when sampling concentrations along time, because the processes involved can
have different speeds. In the example (Table 1), observing both 010→ 010 and
010→ 011 is an inconsistency which causes the failure of REVEAL. Furthermore,
REVEAL cannot use the influence signs from the PKN, and since it uses an already
binarised TS, it is possibly biased by the chosen binarisation.
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Like REVEAL, Best-Fit tests every possible combination of the parent nodes
of each component. It cannot use the influence signs and works on the binarised
TS as well. Unlike REVEAL it can manage inconsistencies from the TS since it
returns the functions that explain the maximal number of time steps. In Table 1,
since 010→ 010 is observed three times and 010→ 011 only once, Best-Fit will
focus on explaining the former instead of the latter.

caspo-TS was designed to manage several multivariate TS, corresponding to
several experiments where the system is perturbed (forced activation or inhibition
of some components), and where some measurements are potentially missing.
Unlike REVEAL and Best-Fit, caspo-TS takes the influence signs into account,
but it can only generate locally monotonous BNs, i.e., BNs for which a parent of
a component cannot be both its activator and its inhibitor. B2 is an example of
a BN caspo-TS cannot generate because it is not locally monotonic. Indeed, in
fB, the components B and C act both as activator and inhibitor of B. caspo-TS
works as the following: first, it derives the set of BNs that are compatible with
the given PKN and an over-approximation of the dynamics of the TS, using
the so-called most-permissive semantics [4]. Because of this over-approximation,
the result can contain many false positive BNs, i.e., BNs optimising the cost
function used under the hood of caspo-TS, while their asynchronous dynamics is
not able to reproduce the configurations sequence of the multivariate TS. These
false positive BNs are subsequently ruled out using exact model checking. This
filtering is PSPACE-hard, but thanks to the first step, a large set of BNs has
already been excluded.

4 Our Approach: ASKeD-BN

4.1 Details of the Approach

We propose an approach for the Automatic Synthesis of Boolean Networks from
Knowledge and Data (ASKeD-BN). It computes a non-redundant set of BNs
complying with a given PKN and one observed multivariate TS. Unlike REVEAL

and Best-Fit, ASKeD-BN is capable of using the influence signs provided in
the given Prior Knowledge Network (PKN) and the raw values of the input
multivariate Time-Series (TS). Unlike caspo-TS, ASKeD-BN directly fits the
behaviour of each component with the TS. Also, it is not limited to the synthesis
of locally-monotonous BNs.

For each component of the studied system, our approach searches among all
possible transition functions. All the transition functions that do not respect the
given PKN are ruled out. Then, every remaining candidate is evaluated on the
basis of both their simplicity and their ability to reproduce the given observations.
The candidate transition functions for the component X might not be able to
explain all the binary state transitions happening at time t → t′. The set of
unexplained t′ is denoted U . Every time step t′ in U is associated with a measure
stating “how far” the continuous value X′t is from the binarisation threshold θ:
|θ −X′t|. These spotted errors are then averaged on the T time steps of the TS
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through the Mean Absolute Error (MAE):

MAEX =

∑
t′∈U |θ −Xt′ |

T

Among the candidates having the smallest MAE, we select the ones that has
the smallest number of influences. Finally, we create all the possible BNs by
generating all the combinations of the selected functions.

We implemented our approach using Python and the Answer-Set Program-
ming framework (ASP) with the system clingo [6]. ASP is a declarative pro-
gramming language oriented towards difficult (NP-hard) search problems. The
possible solutions of a problem are described with the constraints they must ful-
fill. These constraints are written as a logic program. The ASP solver is tasked
with finding the solutions of the program. To do so, it uses a Conflict-Driven
Clause Learning (CDCL) algorithm inspired by SAT solvers. In our case, the
CDCL algorithm avoids the evaluation of all the possible transition functions
by learning from conflicts: whenever it finds that a candidate is in conflict with
the constraints, it creates a new constraint that explains the conflict. These
learned constraints subsequently eliminate other conflicting candidates, pruning
the search space. Thanks to these pruning heuristics, our approach is efficient.
ASP and in particular clingo, have already been used in similar contexts including
caspo-TS.

4.2 Illustration on the Toy Example

Let us illustrate our approach on the toy example consisting of the PKN in Fig. 1
and the multivariate TS in Table 1.

When no PKN is available, the default PKN is a complete graph assuming
that each component can inhibit / activate all the others (including itself). In
this setup, a component with n parents have 22

n

possible transition functions.
In the toy example, each component can be explained by 22

3

= 256 distinct func-
tions, which correspond to 16 777 216 potential BNs (formed by all the possible
combinations of all the candidates of each component). Thanks to the available
PKN, the number of candidate functions for each components A, B and C falls
respectively to 3, 16 and 6. Besides the CDCL pruning, ASKeD-BN virtually
evaluates all the candidates, but for illustration purpose we will focus on the two
that are present in B1 and B2 (Figs. 2a and 2b).

For the component A, the candidate fA := 0 does not contain any literal and
it cannot explain the transition of configuration for A at t7 → t8. Hence, the set
U of unexplained time steps is {t8}. The concentration of A at time t8 is 61, and
the candidate’s MAE is thus |50−61|/20 = 0.55. The candidate fA := C involves
one literal (which is C). This candidate can explain all transitions. Hence, U = ∅
and the MAE associated with this candidate is 0. Despite requiring more literals,
fA := C is a better candidate than fA := 0 because its MAE is smaller. The
comparisons of the candidates proposed for the components B and C in B1 and
B2 are summarised in Table 2.
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For the toy example, our approach returns B1 as the only solution. It retrieves
the 3 configuration transitions extracted from the binarised TS, thus its coverage
proportion is 1. REVEAL does not find any BN, and the BN returned by Best-Fit

does not comply with the PKN. caspo-TS finds 5 BNs with coverage proportions
ranging from 0.33 to 1 (standard deviation of 0.25).

Table 2. Number of influences and MAE for the candidate functions in B1 (Fig. 2a)
and B2 (Fig. 2b). A checkmark indicates the candidate selected by our approach, and
the best for each criterion: (1) minimal MAE and (2) minimal number of influences.

candidate fB := B ∧ ¬C X fB := (B ∧ ¬C) ∨ (¬B ∧ C) fC := ¬C X fC := A

MAE (U) 0 (∅) X 0 (∅) X 0 (∅) X 0.5 ({t5})
# influences 2 X 4 1 X 1 X

5 Datasets and Procedure for the Comparative
Evaluation

5.1 Datasets

In order to compare our approach with REVEAL, Best-Fit and caspo-TS, we
used eight biological systems. For two of these systems (yeast ’s cell cycle and
A. thaliana’s circadian clock), their PKN and experimental multivariate TS are
taken from [13] and [18] respectively. These two systems are summarised in Table
3. They respectively involve 4 and 5 components.

Table 3. Summary of two biological systems and their corresponding datasets

System Genes PKN TS Source

yeast
(cell cycle)

Fkh2, Swi5,
Sic1 & Clb1

Sic1 does not influence
itself nor Fkh2

14 time steps
6 transitions

[18]

A. thaliana
(circadian clock)

LHY, PRR7,
TOC1, X & Y

LHYX

TOC1 Y

PRR7
+

+
-+

--
+- 50 time steps

11 transitions
[13]

For the six other systems3, we conducted our experiments on multivariate
TS that we simulated from existing BNs taken from the repository of example
BNs of the package PyBoolNet [8]. For these systems, the number of components

3 raf, randomnet n7k3, xiao wnt5a, arellano rootstem, davidich yeast and
faure cellcycle
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ranges from 3 to 10. For each system, the used PKN is the IG of the associated
BN. As for the generation of the multivariate TS, three parameters are taken
into consideration: the update scheme (in {synchronous, asynchronous}), the
maximum number of introduced repetitions of each configuration (in {1, 4}) and
the standard deviation of the added noise (in {0, 0.1}). For each setting of
these parameters, we follow a procedure similar to what is implemented in the
generateTimeSeries function of the R package BoolNet [15]:

1. choose randomly a configuration of the considered BN,
2. on this configuration, apply the update function(s) 20 times w.r.t the chosen

update scheme,
3. duplicate randomly each configuration in the obtained sequence

(added in contrast to generateTimeSeries),
4. add a Gaussian noise with a standard deviation of N.

For a given setting of the 3 parameters and a given system, we run the
procedure 7 times (with different random seeds). In the following, we denote
ARN the setting with the Asynchronous update scheme, Repetitions (of 4) and
Noise (of 0.1). We believe that this setting allows us to obtain multivariate TS
which are quite close to real TS.

We illustrate here how to generate a synthetic multivariate TS in the ARN
setting for B1 (Fig. 2a). We would start from a random configuration. Let
it be 010. Then we apply 20 times the transition functions of B1 with the
asynchronous update scheme. This process is not deterministic as any path
from Fig. 2e (right) starting from 010 and of length 20 is valid. Let’s say we
obtain a path starting with 010→ 011→ 010→ 011→ 111→ 101→ . . . Then
we add a random number of duplications (in bold). The beginning of the sequence
could for example look like 010 → 011 → 011→ 010 → 011 → 011→ 011→
111→ 101 → 101→ 101→ 101→ . . . Finally, we add a random Gaussian noise
with a standard deviation of 0.1. The synthetic multivariate TS could now start
with (0.02; 0.92;−0.16)→ (0.04; 0.8; 0.7)→ (−0.05; 1.06; 0.7)→ . . .

5.2 Details on the Evaluation Procedure

For REVEAL and Best-Fit we use the implementation from the R package
BoolNet [15]. caspo-TS is ran with the option mincard, that asks for BNs
with functions minimising the number of influences. Note that this is also what
our method optimises.

In the following, we define an experiment as a BN identification method
applied on a system with one multivariate TS. The unicity of the multivariate
TS makes the problem under-specified and allows us to evaluate the performances
of the different approaches in this context.

REVEAL, Best-Fit and our approach need the binarised multivariate TS in
their inputs. We use a simple form of binarisation: the binarisation threshold
is defined as min + (max−min)/2. All values from the multivariate TS greater
or equal to the threshold are binarised to 1, and to 0 otherwise. For the two
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systems with real TS, the theoretic range of the values is not know in advance,
so the binarisation threshold is determined component-wise: the components
are binarised taking into account their observed minimum and maximum. For
the six systems with the synthetic multivariate TS, we know a priori that the
values of all the components are between 0 and 1 (± the noise). In case of noisy
data, the fluctuations of a constant component are interpreted as state changes
when using a threshold computed component-wise. However, the identification
methods are not capable to detect these spurious transitions in the binarised TS.
Hence, we compute the binarisation threshold globally, on all the observations
of all the components.

In order to have a fair comparison of the methods, and since caspo-TS is
making the binarisation itself and is not aware that the theoretical minimum and
maximum of the components are 0 and 1 (± the noise), we correct a posteriori
the transition functions it returned. The value of the constant is set to the
binarised value that is the most present in the binarised TS of the component
concerned. Also, since caspo-TS does not return a function for the components
without parents in the PKN nor for the components that it founds constant for
all the TS (in the case where no noise is involved), we use the same technique to
set the transition functions to their correct values. We also added a step to filter
out BNs returned by REVEAL and Best-Fit which do not respect the polarities
given in the PKN.

For all the BNs returned by the four methods (and after the PKN-based
filtering for REVEAL and Best-Fit), we use PyBoolNet [8] to compute the STG
of each retrieved BN according to the mixed update scheme. Finally, we evaluate
the results of each experience according to three criteria:
– the number of BNs returned;
– the median of the coverage ratios: the proportion of configuration transitions

extracted from the input TS that are present in the mixed STG;
– the standard deviation of the coverage ratios.

All data and programs needed to reproduce the presented results are accessible
at https://gitlab.inria.fr/avaginay/OLA2021.

6 Results

6.1 Results on Systems with Real PKN and Experimental
Multivariate TS

Yeast (Fig. 3 left). For this system caspo-TS find 61 BNs while Best-Fit and
ASKeD-BN both find 16 BNs. As for REVEAL, due to inconsistencies in the TS, it
does not return any BN. Concerning the coverage, on the 7 transitions observed
in the TS, the BNs synthesised by Best-Fit recover 4 and the BNs synthesised by
ASKeD-BN recover five. The best coverage ratio (6 retrieved transitions over 7) is
obtained for 8 BNs synthesised by caspo-TS (among the total of 61). Nevertheless,
as the box plot shows, the BNs synthesised by caspo-TS present a large variance
in their coverage.
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A. thaliana (Fig. 3 right). For this system, REVEAL returns no BN. The only BN
returned by Best-Fit has all the components set to 1 and recovers 5 transitions
over the 10 observed. ASKeD-BN also returns a single BN with a perfect coverage
since the BN recovers all the 10 transitions. As for the 5 BNs synthesised by
caspo-TS, we can make the same observation as before: they present a variability
in their coverage. The best coverage obtained by caspo-TS are from 2 different
BNs including the one synthesised by ASKeD-BN.

Fig. 3. Number of transitions retrieved by the BNs synthesised using the different
methods on the systems yeast (left) and A. thaliana (right). The blue dashed line
indicates the number of transitions that were observed in the multivariate TS.

To sum up, the results on these two real examples show that:
– REVEAL constantly fails to return any BN. At the opposite, caspo-TS returns

more BNs than the other methods;
– the coverage of the BNs returned by both our approach and caspo-TS are

better than for Best-Fit;
– caspo-TS presents worse variability in the coverage ratio of its BNs compared

to our approach.

6.2 Results on Systems with Generated Multivariate TS

Number of Synthesised BNs: The total number of BNs returned on the synthetic
datasets and the number of times the identification methods failed returning any
BNs are reported in Table 4. The table shows that a large proportion of BNs
generated by REVEAL and Best-Fit were not complying with the influence signs
from the input PKN. The following reported results do not take into account these
non-compliant BNs. REVEAL is the method which returns the smallest number
of BNs, in particular in the ARN setting. This is due to the inconsistencies in
the TS, which are frequent in the ARN setting (as in real TS). On the opposite,
caspo-TS is the method that returned the largest number of BNs. Moreover,
when considering all experiments, there are 18 experiments for which caspo-TS
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generated more than 100 BNs. In these cases, we stopped the enumeration and
analysed the 100 first BNs caspo-TS returned. Despite this limit, caspo-TS

returned between 5 and 7 times more BNs than our method.

Table 4. Number of experiments for which each method failed to return any BN,
number of BNs returned over all 336 experiments with synthetic TS and number of
BNs returned over the 42 experiments with the ARN setting. The labels“before” and
“after” refers to the filtering step which rules out the BNs not respecting the signs of
the given PKN (see Section 5.2).

measure REVEAL Best-Fit
caspo-TS ASKeD-BN

(setting) before after before after

# failing experiments (all) 230 240 0 64 20 0
# BNs returned (all) 100 677 500 406 100 678 198 724 8481 1210
# BNs returned (ARN) 3 3 51 35 720 85

From here on, we focus on the results of the experiments corresponding to the
ARN setting (Asynchronous update scheme, random Repetition of configurations,
and Noise addition) after having remove the BNs from REVEAL and Best-Fit

which does not respect the given PKN.

Coverage ratio: To assess the coverage ratio criterion, instead of plotting the
boxplots for the 42 experiments of this setting (6 systems times 7 replicates), we
summarised them in Fig. 4. In the scatter plot, each experiment is represented by
a point whose coordinates are the coverage ratio median of the synthesised BNs
and the associated standard deviation (std). The more top-right a point is, the
better the corresponding identification method is (i.e., it produces BNs with high
coverage ratio and low std). We can see that for the few experiments for which
REVEAL was able to return BNs, the median coverage is actually excellent. The
median coverage of the BNs returned by Best-Fit is almost uniform: Best-Fit
lacks regularity in finding BNs with good coverage. But the high pick around
0 on the plot of std distribution shows that for a given experiment, the BNs
returned by Best-Fit have similar coverage rates. caspo-TS and our approach
have a very similar distribution of median coverage. They are both good at
finding BNs with very good coverage. But here again, for a given experiment,
the BNs synthesised by caspo-TS present a bigger variation of their coverage
proportions than the ones synthesised by our approach.

7 Conclusion and Perspectives

We presented ASKeD-BN, a novel method to create BNs from a PKN and a
multivariate TS. The results on 8 biological systems showed that our approach
has the best trade-off on the evaluation criteria: it returns a small set of BNs
with a high coverage median and low variance. Our results actually confirm
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Fig. 4. On the scatter plot, each point represents an experiment in the ARN condition
for which a given method potentially returned several BNs with different coverage
ratios. The horizontal coordinate of the point is the median of these ratios. The
vertical coordinate is their standard deviation (std). For a better visualisation, the
coordinates have been jittered with a variance of 0.1 on both axes. The curves on the
top (resp. on the left) of the scatter plot are the probability densities of the median
(resp. the std) of the points in the scatter plots. The densities have been estimated from
the non-jittered coordinates of the points with the Gaussian kernel density estimation
method. The smoothing parameter of the estimator was determined automatically
(with the Scott method). The areas under all these curves are 1, and the picks show
where the points are the most concentrated.

that although caspo-TS finds good BNs, too many sub-optimal BNs are also
retrieved. Indeed a new version of caspo-TS was recently proposed to tackle this
problem [5].

We now present two perspectives to improve our approach and the study.
First of all, real datasets may contain outlier measurements which could mislead
the computation procedure of the binarisation thresholds we used in this paper.
It would be interesting to see how such cases impact the performances of the
identification methods and to propose a better binarisation procedure with prior
outliers detection for instance. Second, contrarily to REVEAL, Best-Fit and
caspo-TS, our approach does not handle multiple multivariate TS. However,
biologists often have several multivariate TS generated with perturbations forcing
some components to stay either active or inactive. However, exploiting such
supplementary data gives more information about the behaviour of the studied
system in specific conditions (e.g., pathological states). This knowledge allows
to constrain even more the space of solutions.
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Finally, we are currently working on an automatic pipeline for BN synthesis
from a curated mathematical model repository, namely BioModels [14]. This
requires (i) automatic extraction of the PKN from the model structure encoded
in the SBML4 file format and (ii) generation of a multivariate TS by simulation
of these models.

Acknowledgements We thank Julie Lao and Hans-Jörg Schurr for their valuable
comments and suggestions.
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“Concepts in Boolean Network Modeling: What Do They All Mean?” In:
Computational and Structural Biotechnology Journal 18 (2020), pp. 571–
582. doi: 10.1016/j.csbj.2020.03.001.

[18] P. T. Spellman et al. “Comprehensive Identification of Cell Cycle-Regulated
Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridiza-
tion”. In: Molecular Biology of the Cell 9.12 (1998), pp. 3273–3297. doi:
10.1091/mbc.9.12.3273.

153



Reinforcement Learning-Based Adaptive
Operator Selection

Rafet Durgut1[0000−1111−2222−3333] and Mehmet E. Aydin2[0000−0002−4890−5648]

1 Karabuk University, Engineering Faculty, Computer Engineering Dept., Turkey
rafetdurgut@karabuk.edu.tr

2 UWE Bristol, Dept. of Computer Science and Creative Technologies, Bristol, UK
mehmet.aydin@uwe.ac.uk

Abstract. Metaheuristic and swarm intelligence approaches require de-
vising optimisation algorithms with operators to let produce neighbour-
ing solutions to conduct a move. The efficiency of algorithms using sin-
gle operator remains recessive in comparison with those with multiple
operators. However, use of multiple operators require a selection mecha-
nism, which may not be always as productive as expected; therefore an
adaptive selection scheme is always needed. In this study, an experience-
based, reinforcement learning algorithm has been used to build an adap-
tive selection scheme implemented to work with a binary artificial bee
colony algorithm in which the selection mechanism learns when and sub-
ject to which circumstances an operator can help produce better and
worse neighbours. The implementations have been tested with commonly
used benchmarks of uncapacitated facility location problem. The results
demonstrates that the selection scheme developed based on reinforcement
learning, which can also be named as smart selection scheme, performs
much better that state-of-art adaptive selection schemes.

Keywords: Adaptive Operator Selection · Reinforcement learning · Ar-
tificial Bee Colony · Uncapacitated Facility Location Problem (UFLP).

1 Introduction

Metaheuristic and swarm intelligence algorithms have gained a deserved popu-
larity through the success accomplished over last few decades. Although they do
not guarantee globally optimal solutions within a reasonable time, the success
in offering useful near-optimum solutions within an affordable time has helped
gain such credit. This does not mean that metaheuristic and swarm intelligence
algorithms can be seamlessly implemented for a productive algorithmic solu-
tion. The main shortcoming arises in handling local optima capabilities, which
enforces researchers to build a balance in exploration for new and fresh solutions
while exploiting the gained success level within the search space. That is known
as Exploration versus Exploitation (EvE ) rate in the literature [5]. EvE rate
guides to search through as many neighbourhoods as possible while retaining
exploitation of achieved success and gained experience for a better performance,
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2 R. Durgut and M.E. Aydin

where weaker exploration causes falling in local optima while weaker exploitation
would cause higher fluctuations in performance [13].

Metaheuristic approaches, especially population-based ones, use neighbour-
hood functions, also known as operators, to let the search process identify next
solutions to move to. It is conceivable that search with single operators would
have higher likelihood to stick in a local optima than multiple operators. Many
hybridisation approaches and memetic algorithms have been designed to help di-
versify the search through a balanced EvE, which usually appear in the form of
using multiple operators subject to a selection scheme. The idea an operator to
apply after another would prevent the search falling in local optima contributing
to diversification of the search. It appears that the nature of the operators to be
applied in an order and the order managed in use play very important role in the
success level of the algorithms. Adaptive operator selection schemes have been
studied for a while to achieve a useful balance in EvE and level of diversification
in search [12].

Adaptive operator selection is a process of two phases; (i) credit assignment in
which the selected operators are credited based on the level of success measured,
or (ii) operator selection in which an operator is identified to run based on
the credit level in order to produce a neighbour [11]. The amount of credit to
assign is decided using either the positive difference achieved in fitness values
or the categories of success or fail [10]. Credit assignment phase also covers the
calculation of the time window in which the amount of credit to assign to selected
operators is estimated [4]. On the other hand, operator selection phase imposes
prioritisation/rank of operators within a pool of functions/operators. Probability
Matching (PM), Adaptive Pursuit (AP) and Upper Confidence Bound (UCB)
are known to be among state-of-art operators selection schemes [4].

Adaptive operator selection schemes have been used in the literature with
evolutionary algorithms and swarm intelligence. Failho et. al [9] uses a multi-
armed bandits approach with genetic algorithms, while Durgut and Aydin [7]
comparatively studied the success of PM, AP, and UCB schemes to supply a
binary artificial bee colony algorithm. Yue et. al. [19] proposes a self-adaptive
particle swarm optimisation algorithm adaptively selecting among 5 operators
to solve large scale feature selection problems.

Adaptive operator selection schemes estimate likelihood of each operator
within the pool relying on credits gained to the time. The selection happens
through the estimated likelihoods irrespective of the problem state in hand. It is
clear that the success of selected operator is not sensitive to the problem state;
whether it is in a harsh neighbourhood or trapped in a difficult local optima or
not. Reinforcement learning (RL) gains more and more popularity day-by-day
to solve dynamic problems progressively, gaining experiences through problems
solving process [3, 17]. There are renown powerful RL algorithms let map in-
put sets to outputs through experiencing the the problems states and collecting
environmental responses to the actions taken [20].

In this study, an artificial bee colony (ABC) algorithm has been implemented
for solving uncapacitated facility location problems (UFLP) represented in bi-
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nary form. ABC algorithms have been implemented to solve many real-world
engineering problems. Among them are combinatorial optimisation problems,
which formulated as binary optimisation problems. ABC can be viewed as multi-
start hill-climbing algorithms in optimisation, where new neighbouring solutions
are generated with operators as discussed above. In this study, the ABC algo-
rithm is furnished with multiple operators selected with reinforcement learning-
based selection scheme.

The rest of this paper is organised as follows; Adaptive operator selection
schemes are introduced in Section 2, the operator selection scheme developed
based on reinforcement algorithm is explained in Section 3. Experimentation and
results are presented and discussed in Section 4 while conclusions are briefed in
Section 5.

2 Adaptive Operator Selection

One of the common problem of heuristic-based optimisation algorithms is that
search is inevitably driven into local optima, which sometimes remains as the
offered final solution. The aim of use multiple operator is to help rescue the
search from local optima by the means of diversifying search using different
neighbourhood functions/operators interchangeably or systematically. Operator
selection schemes are used for this purpose.

Operator selection is not necessarily to be adaptive by nature, but, most of
recent studies have been developed as adaptive to insert smartness in the process
of selection. Metaheuristic and evolutionary approaches can come up with self-
imposing operator selection. Evolutionary algorithms such as genetic algorithms
and genetic programming have self-contained probabilistic operator selection
while metaheuristics such as variable neighbourhood search imposes a system-
atic count-based operator change mechanism to achieve diversity in search and
manage neighbourhood change. Operator selection built-in algorithms do not
offer much flexibility in working with multiple operators, while memetic algo-
rithms, hill-climbing style heuristic algorithms and modern swarm intelligence
algorithms allow customising operator selection mechanism to engineer bespoke
efficient optimisation algorithms.

Adaptive operator selection is the process of prioritisation of the operators
based on merits, which can be imported in the algorithms via crediting each
operator based on achievements gained. Although there are a number of adaptive
operator selection schemes studied, the general mechanism is depicted in Fig. 1 in
which a two phase process is run; (i) operator selection and (ii) credit assignment.
As suggested, the pool of operators holds a finite number of operators to select
an operator from in order to produce neighbours to move to, while the selected
operators is credited upon its action and success level it achieves in producing
new solutions. The credit level to assign to the selected operator is estimated
based on preferred rules.
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Fig. 1. General overview of adaptive operator selection process with support of popu-
lation and pool of operators

2.1 Operator Selection

The first phase of operator selection process is to execute the selection rule im-
posed by operator selection scheme in order to produce neighbouring solutions
to move to. The main aim is to keep a EvE rate as balanced as possible so
that the search to be intensified within the neighbourhood as long as it produces
positively and to be diversified as soon as it turns to negative productivity. Liter-
ature reports a number of operator selection schemes; random selection, merit-
based selection, probability matching, adaptive pursuit and multi-arm bandit
approaches, e.g. upper confidence bound (UCB). Random selection chooses an
operator from the pool completely randomly, Roulette-wheel takes the success
counts of each operator into account to calculate a probability-based prioritisa-
tion, while probability matching (PM) approach accounts the success as merits
and lets to increase the selectability of non-chosen operators using the following
rule:

pi,t = pmin + (1−Kpmin)
qi,t∑K
j=1 qj,t

, i = 1, 2..K (1)

where K is the number of operators in the pool, pmin ∈ [0, 1] represents the
minimum probability of being selected, and qi,t is the credit level/value of op-
eration i at time t. Both PM and AP use pmin to set a base probability for
each operator, which would help address the EvE dilemma with allocating a
minimum chance to every operators to be selected. PM imposes to calculate
the probabilities of being selected per operation, while AP uses the strategy of
”winner takes all” approach that credits more to promising options. adaptive
pursuit (AP) calculates the probabilities with Eq. 2.

pi,t =

{
pi,t−1 + β(pmax − pi,t−1), if i = it∗
pi,t−1 + β(pmin − pi,t−1), otherwise

(2)

Both of PM and AP impose higher dominance for exploitation, which is
aimed to decrease by UCB using the following rule, which selects the operator
with highest probability.

pi,t =

{
1− pmin ∗ (K − 1) if i = it∗
pmin, otherwise

(3)
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where K is the number of operators in the pool, pmin ∈ [0, 1] represents the
minimum (base) probability for being selected, it∗ is calculated with 4.

it∗ = arg max
i=1,..,K

{qi,t + C ×

√
2 log

∑K
j=1 nj,t

ni,t
} (4)

where opt represents the selected operator, C works as a scaling factor, n is
number of times the operator selected while qi,t and ni,t on the right-hand-side
of equation help control EvE dilemma, respectively.

2.2 Credit Assignment

The next phase of adaptive operator selection process is to estimate a credit to
be assigned to the operator just used. This involves how to estimate the amount
of reward to assign and what to be the base for estimate of a credit. Literature
suggests that mainly two classes of approaches have been implemented; whether
a success has been achieved or not, or how much positive difference accomplished.
The former approach considers if the result is ”success” or ”fail”, while the latter
processes the amount of achievement in quantity to estimate the level of reward
to assign.

The process of credit assignment entails clarifying the time window with
which the reward level is to be estimated. The time window can span from last
single step to a pre-defined number of previous steps in which the credit level
and/or the achievement level can be averaged. This reveals that a credit can be
decided as instant credit, an averaged credit or the maximum credit.

3 Proposed Approach: Adaptive selection with
Reinforced-Clusters

Operator selection adaptively developed and used for higher efficiency in diver-
sification of search process. The operator selection schemes, even the adaptive
ones, propose choosing an operator based on credits gained over the success
counts through out the search, but, regardless of the input sets, the problem
state, and search circumstances. The merit-based schemes usually select opera-
tors through a blind process, where the total gained credit is relied on regardless
of the status of search etc. It is known that operators do not always produce suc-
cess due to their limitations; each performs better under some circumstances,
while does worse in other circumstances. Once the fruitful circumstances are
ascertained for each operator, a complementary policy can be customised for
deliberative selection to achieve success.

This study aims to propose a more conscious selection process developed
based on reinforcement learning approach implemented into a distance-based
clustering algorithm in which the distance in between the input set and the
fine-tuned cluster centres is estimated and made reference index in operator se-
lection. The idea of setting up a selection scheme based on clusters is discussed
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and implemented in machine learning studies. Reinforcement learning is known
to be very useful in handling dynamically changing environment and for solving
dynamic problems, particularly for operating within unknown dynamic environ-
ments. One of earlier studies proposes embedding reinforcement learning in a
distance-based clustering algorithm, namely hard-c-means algorithm, to train
agents to select the best scheduling operator subject to dynamic production en-
vironments to solve dynamic scheduling problems [2]. Inspiring of this study, a
reinforced-clustering algorithm is put together to optimise the cluster centres
so that the problem states can be classified with optimised clusters, where each
cluster will correspond to an operator. The algorithm will impose selecting the
cluster centre, operator, closer to the input set in distance. This will facilitates
a selection scheme conscious with problem state.

Operators are selected based on probabilities, pi,t, calculated as in Eq. 3,
where the best operator is determined using Eq. 5. The other operators are also
prioritised based on the distance in between the problem state at time t, xt,
and the cluster centres, ct - corresponding to the operators. Here, the distance
metric used in this study is hamming distance due to the binary representation
of the problem and the operators.

it∗ = arg min
i=1,..,K

{βqi,t + γei(xt)} (5)

where qi,t is the credit level/value of operation i at time t, while ei(xt) = ‖xt −
ci‖, the estimated distance between an input set and cluster ci, β and γ are
coefficients to balance between credit and distance metrics. Note that unlike
other methods, the reward value of good solutions is reflected as negative.

4 Experimental Results

The reinforced-clustering-based operator selection scheme has been tested with a
binary ABC algorithm to solve uncapacitated facility location problem (UFLP)
instances, which is one of well-known NP-Hard combinatorial problem. The de-
tails of UFLP benchmarking instances taken form OR-Library can be found in
many articles [1, 8].

The problem solving algorithm to use reinforced-clustering-based operator
selection scheme is chosen as the standard artificial bee colony (ABC) algo-
rithm reported in [14]. The standard ABC is designed for continuous numerical
optimisation problems, while UFLP is a combinatorial optimisation problem rep-
resented in binary form [18]. The algorithm has been rearranged to work with
state-of-art binary operators; binABC [16] and ibinABC [6] work on the basis of
XOR logical operator and disABC [15] uses a hamming distance-based binary
logic.

Algorithm 1 presents a pseudo code of ABC algorithm embedded with reinforced-
cluster-based operator selection scheme implemented for UFL problems. As seen,
ABC imposes a three-phase process to evolve a swarm (population) of solutions.
The first phase exploits employed bees to generate new solutions with selected
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Algorithm 1 The pseudo code of binary ABC embedded with reinforced-cluster
based operator selection scheme

1: Initialisation phase:
2: Set algorithm parameters
3: Create initial population
4: while Termination criteria is not met do
5: Employed bee phase:
6: Select operators and assign to bees
7: for i=1 to N do
8: Select neighbour, apply operator and obtain candidate solution (vi)
9: if f(vi) is better than f(xi) then
10: Replace vi with xi

11: Get reward and add to rop,t and update centroid of cop,t
12: Reset trial counter
13: else
14: Increment trial counter
15: end if
16: end for
17: Onlooker bee phase:
18: Calculate probabilities for food sources
19: Select operators and assign to bees
20: Increment operator counter, t=0
21: for i=1 to N do
22: Determine current solution according to probability
23: Select neighbour food source
24: Apply operator and obtain candidate solution (vc)
25: if f(vc) is better than f(xc) then
26: Replace vc with xc

27: Get reward and add to rop,t and update centroid of cop,t
28: Reset trial counter
29: else
30: Increment trial counter
31: end if
32: end for
33: Update Phase:
34: Credit assignment
35: Memorisation
36: Scout bee phase:
37: if Limit is exceed for any bee then
38: Create random solution for the first exceeding bee and evaluate it
39: end if
40: end while

binary operators applying to the materials taken from a selected solutions and
one of its neighbours. The generated solution is added to the swarm if it is
better than the parents, the amount of reward to allocate to the operators is es-
timated and the position of centre for selected and used operator is updated. If
the the generated new solution is not better than the parent solution no reward
is generated and the trail counter is incremented.

The onlooker bees conduct the second phase of ABC in which the solutions
are selected with a probabilistic approach to let randomness contribute the di-
versity of the swarm. Similar to the first phase, the operator selection, the reward
estimation and crediting are performed and the corresponding cluster centres are
updated. The scout bees follow up the onlookers to replace from non-improvable
solutions with randomly generated ones to keep the swarm further divers.

The experimentation has started with parametric study to fine-tune param-
eters used in both the algorithm and within the mechanics of the operator se-

160



8 R. Durgut and M.E. Aydin

lection scheme. The experimentation for parametric study has been conducted
using the hardest benchmarking instance of UFL problem, which is known as
CapC. The parameters configured for best fit are tabulated in Table 4 and av-
eraged over 30 repetitions.

Table 1. Parameter configurations tested

Parameter Values
Reward Inst Avrg Max
Pmin 0.10 0.20 0.30
W 10.00 25.00 50.00
β 0.01 0.05 0.10
γ 0.10 0.50 0.90

Table 2 presents the hit metric, which is the number of trails attained the
optimum. The best performance so far is 25 hits out of 30 trails, where γ = 0.5,
β = 0.01 and Pmin = 0.1 are found and setup. Next, the reward estimation
across a time/iteration window is fine-tuned, where the parametric study results
obtained for average and extreme rewards are tabulated in Table 3. The best hit
values are obtained 25 and 27 out of 30 trails for average and extreme reward
cases. respectively.

Table 2. Parameter tuning for Instant reward measured with hit metric

γ

Pmin

0.1 0.2 0.3
β β β

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0.1 24 16 20 18 24 24 24 24 24
0.5 25 21 19 19 19 21 24 19 14
0.9 16 21 14 21 21 14 17 21 17

The window size (W ) of 25 and 50 produce best results, while all trails are
tested with Pmin = 0.1, β = 0.05 and γ = 0.1. The averaged achievements
conclude that W = 25 produces the best configuration.

The best configuration concluded out of parametric study has been run with
hardest benchmark instances, CapC, to trace the operator selection through
timeline, where the progress of operation selection is plotted in Fig. 2. The
plot demonstrates that disABC operates best over the first 200 iterations and
then ibinABC takes over the best delivery. binABC doesn’t perform well in
comparison to other two as suggested in the plot.

The results by the proposed approach have been tabulated in Table 4 along-
side of other adaptive operator selection methods explained above for compara-
tive purposes. As seen, all adaptive methods embedded in binary ABC algorithm
have assisted solve all UFLP benchmark instances with 100% success except
CapC, where the Gap and St. Dev metrics are 0 and the hit measure is 30 out
of 30 for all instances except CapC. It is paramount to define the gap as the av-
erage difference in between the optimum value and the fitness/cost value found,
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Fig. 2. Operator usage rates through search process

Table 3. Parametric fine-tuning results in hit metric for both average and extreme
rewards

Average
Reward

Extreme
Reward

Average
Reward

Extreme
Reward

γ γ γ γ
W Pmin β 0.1 0.3 0.9 0.1 0.3 0.9 W Pmin β 0.1 0.3 0.9 0.1 0.3 0.9

5

0.1
0.01 16 21 16 24 25 24

25

0.1
0.01 22 20 22 22 23 24

0.05 23 19 17 23 24 23 0.05 25 17 19 27 21 23
0.1 21 19 18 23 24 19 0.1 24 21 18 22 19 21

0.2
0.01 24 21 23 19 19 23

0.2
0.01 23 21 21 17 25 23

0.05 22 20 18 21 19 17 0.05 15 19 21 21 22 22
0.1 20 21 19 19 18 19 0.1 22 20 21 17 25 23

0.3
0.01 20 21 23 19 18 20

0.3
0.01 21 20 20 20 16 26

0.05 20 23 20 21 20 19 0.05 20 18 18 22 23 17
0.1 22 15 18 21 16 19 0.1 21 18 19 25 22 16

10

0.1
0.01 25 21 24 22 16 25

50

0.1
0.01 23 19 19 21 18 19

0.05 21 23 20 20 18 22 0.05 21 22 19 27 21 19
0.1 24 15 23 22 19 22 0.1 20 20 18 21 18 23

0.2
0.01 25 19 20 21 18 13

0.2
0.01 18 20 25 21 22 19

0.05 21 22 20 14 23 17 0.05 19 21 19 21 18 18
0.1 24 21 20 15 21 21 0.1 23 14 22 22 17 19

0.3
0.01 24 20 20 24 20 19

0.3
0.01 16 25 20 21 18 20

0.05 21 14 16 20 24 19 0.05 22 17 21 22 16 20
0.1 23 21 19 20 20 22 0.1 16 19 16 21 14 18

while St. Dev. is the standard deviation calculated over 30 repeated trails. CapC
seems to be the hardest benchmark instance, which helps fine-tuning the hyper
parameters and comparing the results produced by each rival approaches. The
proposed method, labelled as ”C-BABC” in the tables, produces the lowest gap
and st. dev and the highest hit in comparisons to ”PM-BABC”, ”AP-BABC”
and ”UCB-BABC”, which are the binary ABC algorithms embedded with PM,
AP and UCB as explained above.
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Table 4. The comparative results obtained; the proposed operator selection scheme
vs alternatives

Benchmarks PM-ABC AP-BABC UCB-BABC C-BABC
Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit

Cap71 0 0 30 0 0 30 0 0 30 0 0 30
Cap72 0 0 30 0 0 30 0 0 30 0 0 30
Cap73 0 0 30 0 0 30 0 0 30 0 0 30
Cap74 0 0 30 0 0 30 0 0 30 0 0 30
Cap101 0 0 30 0 0 30 0 0 30 0 0 30
Cap102 0 0 30 0 0 30 0 0 30 0 0. 30
Cap103 0 0 30 0 0 30 0 0 30 0 0 30
Cap104 0 0 30 0 0 30 0 0 30 0 0 30
Cap131 0 0 30 0 0 30 0 0 30 0 0 30
Cap132 0 0 30 0 0 30 0 0 30 0 0 30
Cap133 0 0 30 0 0 30 0 0 30 0 0 30
Cap134 0 0 30 0 0 30 0 0 30 0 0 30
CapA 0 0 30 0 0 30 0 0 30 0 0 30
CapB 0 0 30 0 0 30 0 0 30 0 0 30
CapC 0.0055 1428.003 25 0.0043 1302.539 26 0.0087 1694.457 22 0.0033 1149.5 27

The success of proposed method has been comparatively tested with a num-
ber of recently published studies, which can be considered as state-of-art works.
The comparative results have been picked up form corresponding articles [1]
and tabulated with the results produced by the proposed approach. As clearly
seen on Table 5, the proposed method, C-BABC, outperforms all the algorithms
known to be the state-of-the-art with a 100% success of solving all benchmark
instances except CapC, which is solved with the highest score, while binAAA
and JayaX solve all instances except CapB and CapC. Due to level of hardness
in solving CapB and CapC approaches are tested with, so is the proposed ap-
proach in comparative way. The difference between the results by the proposed
approach and other competitor algorithms have been tested statistically with
Wilcoxon signed rank and the results are presented in Table 6, where C-BABC,
the proposed method is significantly performed better.

Table 5. Comparative results; The proposed method (C-BABC) versus some state-of-
art approaches

Benchmark GA-SP BPSO binAAA JayaX C-BABC
Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit

Cap71 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30
Cap72 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30
Cap73 0.066 899.65 19 0.024 634.625 26 0 0 30 0 0 30 0 0 30
Cap74 0 0 30 0.0088 500.272 29 0 0 30 0 0 30 0 0 30
Cap101 0.068 421.655 11 0.0432 428.658 18 0 0 30 0 0 30 0 0 30
Cap102 0 0 30 0.00989 321.588 28 0 0 30 0 0 30 0 0 30
Cap103 0.063 505.036 6 0.04939 521.237 14 0 0 30 0 0 30 0 0 30
Cap104 0 0 30 0.040 1432.239 28 0 0 30 0 0 30 0 0 30
Cap131 0.068 720.877 16 0.171 1505.749 10 0 0 30 0 0 30 0 0 30
Cap132 0 0 30 0.058 1055.238 21 0 0 30 0 0 30 0 0 30
Cap133 0.091 685.076 10 0.082 690.192 10 0 0 30 0 0 30 0 0 30
Cap134 0 0 30 0.195 2594.211 18 0 0 30 0 0 30 0 0 30
CapA 0.046 22451.21 24 1.69 319855.4 8 0 0 30 0 0 30 0 0 30
CapB 0.58 66658.65 9 1.40 135326.7 5 0.24 39224.74 15 0.07 27033.02 26 0 0 30
CapC 0.70 51848.28 2 1.62 115156.4 1 0.29 29766.31 1 0.021 5455.94 17 0.0033 1149.5 27
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Table 6. Statistical test results for state-of-art methods compared with proposed ap-
proach

binAAA JayaX BPSO GA-SP
Benchmarks p-value H p-value H p-value H p-value H
Cap71 1 0 1 0 1 0 1 0
Cap72 1 0 1 0 1 0 1 0
Cap73 1 0 1 0 1.E-01 0 1.E-03 1
Cap74 1 0 1 0 3.E-06 1 4.E-08 1
Cap101 1 0 1 0 2.E-01 0 4.E-04 1
Cap102 1 0 1 0 5.E-01 0 1 0
Cap103 1 0 1 0 1.E-06 1 1.E-06 1
Cap104 1 0 1 0 5.E-01 0 1 0
Cap131 1 0 1 0 1.E-06 1 1.E-06 1
Cap132 1 0 1 0 1.E+00 0 4.E-08 1
Cap133 1 0 1 0 2.E-06 1 1.E-06 1
Cap134 1 0 1 0 5.E-04 1 1 0
CapA 1 0 1 0 5.E-05 1 1.E-01 0
CapB 6.E-05 1 2.E-07 1 2.E-06 1 2.E-06 1
CapC 4.E-06 1 1.E-04 1 3.E-06 1 4.E-06 1

5 Conclusion

This study has been done to investigate how machine learning can help adapt a
dynamically updating scheme for operator selection within ABC algorithms as
one of recently developed swarm intelligence approaches in solving binary prob-
lems. The research has been done embedding an online learning mechanism into
binary ABC to learn which operator performs better in given circumstances.
The main contribution of this research is that the adaptive operator selection
has been achieved through reinforcement learning which is implemented with
Hard-C-means clustering algorithm converted its unsupervised nature into rein-
forcement learning. Unlike the previously suggested adaptive selection schemes,
this approach maps the binary input set into corresponding operators, hence,
each time the hamming distance between both binary sets is used to make the
selection, while the centres of the clusters are optimised/fine-tuned with es-
timated rewards per operator selection. The optimised cluster centres remain
as the basis of operator selection. The proposed algorithm is tested with solv-
ing UFL problems, and statistically verified that the proposed approach signif-
icantly outperforms the state-of-art approaches in solving the same benchmark
instances. It is also demonstrated that other existing adaptive approaches are
also outperformed.
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1 Introduction 

In this period of economic recession [1] coupled with growing environmental concerns, the 

development of effective policies and tools remains crucial to tackle current and future challenges. In response, 

governments has been implementing energy taxes and/or subsidies to reduce energy consumption and 

greenhouse gases (GHG) emission. Consequently, the industrial sector has been adapting to the newest 

regulations and energy prices increase while maintaining competitiveness. This past decade, the impact of 

energy awareness in the supply chain have been widely studied [2]. 

Energy sobriety is beneficial for both economic and environmental reasons. First, energy cost is a 

shortfall for heavy energy-using industry as the energy supplies are getting expensive. For that purpose, energy 

providers have designed preferential tariffs rate such as TOU, real-time or critical peak pricing. TOU rate 

incite manufacturers to shift their production to cheaper off-peak hours. Second, depending on the energy mix 

used (e.g. coal or gas based), reducing energy consumption or costs is a direct way to reduce GHG emission 

[3]. 

Early industry focused on mass production with high volumes of few products. Yet, these past decades, 

major changes in industry have been occurring [4].  Product variety and demand for tailor-made products force 

manufacturers to make a compromise between their available production capacity and their generated profit. 

This global tendency appears in a plethora of manufacturing sectors and Order Acceptance Scheduling (OAS) 

is an abstraction to model this particular trend. OAS is a particular scheduling problem where the decision 

covers the selection of a subset of 𝑛 orders and their sequencing in a capacity-constrained production system 

with the objective of maximizing total profit. Literature on OAS considering energy aspects is very sparse. In 

fact, only three papers have been reported [5]–[7].  

In this vein, this paper investigates a single machine OAS problem with release date and sequence 

dependent setup-times under TOU tariffs and taxed carbon emission with the objective of maximizing total 

profit. Chen et al. are the first to introduce [5] this problem while proposing a disjunctive Mixed Integer Linear 

Program (MILP). Bouzid et al. consider  [6] an arc-time-indexed (ATI) MILP to cope with the high complexity 

of this NP-hard problem and successfully solve some large instances. Without sequence-dependent setup-

times, time-indexed formulations described in [8] are shown to be outperforming a classical MILP. Based on 

this, an adaptation of these formulations is undertaken in order to solve the considered OAS problem. 

Performances of the formulations against existing models in the literature are shown and discussed in terms 

of solving time, average gap and optimal solutions found. Spatial complexity of each model is also provided 

in order to grasp the behavior of the proposed models. 

2 Problem statement  

The OAS with sequence-dependent setup-times, release date under TOU costs and taxed carbon periods 

is investigated. In this problem, the objective is to maximize the revenues minus tardiness penalties and energy 

costs. Each order 𝑗 = 1, … , 𝑛 is completely defined by its processing time 𝑝𝑗, release date 𝑟𝑗, due date 𝑑𝑗, 
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deadline 𝑑̅𝑗, revenue 𝑒𝑗, power consumption Ω𝑗 and tardiness penalties 𝑤𝑗. In 

addition, a sequence dependent setup-time 𝑠𝑖𝑗 is defined between any pair of 

orders 𝑖 and 𝑗. A dummy order 0 is introduced in order to start the sequence, 

each of its properties are set to zero except its setup-time 𝑠0𝑗 between any 

order 𝑗.  An order 𝑗 is accepted when it is sequenced in the span ranging from 

its release date 𝑟𝑗 to its deadline 𝑑̅𝑗 and rejected otherwise. A proportional 

tardiness penalty 𝑤𝑗 is subtracted to an order revenue 𝑒𝑗 when the planning 

exceeds its due date 𝑑𝑗 (Figure 1).  

 

Moreover, the planning horizon is divided into periods of fluctuating 

TOU tariffs and CO2 emission, characterized by an electricity cost, an 

amount of CO2 per kg and a tax per emitted kg of carbon.  

3 Solution approach 

The mathematical formulations provided in this work are time-indexed, i.e. they both rely on the 

discretization of the time horizon into unitary slots 𝑡 = 0, … , 𝑇. Since the setup-times are sequence dependent, 

the binary decision variables 𝑢𝑖𝑗 are employed in each model for any pair of order 𝑖 and 𝑗 to determine the 

sequencing. The binary variable 𝑢𝑖𝑗  takes value 1 if and only if order 𝑖 precedes directly order 𝑗 in the sequence, 

0 otherwise.  

An example is given in order to better understand the proposed formulations. Table 1 and Table 2 
presents the optimal solution of an example with  𝑛 = 3 orders with their processing times 𝑝 = [5,3,2], release 

dates 𝑟 = [1,2,1],  due dates 𝑑 = [6,5,12], deadlines 𝑑̅ = [9,10,14], revenues 𝑒 = [10,10,6],  power 

consumption Ω = [1,2,1] and weight penalties 𝑤 = [2,1,3]. The horizon is 𝑇 = 14. The setup-times between 

orders are defined by 𝑠 = [[0,1,2,3], [0,0,3,2], [0,1,0,3], [0,1,1,0]]. Finally, the starting times of TOU and 

carbon emission intervals 𝑏 = 𝑔 = [0,5,8], the electricity price 𝐸𝐶 = [2,10,2] and the amount of CO2 emitted 

𝑞 = [4,1,4] are defined. 
 

3.1. On/off formulation 

Each binary decision variable 𝑥𝑗𝑡 = 1 indicates whether the order 𝑗 is processed at time 𝑡 = 𝑟𝑗 , … , 𝑑̅𝑗, or 

not 𝑥𝑗𝑡 = 0. In the same way, the binary decision variables 𝑦𝑗𝑡 = 1 corresponds to a unit of processed setup of 

an order 𝑗 = 1, … , 𝑛 at time 𝑡 = 𝑟𝑗 , … , 𝑑̅𝑗. Finally, for any order 𝑗 = 0, … , 𝑛, the binary decision variable 𝑎𝑗 takes 

value 1 if order 𝑗 is accepted, 0 otherwise. 

 

Table 1 Example of an integral solution represented by the values of the decision variables 𝑥𝑗𝑡 , sequence is 0 − 3 − 2 

and order 1 is rejected.  

𝑗/𝑡 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 

3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

 

An accepted order 𝑗 is produced during the totality of its processing time, counting the number of 𝑥𝑗𝑡 

variables in the range of its release date 𝑟𝑗 to its deadline 𝑑̅𝑗. Non-preemption is guaranteed by forcing the 

contiguity of the 𝑥𝑗𝑡 variables. Units of setup operations are denoted by the 𝑦𝑗𝑡 variables and in the same 

manner as the 𝑥𝑗𝑡 variables, they must be adjacent. Finally, the 𝑦𝑗𝑡 variables shall appear before the processing 

of an order 𝑗, observing the sequencing determined by the 𝑢𝑖𝑗 variables and the right amount of setup-times.  

 

 

Figure 1 Revenue minus tardiness 

calculation of an order 𝑗 adapted 

from [13] 
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3.2. Pulse formulation  

The decision variables 𝑧𝑗𝑡 refer to the possible instants 𝑡 = 𝑟𝑗, … , 𝑑̅𝑗 − 𝑝𝑗 + 1 when the order 𝑗 = 1, … , 𝑛 

starts. Meaning that 𝑧𝑗𝑡 = 1 if and only if order 𝑗 begins its production at time period 𝑡, and 0 otherwise. 

 

Table 2 Example of an optimal solution represented by the values of the decision variables 𝑧𝑗𝑡  

𝑗/𝑡 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

 

  
 𝑠03 𝑝3  𝑠32 𝑝2     

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Figure 2 Corresponding Gantt diagram relative to the example. 

 In the pulse model, an order 𝑗 is accepted if it starts between its release date and its deadline, meaning 

that a single 𝑧𝑗𝑡variable is expected between 𝑟𝑗 and 𝑑̅𝑗 − 𝑝𝑗 + 1 if the order is processed. A precedence 

constraint guarantees that if an order 𝑗 is processed after an order 𝑖, the order 𝑗 shall starts at least after its 

release date, its setup operation and the production of order 𝑖. 

4. Conclusion and perspectives 

In this paper the OAS problem under energy aspects is studied. Two distinct time-indexed 

formulations are used to solve this NP-hard problem. Since the objective is the maximization of total profit 

with energy costs and tardiness penalties, these formulations exploit to their benefits the strong time-

dependency of the investigated problem. The under-going work is dedicated to the development of fix-and-

relax heuristics on these models with various approximation strategies including setup-times and variable 

relaxation. This solution approach and its preliminaries results will be presented on this occasion.  
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Abstract. The problem addressed in this paper was motivated by a real case optimization
problem of the supply chain of the hospital center of Troyes (HCT). The HCT is currently
involved in the review and improvement of its logistics processes, and in the implementation
of operational research techniques in order to provide effective solutions to better optimize the
activities of its logistics chain. In this work, the considered problem focuses on the catering
component of hospital logistics. A new mathematical model and different metaheuristics for
the production scheduling of multi-products and multi-stages food processes are developed.
These resolution methods have been implemented by using the solver Cplex and the Java
programming language. The computation results of the developed methods have proven their
effectiveness for the scheduling of production processes and allowed significant improvements
in the current organization and in the performance of the studied production system.

Keywords : hospital catering, production scheduling, flexible job shop problem, sequence-dependent
setup time, job-splitting, mathematical model, genetic algorithms, iterated local search algorithms.

1 Introduction

Nowadays, hospitals are facing the challenges regarding quality of care and performance. In the
management and organization of hospitals, there is still much progress to be made to improve the
quality of care while reducing costs. To respond effectively to the patients needs and to improve the
working conditions and well-being of their employees, hospitals are looking for tools and new ways
of organization and management. In the present work, a mathematical model and metaheuristics
for the scheduling production processes in hospital catering are developed. This work is part of an
industrial thesis in partnership with HCT and LOSI. The logistics platform of the HCT is composed
of the central food production unit, a laundry, and a store that can satisfy, in addition to its needs,
requests of meals, washings and pharmaceutical products of its partners. The objective of the
addressed problem is to find solutions for scheduling production processes to satisfy the demands
of meals of the customers while optimizing certain criteria and taking into account several specific
industrial constraints.

2 Problem description

The problem of food production process scheduling considered in this study aims to schedule the
operations from the pre-treatment of raw materials to the stock of finished products of a meal
manufacturing process in hospital catering or more generally in collective catering. This problem
is considered as a flexible job shop scheduling with sequence-dependent setup time, since each
job has its own order of operations and each operation has to be affected to one among a set of
alternative machines. The problem of food production process scheduling can be described by a
set of jobs, where each job corresponds to the preparation of a dish characterized by a number of
portions (quantity), and a set of operations for the preparation of the dish (from raw material to
finished product). For each job, there is a due date to respect. It is worth to highlight that the
dishes to be prepared do not have the same operating ranges (set of operations necessary for the
preparation of dish). In this study, we identified ten possible operating ranges for all the dishes
to be prepared and it is possible that several dishes may have the same operating range. For each
operation of an operating range there is a set of material resources able to realize it, such as :
ovens, packaging machines, cooling cells, etc. These material resources can be classified into three
categories : material resources with a capacity of one portion and that can not process several jobs at
the same time (material resources that can perform preprocessing and cold production operations),
material resources with a capacity greater than one portion and which can not process several jobs
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at the same time (ovens,...) and material resources with a capacity greater than one portion and
that can process several jobs at the same time (cooling cells). For each material resource, there
is a setup time to take into account which corresponds to the preparation time of the machine
before carrying out an operation and the cleaning time of the machine between two consecutive
operations. A time window of availability is known for each material resource. Note that the
corresponding machines may not be identical, involving different processing times according to the
chosen machine. The setup times of machines are sequence dependent because it depends on the
preceding operation on the same machine. The food production process scheduling involves two
steps : (i) assignment of operations to machines, (ii) sequencing of operations on machines. In order
to respect the production capacity of material resources, a job can be splitted into smaller sub-lots,
in such a way that the operations of sub-lots of a job can be performed simultaneously on different
machines. This strategy, which is useful when machine capacity does not allow the treatment of
the whole job, also enables a more efficient processing scheme. The criterion to minimize in the
present study is the total of flow time of jobs in the production system. The choice of this criterion
is based on the fact that the respect of the cold chain at each stage of the product life cycle must
be ensure. It aims to constantly maintain a low temperature (positive or negative depending on the
product) to ensure the maintenance of all the food qualities (hygienic, nutritional and gustatory).

3 Resolution methods

To respond effectively to this new industrial problem, we first developed mathematical models for
small instances of the problem. The results of these works are the subject of scientific publications
([1], [2]). The developed mathematical models have been implemented by using the solver Cplex
and they have been tested on 150 instances of different types : real instances of HCT, randomly
generated instances of HCT type, randomly generated instances and adapted instances of literature
([6], [7], etc). The implementation results (Table 1) of the mathematical models show that these
latter are able to find solutions in less than three hours of execution for the small instances. The
execution times of the mathematical models for these instances vary according to the number of
jobs, sub-lots, and operations. The computational results of the proposed mathematical models
on different types of instances show the limits of an exact resolution for the studied problem. To
solve the large instances in reasonable resolution times, two genetic algorithms (GAs) and two
iterated local search algorithms (ILSs) are developed. The results of these works are the subject
of a scientific publication ([5]). The developed metaheuristics have been implemented in Java
programming language and have been tested on the same instances (instances presented below) as
the mathematical models. From the computation results presented in Table 1, we remark that the
developed metaheuristics are efficient in terms of quality and rapidity. The performance depend
on the type of instances and their sizes, and it depends also on the choice of heuristics for the
generation of initial solutions. By comparing the different resolution methods on all the tested
instances, we found that for some instances, the two genetic algorithms succeeded in finding the
optimal solutions in very short computation times compared to the mathematical models. For the
instances for which the optimality has not been reached, the gaps between the solutions obtained
with the algorithms and the optimal solutions are very small. For the large instances for which
the mathematical models have failed to find solutions after more than three hours of execution,
the developed metaheuristics have found feasible solutions within reasonable computation times.
By comparing the results obtained with the genetic and iterated local search algorithms on all
the tested instances, we find that the ILSs are less good than the GAs in terms of quality of
solutions obtained. Whereas, in terms of rapidity, the ILSs methods are faster compared to the
GAs. Table 2 represents the results of the genetic algorithm on some examples of real production
days with comparison between the real solutions as these production days were organized and the
solutions proposed by the genetic algorithm. The performance indicators between solutions are
based on the total flow time and the gaps between the solutions. From these results, we remark
that the gaps between the real solutions and those of the genetic algorithm are very importants
and significants. For example, for the instance having : 62 dishes, 68 sub-lots, 218 operations, 29
machines, we have brought about a considerable improvement of 18, 72 % on the real solution. The
proposed metaheuristics make it possible also to improve the solutions of the adapted instances of
the literature. For example, for the instance of Lee et al. [7], the genetic algorithms have brought
about an improvement of 3.92 % on the solutions obtained by the methods proposed in [7], which
shows the quality of the developed metaheuristics.
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J SL O M F0 (h) T0 (s) F1 (h) T1 (s) F2 (h) T2 (s) F3 (h) T3 (s) F4 (h) T4 (s)

5 5 24 29 39.9 240 39.9 0.4 39.9 1 39.9 0.1 39.9 0.28
6 6 29 29 49.2 1200 49.2 0.6 49.2 1.4 49.2 0.16 49.2 0.40
8 10 39 29 69.4 9000 69.4 1 69.4 2 69.4 0.46 69.4 0.3
9 11 44 29 - > 10800 77.7 1.5 77.7 3 77.7 0.71 77.7 1.2
10 12 48 29 - > 10800 85.0 2 85.0 4 86.4 0.96 85.9 1.4
20 22 93 29 - > 10800 162.4 30 162.4 60 166.5 5 165.8 11
40 42 179 29 - > 10800 339.7 90 339.7 180 354.9 23 352.3 49
50 58 227 29 - > 10800 471.6 138 478.6 276 490.6 30 485.6 60
60 68 271 29 - > 10800 590.4 180 593.9 360 624.4 43 616.7 87
82 92 370 29 - > 10800 798.3 300 788.6 600 846.5 70 840.8 141

J: nomber of jobs, SL: number of sub-lots, O: number of operations, M: number of machines, F0: total
flow time of the mathematical model, T0: computational time of the mathematical model, F1: total flow

time of GA1, T1: computational time of GA1, F2: total flow time of GA2, T2: computational time of
GA2, F3: total flow time of ILS1, T3: computational time of ILS1, F4: total flow time of ILS2, T4 :

computational time of ILS2

Table 1: Computational results of the developed resolution methods on real instances of HCT.

Instance 1 Instance 2 Instance 3

- Number of dishes 82 110 62
- Number of sub-lots of dishes 92 115 68
- Number of operations 370 392 218
- Number of material resources 29 29 29
- Average number of meals produced 4 800 4 800 4 800

- Real solutions 901,97 h 1062,66 h 278,23 h
- Genetic algorithm solutions 788,64 h 952,48 h 26,12 h
- Gaps between real and genetic algorithm solutions -12,56 % -10,36 % -18,72 %

Table 2: Comparison between real and genetic algorithm solutions on some
examples of production days.

4 Conclusion
This article presents the results of a study on a new industrial problem. Different resolution methods
for scheduling production processes in hospital catering were developed. A mathematical model
integrating all the constraints of the studied problem was developed. The computational results of
the mathematical model on different types of instances show the limits of an exact resolution for the
problem of scheduling production processes. To solve the large instances of this problem, different
metaheuristics have been developed and tested on several types of instances. The computational
results of these metaheuristics have proven their effectiveness for scheduling operations of the food
production processes and allowed significant improvements in current real solutions and system
performance. The present work opens the way to different perspectives such as the study of the
production planning problem over several days and our future works will focus on the development
of resolution methods for this problem.
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Abstract. Dynamic pricing strategies are usually adopted to dynamically adjust the prod-
ucts’ prices taking into account demand function characteristics to maximize the revenue.
This paper addresses the problem in which a firm has to make decisions about its selling
prices in each period to maximize the total profit over the whole horizon. We propose a theo-
retical analysis of this problem from which we show that: first, when the demand function is
linear, the problem can be formulated as a quadratic programming problem. We also present
the Karush-Kuhn-Tucker system, which can be used to find the optimal pricing policy when
the objective function is concave. Then, when the demand is isoelastic, we also show that
the problem can be reduced to the maximization of N independent functions in bounded
intervals. Some numerical examples are provided to illustrate the results obtained for both
the linear and isoelastic cases.

Keywords : Revenue maximization, Dynamic pricing, Linear and isoelastic demand, Quadratic
programming, KKT conditions

1 Introduction

Dynamic pricing is a pricing strategy where the firms adjust dynamically the prices of the prod-
ucts and services according to the perceived demand at different times (Narahari et al. (2005)).
One of the key elements when dealing with a dynamic pricing problem is the demand function
which characterizes the relation between different factors like (selling price, advertising, seasonal-
ity,...) and the demand. In the paper of. Huang et al. (2013), a survey on the demand functions
was presented. The factors considered are price, rebate, lead time, space, quality, and advertising.
The authors observed that: 1) the linear and isoelastic demand functions are the two widely used
in the literature, and 2) the majority of publications consider the price and quality factors.

Initially, the dynamic pricing has been applied to the service industries such as airline (Smith
et al. (1992)) and hotels (Bitran, Mondschein (1995)). According to Elmaghraby, Keskinocak
(2003), factors like 1) the availability of demand data and decision-support system to track the
changes in prices and, 2) the simplicity of prices adjusting due to the recent developments in tech-
nologies lead to several works on dynamic pricing on a wide range of industries like retails (Chen
et al. (2016)).

Several studies dealing with the coordination of dynamic pricing and production decisions with
the discrete-time horizon and multiple products are conducted. The work of Bajwa, Sox (2015)
presented a joint pricing, production, and advertising decisions model for a firm that produces
and sells multiple products as different brands. The authors assumed that the demand is a func-
tion of the price and advertising money and demonstrated that coordinating the marketing and
operational decisions leads the firm to increase its profitability. The paper of Bajwa et al. (2016)
considered a manufacturer with a limited production capacity. They proposed a model that allows
lost sales under a price-dependent demand function. Ouazene et al. (2017) studied the problem in
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which the products can be sold through multiple channels and the demand is a price-dependent
function. The authors compared the dynamic and constant pricing strategies. The paper of Couzon
et al. (2019) presented an extension of the classical capacitated lot-sizing problem by considering a
production system with variable capacity under a price-dependent demand function. The work of
Couzon et al. (2020) improved the model studied in Bajwa et al. (2016) by introducing new lower
and upper bounds that reduced the search space. They also proposed new constructive efficient
heuristics to solve the model. All the papers cited above assumed that the demand in a given period
is a function of the price of the product in the same period and can take the linear or isoelastic form.

Several surveys on dynamic pricing have been published, Bitran, Caldentey (2003), Elmaghraby,
Keskinocak (2003), and Chen, Simchi-Levi (2012) reviewed the literature on dynamic pricing with
the presence of inventory considerations. A survey on dynamic pricing and learning was conducted
in Boer den (2015). The authors reviewed the literature on dynamic pricing with demand uncer-
tainty.

The presented work investigates the problem in which a firm has to make decisions about its
selling prices in each period to maximize the total profit over the whole horizon. This problem
has been initially tackled by Shakya et al. (2012) and solved by combining neural networks and
evolutionary algorithms. Their study is based on linear, exponential, and multinomial logit de-
mand functions. In the presented paper, a theoretical analysis in which we consider the linear and
isoelastic demand functions will be conducted. The mathematical properties of the problem will
be studied and some theoretical results that lead to finding the optimum pricing policy will be
provided.

The remainder of this paper is organized as follows. Section 2 presents the dynamic pricing
problem assumptions and mathematical formulation. Section 3 describes the resolution approach
under the linear and isoelastic demand. A numerical experiments are presented in section 4. A
conclusion is to be found in section 5.

2 Problem description

The dynamic pricing problem addressed in this study is the same as the model presented in
Shakya et al. (2012). The model is denoted as (P0). The problem considers a firm that produces
and sells its product. The goal is to find the product’s price in each period to maximize the firm’s
total profit over a given horizon. Following the notations used to describe the model:

N Number of periods in the horizon
t Time index, t = 1, ..., N
Qt Number of production (sales) at period t
Pt Price of a product at period t (decision variable)
Ct Cost of one unit production in period t
Π Total profit during the entire planning horizon

Pt Upper bound for the price at period t
Pt Lower bound for price at period t
Kt Upper bound for the capacity at period t
Mt Lower bound for the capacity at period t

The initial mathematical model P0 is detailed below:

maxΠ =
N∑

t=1

(PtQt − CtQt) (1)

st : Mt ≤ Qt ≤ Kt, t = 1, 2, ..., N (2)

Pt ≤ Pt ≤ Pt, t = 1, 2, ..., N (3)

Pt > 0, t = 1, 2, ..., N (4)
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The objective function represents the total profit over all the horizon to maximize. PtQt is the
total revenues in period t and CtQt is the cost per production in period t. Constraints (2) consider
the production capacity, the objective is to regulate the use of the available capacity in each period
(machines, labor, etc ...) by considering production values that are at least equal to the minimum
available capacity and don’t exceed the maximum production capacity. Constraints (3) bound the
selling price of each period by Pt and Pt to avoid a lower profit value, and a lower demand. Finally,
constraints (4) are the non-negativity constraints. Not that the decisions variables Pt (t = 1, ..., N)
are a strict positive real numbers.

3 Resolution approach

In the presented work, the linear and isoelastic demand functions are considered. Both are
price-dependent demand. The linear demand is adopted from Shakya et al. (2012) and the isoe-
lastic function is the same as the demand studied in Couzon et al. (2020). The following notations
will be considered in the presented work. Some new notations will be introduced throughout the
analytical study.

PT = (P1, P2, ..., PN ) The pricing policy’s vector
M The total constraints’ number

3.1 Case with linear demand function

Following the same assumption as in Shakya et al. (2012), the demand in period t (equation 5) is
linear and depends on the price of the product in the same period and on the price of the product in
other periods. at(> 0) is defined as the intercept parameter, it represents the number of customers
willing to buy the product at period t. bt′t are the slope parameters. They represent the impact of
price in period t′ on the demand in period t. btt is generally assumed to be negative because when
the product’s price in a period t increases, the corresponding demand in the same period decreases.

Qt = ψ(P1, P2, ..., PN ) = at +

N∑

t′=1

bt′tPt′ (5)

Replacing Qt by its value from (5), P0 can be written as:

max
P1,P2,..,PN

Π =
N∑

t=1

(
at +

N∑

t′=1

bt′tPt′

)
(Pt − Ct) (6)

st : Mt ≤ at +
N∑

t′=1

bt′tPt′ ≤ Kt, t = 1, 2, ..., N (7)

Pt ≤ Pt ≤ Pt, t = 1, 2, ..., N (8)

Pt > 0, t = 1, 2, ..., N (9)

Proposition 1. : The total profit function Π is quadratic and its expression is given in equation
(10). W is a (N ×N) symmetric matrix and V T is a (1×N) vector of real numbers. D is a real
constant number and it is independent from the selling price vector.

Π =
1

2
PTWP + V TP +D (10)
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Proof of proposition 1: Π can be rewritten as follows:

Π =
N∑

t=1

atPt −
N∑

t=1

atCt +
N∑

t=1

Pt

N∑

t′=1

bt′tPt′ −
N∑

t=1

Ct

N∑

t′=1

bt′tPt′

Π = S1 + S2 + S3

With S1 = −
N∑

t=1

atCt = D

S2 =
N∑

t=1

atPt −
N∑

t=1

Ct

N∑

t′=1

bt′tPt′

S2 = (a1P1 − C1(b11P1 + b21P2 + ...+ bN1PN )) + (a2P2 − C2(b12P1 + b22P2 + ...+ bN2PN )) + . . .+

(aNPN − CN (b1NP1 + b2NP2 + ...+ bNNPN ))

S2 = P1(a1 − C1b11 − C2b12 − . . .− CNb1N ) + P2(a2 − C1b21 − C2b22 − . . .− CNb2N ) + . . .+

PN (aN − C1bN1 − C2bN2 − . . .− CNbNN )

S2 = P1(a1 −
N∑

t=1

Ctb1t) + P2(a2 −
N∑

t=1

Ctb2t) + . . .+ PN (aN −
N∑

t=1

CtbNt)

S2 = V TP

With

V T1,N =
(
a1 −

∑N
t=1 b1tCt, a2 −

∑N
t=1 b2tCt, . . . , aN −

∑N
t=1 bNtCt

)

and

PN,1 =




P1

P2

...
PN




S3 =
N∑

t=1

Pt

N∑

t′=1

bt′tPt′ = P1(b11P1 + b21P2 + . . .+ bN1PN ) + P2(b12P1 + b22P2 + . . .+ bN2PN ) + . . .+

PN (b1NP1 + b2NP2 + . . .+ bNNPN )

Let consider :

S4 =
1

2
PTWP

with P is the same vector as defined for S2 and

WN,N =




2b11, b12 + b21, b13 + b31, . . . , b1N + bN1

b12 + b21, 2b22, b23 + b32, . . . , b2N + bN2

...
...

...
...

...
b1N + bN1, b2N + bN2, b3N + bN3, . . . , 2bNN




S4 =
1

2
(P1, P2, .., PN )




2b11, b12 + b21, b13 + b31, . . . , b1N + bN1

b12 + b21, 2b22, b23 + b32, . . . , b2N + bN2

...
...

...
...

...
b1N + bN1, b2N + bN2, b3N + bN3, . . . , 2bNN







P1

P2

...
PN




S4 =
1

2

(
2b11P1 + (b12 + b21)P2 + ...+ (b1N + bN1)PN ), (b12 + b21)P1 + 2b22P2 + ...+ (b2N + bN2)PN ,

. . . , (b1N + bN1)P1 + (b2N + bN2)P2 + ...+ 2bNNPN )

)



P1

P2

...
PN



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S4 =
1

2

(
P1

(
2b11P1 + (b12 + b21)P2 + ...+ (b1N + bN1)PN

)
+ P2

(
(b12 + b21)P1 + 2b22P2 + ...+ (b2N + bN2)PN

)

+ . . .+ PN

(
(b1N + bN1)P1 + (b2N + bN2)P2 + ...+ 2bNNPN

))

S4 =
1

2

(
P1

(
2b11P1 + 2b21P2 + . . .+ 2bN1PN

)
+ P2

(
2b12P1 + 2b22P2 + . . .+ 2bN2PN

)
+ . . .+

PN

(
2b1NP1 + 2b2NP2 + . . .+ 2bNNPN

))

S4 =

(
P1

(
b11P1 + b21P2 + . . .+ bN1PN

)
+ P2

(
b12P1 + b22P2 + . . .+ bN2PN

)
+ . . .+

PN

(
b1NP1 + b2NP2 + . . .+ bNNPN

))

S4 = S3

Then, the following relation is tune :

Π =
1

2
PTWP + V TP +D

Considering the constraints of P0, they can be rewritten as:

N∑

t′=1

bt′tPt′ ≤ Kt − at t = 1, 2, .., N (11)

−
N∑

t′=1

bt′tPt′ ≤ at −Mt t = 1, 2, .., N (12)

Pt ≤ Pt t = 1, 2, .., N (13)

− Pt ≤ −Pt t = 1, 2, .., N (14)

From equations (10), (11), (12), (13) and, (14) we have a quadratic objective function and linear
constraints, as a result, P0 is a quadratic programming problem and it can be represented as:

max
P1,P2,..,PN

Π =
1

2
PTWP + V TP

st : AP ≤ E
(15)

The last term D is omitted from the objective function because it’s a constant and it doesn’t
have any influence on the optimal pricing policy. The matrix AM×N is defined from the M con-
straints and the vector E contains the right side of each constraint. The values of A and E are
given in the following two equations.

AM,N =




b11, b21, . . . , bN1

−b11, −b21, . . . ,−bN1

1, 0, . . . , 0
−1, 0, . . . , 0

...
...

...
...

b1N , b2N , . . . , bNN
−b1N , −b2N , . . . ,−bNN

0, 0, . . . , 1
0, 0, . . . ,−1




(16)
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EM,1 =




K1 − a1
a1 −M1

P1

−P1

...
KN − aN
aN −MN

PN
−PN




(17)

Since the problem P0 is quadratic and all the constraints are linear, two cases are distinguished
regarding the convexity of the objective function Π. When Π is not concave i.e the matrix W is
not definite or semi-definite negative, the problem is not convex and it can be solved using non-
linear programming algorithms such as interior-point method, gradient methods, etc. However, all
these methods reach in generally a local optimum. When Π is concave i.e the matrix W is def-
inite or semi-definite negative, P0 is a convex programming problem and it can be solved optimally.

First, let consider the case when Π is concave, one way to find the optimal solution of P0, is the
resolution of Karush-Kuhn-Tucker or KKT system related to P0. The KKT conditions generally
aren’t sufficient i.e if a point P ∗ is a solution for the KKT system, then P ∗ can be a local optimum,
a global optimum, or saddle point. However, when dealing with a convex programming problem,
the KKT conditions became sufficient and any solution of the KKT system is a global optimum
of the considering problem. In the rest of the section, the KKT system for the problem P0 when
this later is a convex programming problem is presented.

Let Π ′ = -Π and P ′0 the problem presented as follows:

min
P1,P2,..,PN

Π ′ =
1

2
PTW ′P + V ′TP

st : AP ≤ E
(18)

Note that the matrix W ′ = -W and the vector V ′T = -V T . The resolution of P0 to opti-
mality is equivalent to the resolution of P ′0 to optimality. Furthermore, P ′0 is considered to define
the KKT system. Before the presentation of the KKT system, some new notations are introduced:

AjP − Ej = gj(P ) j = 1, 2, ..,M
λT = (λ1,λ2,..,λM ) λj is the jth KKT multiplier with j = 1, 2, ..,M

The KKT system related to P ′0 is detailed below:

∇Π ′(P ) +

M∑

j=1

λj∇gj(P ) = 0 N equations (19)

gj(P ) ≤ 0 j = 1, 2, ..,M M equations (20)

λjgj(P ) = 0 j = 1, 2, ...,M M equations (21)

λj ≥ 0, j = 1, 2, ...,M (22)

After computing the gradients related to the first N equations, they are represented as PTW ′+
V ′T + λTA = 0. Regarding the equations (20), they can be replaced by (AP − E) ≤ 0. The value
of λjgj(P ) ≤ 0 ∀j, since from the equations (20) and (22) we have gj(P ) ≤ 0 ∀j and λj ≥ 0 ∀j,
respectively. As a result, the M equations related to λjgj(P ) = 0 ∀j are replaced by the constraint
λ1g1(P ) + λ2g2(P ) + ...+ λMgM (P ) = 0 which corresponds to λT (AP − E) = 0. The last sum is
equal to 0 if and only if each term λjgj(P ) = 0 ∀j. The KKT system for P ′0 can be represented
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as:

PTW ′ + V ′T + λTA = 0 N equations (23)

AP − E ≤ 0 M equations (24)

λT (AP − E) = 0 1 equation (25)

λj ≥ 0, j = 1, 2, ...,M (26)

Regarding the first N equations, they are represented as a one line vector (1 × N). The con-
straints remain the same if we consider the transpose of PTW ′+V ′T +λTA = 0 which is equal to
W ′P + V ′ + ATλ. Now, considering the equations AP − E ≤ 0 and λT (AP − E) = 0, the vector
S = (s1, s2, ..., sM )T is added, with si ≥ 0 such that AP − E + S = 0 and λT (−S) = 0. The last
term λT (−S) = 0 is equal to −λT1 s1 − λT2 s2 − ... − λTMsM = 0. As each term −λTj sj ≤ 0 ∀j, the

term λT (−S) = 0 can be replaced by λT (S) = 0. The KKT system is represented as follows:

W ′P + V ′ +ATλ = 0 N equations (27)

AP − E + S = 0 M equations (28)

λT (S) = 0 1 equation (29)

λj ≥ 0, j = 1, 2, ...,M (30)

Finally, the matrix representation of the KKT system of P ′0 is:

(
W ′, AT 0
A, 0 IM

)

P
λ
S


 =

(
−V ′
E

)

λjsj = 0, j = 1, 2, ...,M

λj ≥ 0, j = 1, 2, ...,M

sj ≥ 0, j = 1, 2, ...,M

3.2 Case with Isoelastic demand function

The isoelastic demand function also called the constant elasticity function is the simplest non-
linear demand function. One of its advantages is that it does not require a finite upper limit of
the price Huang et al. (2013). The same demand as the one studied in Bajwa et al. (2016), and
Couzon et al. (2020) is considered. The demand in a period t depends only on the price of the
product in the same period (equation 31). (γ ≥ 0) is the seasonality factor. β is the price elasticity
of demand, it measures the percentage change in the quantity demanded for a product in relation
to percentage change in its price. According to the authors in Phillips (2005), the price elasticity

is defined as β = −pD(p)
d′(p) . Since d′(p) ≤ 0 (downward-slopping of the demand), the value of β ≥ 0.

Qt = αγtP
−β
t (31)

Replacing Qt its value from (31), the total profit function Π is equal to:

Π =

N∑

t=1

αγtP
−β
t (Pt − Ct) (32)

Π = α

[
γ1P

−β
1 (P1 − C1) + γ2P

−β
2 (P2 − C2) + . . .+ γNP

−β
N (PN − CN )

]
(33)

Π = α
N∑

t=1

ft(Pt) (34)

with ft(Pt) = γtP
−β
t (Pt − Ct) (35)
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Regarding the capacity constraints Mt ≤ Qt ≤ Kt ∀t, they are represented as:

Mt ≤ αγtP−βt ≤ Kt (36)

Mt

αγt
≤ P−βt ≤ Kt

αγt
(37)

(
Kt

αγt

)− 1
β

≤ Pt ≤
(
Mt

αγt

)− 1
β

(38)

We define It as : It = [Pt, Pt] ∩
[(

Kt
αγt

)− 1
β

,

(
Mt

αγt

)− 1
β
]

= [at, bt], then, P0 can be written as:

max
P1,P2,..,PN

Π = α
N∑

t=1

ft(Pt)

s.t Pt ∈ [at, bt]

Finding the optimal pricing policy is equivalent to find the value Pt max which maximizes ft,
i.e P ∗ = (max f1(P1),max f2(P2)...,max fN (PN )). The optimal selling price for each ft is obtained
analytically through the study of ft’s variation. The derivative of ft, and the value P0t for which
f ′t(Pt) = 0 are presented in equations (39) and (40) respectively. When β ≤ 1, f ′t(Pt) > 0 ∀ Pt ≥ 0,
which implies that ft is increasing in [0,+∞[ specially in [at, bt], then Pt max = bt. When β > 1,
P0t > 0 and 0 < Ct < P0t. As a result, f ′t ≥ 0 for Pt in ]0, P0t] and f ′t ≤ 0 for Pt ≥ P0t. This means
that, ft is increasing in ]0, P0t] and decreasing in [P0t,+∞[. Regarding the order between P0t, at
and bt, we can consider the following three cases:

1. if at ≤ P0t ≤ bt then Pt max = P0t

2. if bt ≤ P0t then Pt max = bt
3. if at ≥ P0t then Pt max = at

f ′t = αγt

(
P
−(β+1)
t

(
Pt(1− β) + β.Ct)

))
(39)

P0t =
β

β − 1
Ct (40)

4 Numerical Experiments

In this section, two numerical examples are presented to illustrate the proposed approach.
Example 1:
The linear demand function is considered, the instance’s parameters are generated randomly

(table 1). The number of periods is fixed to N = 2. The total profit function Π is concave since
(2b11 = −2 < 0, 2b22 = −6 < 0 and 2b11.2b22 − (b12 + b21)2 = 3 > 0), therefore the optimization
problem P0 is a convex programming problem. The feasible region X and the function Π are shown
in figures (1a) and (1b) respectively.

Parameters t = 1 t = 2

Ct 2 3
at 3 8
Mt 3 2
Kt 4 9

Pt 8 8
Pt 1 1
btj b11 = −1, b12 = 1 b21 = 2, b22 = −3

Table 1: Instance 1 Parameters values
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(a) feasible region (X ) (b) Profit function Π

Fig. 1: Total profit function and feasible area

Before the resolution, the nature of the optimal pricing policy P ∗ is considered. Since the total
profit function is concave and the global maximum of Π in R2 is Pmax = (17, 323 ) /∈ X, any interior
point of X is not an optimal solution for the problem P0. As a result, P ∗ belongs to the boundary
of X.

We apply the KKT system as defined in the section 3.1 (see Appendix A for details). The
KKT system is implemented and resolved using gekko package on Python3. The optimal pric-
ing policy is P ∗ = (P ∗1 = 8, P ∗2 = 9

2 ) and the optimal total profit value is Π∗ = 27.75. One can

remark that P ∗1 = P1 = 8 and −P ∗1 +2P ∗2 = 1, which confirm that P ∗ belongs to the boundary of X.

Example 2:
The isoelastic demand is considered with β = 2 and, α = 100. The values of N , Ct, Mt, Kt, Pt

and Pt are the same as for Example 1. The seasonality parameters are fixed to γ1 = γ2 = 0.5. The
red and blue curves in the following figure represent f1(P1) and f2(P2) respectively.

Fig. 2: Curves of f1 and f2

Table 2 shows the values of at, bt, P0t, and P ∗t which are computed by following the steps
described in the section 3.2. For f1, the value of P01 belongs to [a1, b1], as a result P ∗1 = P01 = 4.
Regarding the function f2, the value of P02 ≥ b2, thus, P ∗2 = b2 = 5. The total profit function
Π = f1(P ∗1 ) + f2(P ∗2 ) = 6.25 + 4 = 10, 25.

5 Conclusion

This paper investigated the dynamic pricing problem adopted from Shakya et al. (2012), in
which a firm produces and sells its product over a finite horizon. The problem considers con-
straints such as limited production capacity and production costs. The firm has to set its selling
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Parameters t = 1 t = 2

at 3.53 2.35
bt 4.08 5
P0t 4 6
P ∗
t 4 5

Table 2: Prices’ intervals and optimal pricing policy

prices such that the total profit is maximized.

As a first contribution, the case when the demand at a period t is a linear function of the
price in the same period and the prices of the other periods is studied. It has been shown that
under these assumptions the problem can be formulated as a quadratic programming problem. The
Karush-Kuhn-Tucker system to obtain the optimal pricing policy when the total profit function is
concave is presented.

The second contribution consists of the consideration of the isoelastic demand function which is
commonly used in the literature. It has been proven that when dealing with this demand function,
the objective function is the sum of N univariate functions over N bounded intervals. As a result,
the optimal pricing policy is resumed to find the maximum of each function.

The presented work assumes that the selling price is the only factor that influences demand.
However, consumers are generally sensitive to other parameters like the lead time, rebate, and
competitor prices. One extension of this work is the incorporation of these parameters to the de-
mand function to achieve a more accurate representation of the real market behavior.
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A Appendix A

A.1 KKT system for Example 1

From the parameters values presented in the table 1, the problem optimization problem is
formulated as:

min
P1,P2

Π ′ =
1

2
(P1, P2)

(
2 −3
−3 6

)(
P1

P2

)
+ (−2,−13)

(
P1

P2

)

s.t :




−1 2
1 −2
1 0
−1 0
1 −3
−1 3
0 1
0 −1




(
P1

P2

)
≤ E8,1 =




1
0
8
−1
1
6
8
−1




The KKT system is defined as:

(
2 −3
−3 6

)(
P1

P2

)
+

(
−2
−13

)
+

(
−1 1 1 −1 1 −1 0 0
2 −2 0 0 −3 3 1 −1

)




λ1
λ2
λ3
λ4
λ5
λ6
λ7
λ8




=

(
0
0

)




−1 2
1 −2
1 0
−1 0
1 −3
−1 3
0 1
0 −1




(
P1

P2

)
−




1
0
8
−1
1
6
8
−1




+




s1
s2
s3
s4
s5
s6
s7
s8




=




0
0
0
0
0
0
0
0




(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8)




s1
s2
s3
s4
s5
s6
s7
s8




= 0

λj ≥ 0, j = 1, 2, ..., 8

sj ≥ 0, j = 1, 2, ..., 8
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Abstract. We propose a new metaheuristic training scheme for Machine
Learning that combines Stochastic Gradient Descent (SGD) and Discrete
Optimization in an unconventional way. Our idea is to define a discrete
neighborhood of the current SGD point containing a number of “poten-
tially good moves” that exploit gradient information, and to search this
neighborhood by using a classical metaheuristic scheme borrowed from
Discrete Optimization. In the present paper we investigate the use of
a simple Simulated Annealing (SA) metaheuristic that accepts/rejects
a candidate new solution in the neighborhood with a probability that
depends both on the new solution quality and on a parameter (the tem-
perature) which is modified over time to lower the probability of accepting
worsening moves.
Computational results on image classification (CIFAR-10) are reported,
showing that the proposed approach leads to an improvement of the final
validation accuracy for modern Deep Neural Networks such as ResNet34
and VGG16.

Keywords: Simulated Annealing · Stochastic Gradient Descent · Deep
Neural Networks · Machine Learning · Training Algorithm

1 Introduction

Machine Learning (ML) is a fundamental topic in Artificial Intelligence. Its
growth in the research community has been followed by a huge rise in the number
of projects in the industry leveraging this technology.

Deep learning is a subset of ML, based on learning data representation through
the use of neural network architectures, specifically Deep Neural Networks (DNNs).
Inspired by human processing behavior, DNNs have set new state-of-art results
in speech recognition, visual object recognition, object detection, and many other
domains.

? Work supported by MiUR, Italy (project PRIN). We gratefully acknowledge the
support of NVIDIA Corporation with the donation of the Titan Xp GPU used for
this research.
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Stochastic Gradient Descent (SGD) is de facto the standard algorithm for
training Deep Neural Networks (DNNs). Leveraging the gradient, SGD allows
one to rapidly find a good solution in the very high dimensional space of weights
associated with modern DNNs. Moreover, the use of minibatches allows one to
exploit modern GPUs and to achieve a considerable computational efficiency.

In the present paper we investigate the use of an alternative training method,
namely, the Simulated Annealing (SA) algorithm [8]. The use of SA for training
is not new, but previous proposals are mainly intended to be applied for non-
differentiable objective functions for which SGD is not applied due to the lack
of gradients; see, e.g., [15,10]. Instead, our SA method requires differentiability
of (a proxy of) the loss function, and leverages on the availability of a gradient
direction to define local moves that have a large probability to improve the
current solution.

Our approach is computationally evaluated in an implementaion leveraging
hyper-parameters. Assume some hyper-parameter values (e.g., learning rates for
SGD) are collected in a discrete set H. At each SGD iteration, we randomly pick
one hyper-parameter from H, temporarily implement the corresponding move as
in the classical SGD method (using the gradient information) and evaluate the
new point on the current minibatch. If the loss function does not deteriorate too
much, we accept the move as in the classical SGD method, otherwise we reject it:
we step back to the previous point, change the minibatch, randomly pick another
hyper-parameter from H, and repeat. The decision of accepting/rejecting a move
is based on the classical SA criterion, and depends of the amount of loss-function
worsening and on a certain parameter (the temperature) which is modified over
time to lower the probability of accepting worsening moves.

A distinctive feature of our scheme is that hyper-parameters are modified
within a single SGD execution (and not in an external loop, as customary) and
evaluated on the fly on the current minibatch, i.e., their tuning is fully embedded
within the SGD algorithm.

Computational results are reported, showing that the proposed approach leads
to an improvement of the final validation accuracy for modern DNN architectures
(ResNet34 and VGG16 on CIFAR-10).

2 Simulated Annealing

The basic SA algorithm for a generic optimization problem can be outlined as
follows. Let S be the set of all possible feasible solutions, and f : S → R be the
objective function to be minimized. An optimal solution s∗ is a solution in S
such that f(s∗) ≤ f(s) holds for all s ∈ S.

SA is an iterative method that constructs a trajectory of solutions s(0), · · · , s(k)
in S. At each iteration, SA considers moving from the current feasible solution
s(i) (say) to a candidate new feasible solution snew (say). Let ∆(s(i), snew) =
f(snew) − f(s(i)) be the objective function worsening when moving from s(i)

to snew—positive if snew is strictly worse than s(i). The hallmark of SA is
that worsening moves are not forbidden but accepted with a certain acceptance
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probability p(s(i), snew, T ) that depends on the amount of worsening ∆(s(i), snew)
and on a parameter T > 0 called temperature. A typical way to compute the
acceptance probability is through Metropolis’ formula [11]:

p(s, snew, T ) =

{
e−∆(s(i),snew)/T if ∆(s(i), snew) > 0
1 if ∆(s(i), snew) ≤ 0 .

(1)

Thus, the probability of accepting a worsening move is large if the amount of
worsening ∆(s(i), s′) > 0 is small and the temperature T is large. Note that the
probability is 1 when ∆(s(i), s′) ≤ 0, meaning that improving moves are always
accepted by the SA method.

Temperature T is a crucial parameter: it is initialized to a certain value T0
(say), and iteratively decreased during the SA execution so as to make worsening
moves less and less likely in the final iterations. A simple update formula for
T is T = α · T , where α ∈ (0, 1) is called cooling factor. Typical ranges for this
parameter are 0.95− 0.99 (if cooling is applied at each SA iteration) or 0.7− 0.8
(if cooling is only applied at the end of a “computational epoch”, i.e., after several
SA iterations with a constant temperature).

The basic SA scheme is outlined in Algorithm 1; more advanced implementa-
tions are possible, e.g., the temperature can be restored multiple times to the
initial value.

Algorithm 1 : SA

Input: function f to be minimized, initial temperature T0 > 0, cooling factor
α ∈ (0, 1), number of iterations nIter
Output: the very last solution s(nIter)

1: Compute an initial solution s(0) and initialize T = T0

2: for i = 0, . . . , nIter − 1 do
3: Pick a new tentative solution snew in a convenient neighborhood N (s(i)) of s(i)

4: worsening = f(snew)− f(s(i))
5: prob = e−worsening/T

6: if random(0, 1) < prob then
7: s(i+1) = snew

8: else
9: s(i+1) = s(i)

10: end if
11: T = α · T
12: end for

At Step 6, random(0, 1) is a pseudo-random value uniformly distributed in
[0,1]. Note that, at Step 5, the acceptance probability prob becomes larger than
1 in case worsening < 0, meaning that improving moves are always accepted (as
required).
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2.1 A naive implementation for training without gradients

In the context of training, one is interested in minimizing a loss function L(w)
with respect to a large-dimensional vector w ∈ <M of so-called weights. If L(w) is
differentiable (which is not required by the SA algorithm), there exists a gradient
∇(w) giving the steepest increasing direction of L when moving from a given
point w.

Here is a very first attempt to use SA in this setting. Given the current
solution (i.e., set of weights) w, we generate a random move ∆(w) ∈ <M and
then we evaluate the loss function in the nearby point w′ := w − ε∆(w), where ε
is a small positive real number. If the norm of ε∆(w) is small enough and L is
differentiable, due to Taylor’s approximation we know that

L(w′) ' L(w)− ε ∇T (w)∆(w) . (2)

Thus the objective function improves if ∇(w)T∆(w) > 0. As we work in the
continuous space, in the attempt of improving the objective function we can also
try to move in the opposite direction and move to w′′ := w + ε ∆(w). Thus,
our actual move from the current w consists of picking the best (in terms of
objective function) point wnew, say, between the two nearby points w′ and w′′: if
wnew improves L(w), then we surely accept this move; otherwise we accept it
according to the Metropolis’ formula (1). Note that the above SA approach is
completely derivative free: as a matter of fact, SA could optimize directly over
discrete functions such as the accuracy in the context of classification.
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Fig. 1: Performance on the validation set of our naive SA implementation (SSA)
for VGG16 on Fashion-MNIST. SGD: learning rate η = 0.001, no momen-
tum/Nesterov acceleration. SSA: ε = 0.01, α = 0.97, T0 = 1.

In a preliminary phase of our work we implemented the simple scheme above
in a stochastic manner, using minibatches when evaluating L(w′) and L(w′′), very
much in the spirit of the SGD algorithm. Figures 1–2, compare the performance of
the resulting Stochastic SA algorithm, called SSA, with that of a straightforward
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Fig. 2: Comparison of our naive SA implementation (SSA) vs SGD for VGG16
on Fashion-MNIST. SGD: learning rate η = 0.001, no momentum/Nesterov
acceleration. SSA: ε = 0.01, α = 0.97, T0 = 1. Subfigure (b) clearly shows that
SSA has no overfitting but is not able to exploit the full capacity of VGG16,
resulting into an unsatisfactory final accuracy.

SGD implementation with constant learning rate and no momentum [20] nor
Nesterov [13] acceleration, using the Fashion-MNIST [21] dataset and the VGG16
[16] architecture. Figure 2(b) reports accuracy on both the training and the
validation sets, showing that SSA does not suffer from overfitting as the accuracy
on the training and validation sets are almost identical—a benefit deriving from
the derivative-free nature of SSA. However, SSA is clearly unsatisfactory in terms
of validation accuracy (which is much worse than the SGD one) in that it does
not exploit well the VGG16 capacity.

We are confident that the above results could be improved by a more ad-
vanced implementation. E.g., one could vary the value of ε during the algorithm,
and/or replace the loss function by (one minus) the accuracy evaluated on the
current minibatch—recall that SSA does not require the objective function be
differentiable. However, even an improved SSA implementation is unlikely to be
competitive with SGD. In our view, the main drawback of the SSA algorithm
(as stated) is that, due the very large dimensional space, the random direction
±∆(w) is very unlikely to lead to a substantial improvement of the objective
function as the effect of its components tend to cancel out randomly. Thus, a
more clever definition of the basic move is needed to drive SSA in an effective
way.

3 Improved SGD training by SA

We next introduce an unconventional way of using SA in the context of training.
We assume the function L(w) to be minimized be differentiable, so we can
compute its gradient ∇(w). From SGD we borrow the idea of moving in the
anti-gradient direction −∇(w), possibly corrected using momentum/Nesterov
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acceleration techniques. Instead of using a certain a priori learning rate η,
however, we randomly pick one from a discrete set H (say) of possible candidates.
In other words, at each SA iteration the move is selected randomly in a discrete
neighborhoodN (w(i)) whose elements correspond to SGD iterations with different
learning rates. An important feature of our method is that H can (actually,
should) contain unusually large learning rates, as the corresponding moves can be
discarded by the Metropolis’ criterion if they deteriorate the objective function
too much.

A possible interpretation of our approach is in the context of SGD hyper-
parameter tuning. According to our proposal, hyper-parameters are collected
in a discrete set H and sampled within a single SGD execution: in our tests,
H just contains a number of possible learning rates, but it could involve other
parameters/decisions as well, e.g., applying momentum, or Nesterov (or none of
the two) at the current SGD iteration, or alike. The key property here is that
any element in H corresponds to a reasonable (non completely random) move,
so picking one of them at random has a significant probability of improving the
objective function. As usual, moves are accepted according to the Metropolis’
criterion, so the set H can also contain “risky choices” that would be highly
inefficient if applied systematically within a whole training epoch.

Algorithm 2 : SGD-SA

Parameters: A set of learning rates H, initial temperature T0 > 0
Input: Differentiable loss function L to be minimized, cooling factor α ∈ (0, 1),
number of epochs nEpochs, number of minibatches N
Output: the best performing w(i) on the validation set at the end of each epoch

1: Divide the training dataset into N minibatches
2: Initialize i = 0, T = T0, w(0) = random initialization()
3: for t = 1, . . . , nEpochs do
4: for n = 1, . . . , N do
5: Extract the n-th minibatch (x, y)
6: Compute L(w(i), x, y) and its gradient v = backpropagation(w(i), x, y)
7: Randomly pick a learning rate η from H
8: wnew = w(i) − η v
9: Compute L(wnew, x, y)

10: worsening = L(wnew, x, y)− L(w(i), x, y)
11: prob = e−worsening/T

12: if random(0, 1) < prob then
13: w(i+1) = wnew

14: else
15: w(i+1) = w(i)

16: end if
17: i = i+ 1
18: end for
19: T = α · T
20: end for
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Our basic approach is formalized in Algorithm 2, and will be later referred to
as SGD-SA. More elaborated versions using momentum/Nesterov are also possible
but not investigated in the present paper, as we aim at keeping the overall
computational setting as simple and clean as possible.

4 Computational analysis of SGD-SA

We next report a computational comparison of SGD and SGD-SA for a classical
image classification task involving the CIFAR-10 [9] dataset. As customary, the
dataset was shuffled and partitioned into 50,000 examples for the training set,
and the remaining 10,000 for the test set. As to the DNN architecture, we tested
two well-known proposals from the literature: VGG16 [16] and ResNet34 [5].
Training was performed for 100 epochs using PyTorch, with minibatch size 512.
Tests have been performed using a single NVIDIA TITAN Xp GPU.

Our Scheduled-SGD implementation of SGD is quite basic but still rather
effective on our dataset: it uses no momentum/Nesterov acceleration, and the
learning rate is set according the following schedule: η = 0.1 for first 30
epochs, 0.01 for the next 40 epochs, and 0.001 for the final 30 epochs. As
to SGD-SA, we used α = 0.8, initial temperature T0 = 1, and learning-rate set
H = {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05}.

Both Scheduled-SGD and SGD-SA use pseudo-random numbers generated
from an initial random seed, which therefore has some effects of the search path
in the weight space and hence on the final solution found. Due to the very large
number of weights that lead to statistical compensation effects, the impact of the
seed on the initialization of the very first solution w(0) is very limited—a property
already known for SGD that is inherited by SGD-SA as well. However, random
numbers are used by SGD-SA also when taking some crucial “discrete” decisions,
namely: the selection of the learning rate η ∈ H (Step 7) and the acceptance
test (Step 12). As a result, as shown next, the search path of SGD-SA is very
dependent on the initial seed. Therefore, for both Scheduled-SGD and SGD-SA

we decided to repeat each run 10 times, starting with 10 random seeds, and to
report results for each seed. In our view, this dependency on the seed is in fact
a positive feature of SGD-SA, in that it allows one to treat the seed as a single
(quite powerful) hyper-parameter to be randomly tuned in an external loop.

Our first order of business is to evaluate the convergence property of SGD-SA on
the training set—after all, this is the optimization task that SA faces directly. In
Figure 3 we plot the average probability prob (clipped to 1) of accepting a move at
Step 12, as well as the training-set accuracy as a function of the epochs. Subfigure
3a shows that the probability of accepting a move is almost one in the first epochs,
even if the amount of worsening is typically quite large in this phase. Later on,
the probability becomes smaller and smaller, and only very small worsenings are
more likely to be accepted. As a result, large learning rates are automatically
discarded in the last iterations. Subfigure 3b is quite interesting: even in our
simple implementation, Scheduled-SGD quickly converges to the best-possible
value of one for accuracy, and the plots for the various seeds (gray lines) are
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Fig. 3: Optimization efficiency over the training set (VGG16 on CIFAR-10)

almost overlapping—thus confirming that the random seed has negligible effects
of Scheduled-SGD. As to SGD-SA (black lines), its convergence to accuracy one
is slower than Scheduled-SGD, and different seeds lead to substantially different
curves—a consequence of the discrete random decisions taken along the search
path.

Figure 4 shows the performance on the validation set of Scheduled-SGD and
SGD-SA (both with 10 runs with different random seeds) when using the ResNet34
architecture—results with VGG16 are very similar, hence they are not reported.
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As expected, the search path of SGD-SA is more diversified (leading to accuracy
drops in the first epochs) but the final solutions tend to generalize better than
Scheduled-SGD, as witnessed by the better performance on the validation set.
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Fig. 4: ResNet34 on CIFAR-10 (validation set)

Table 1 gives more detailed results for each random seed, and reports the
final validation accuracy and loss reached by Scheduled-SGD and SGD-SA. The
results show that, for all seeds, SGD-SA always produces a significantly better
(lower) validation loss than Scheduled-SGD. As to validation accuracy, SGD-SA
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Method Seed VGG16 ResNet34

Loss Accuracy Loss Accuracy

Scheduled-SGD

0 0.001640 85.27 0.001519 82.18
1 0.001564 84.94 0.001472 82.58
2 0.001642 84.84 0.001467 82.27
3 0.001662 84.93 0.001468 82.37
4 0.001628 84.92 0.001602 81.69
5 0.001677 85.37 0.001558 81.80
6 0.001505 84.91 0.001480 82.24
7 0.001480 85.28 0.001532 82.07
8 0.001623 85.26 0.001574 81.52
9 0.001680 85.41 0.001499 82.41

SGD-SA

0 0.001127 86.44 0.001306 82.55
1 0.001206 86.18 0.001231 84.11
2 0.001121 86.04 0.001238 83.32
3 0.001133 86.76 0.001457 81.39
4 0.001278 85.17 0.001585 76.31
5 0.001112 86.30 0.001276 83.74
6 0.001233 85.71 0.001405 82.07
7 0.001130 86.59 0.001261 82.57
8 0.001167 86.14 0.001407 83.12
9 0.001084 86.28 0.001240 83.19

Best Scheduled-SGD 0.001480 85.41 0.001467 82.58
Best SGD-SA 0.001084 86.76 0.001240 84.11

Table 1: Best validation accuracy and loss, seed by seed.

outperforms Scheduled-SGD for all seeds but seeds 3, 4 and 6 for ResNet34. In
particular, SGD-SA leads to a significantly better (1-2%) validation accuracy than
Scheduled-SGD if the best run for the 10 seeds is considered.

5 Conclusions and future work

We have proposed a new metaheuristic training scheme that combines Stochastic
Gradient Descent and Discrete Optimization in an unconventional way.

Our idea is to define a discrete neighborhood of the current solution containing
a number of “potentially good moves” that exploit gradient information, and
to search this neighborhood by using a classical metaheuristic scheme borrowed
from Discrete Optimization. In the present paper, we have investigated the use
of a simple Simulated Annealing metaheuristic that accepts/rejects a candidate
new solution in the neighborhood with a probability that depends both on the
new solution quality and on a parameter (the temperature) which is varied over
time. We have used this scheme as an automatic way to perform hyper-parameter
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tuning within a single training execution, and have shown its potentials on a
classical test problem (CIFAR-10 image classification using VGG16/ResNet34
deep neural networks).

In a follow-up research we plan to investigate the use of two different objective
functions at training time: one differentiable to compute the gradient (and hence
a set of potentially good moves), and one completely generic (possibly black-box)
for the Simulated Annealing acceptance/rejection test—the latter intended to
favor simple/robust solutions that are likely to generalize well.

Replacing Simulated Annealing with other Discrete Optimization metaheuris-
tics (tabu search, variable neighborhood search, genetic algorithms, etc.) is also
an interesting topic that deserves future research.
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Abstract Software Product Lines Engineering has created various tools
that assist with the standardisation in the design and implementation
of clusters of equivalent software systems with an explicit representa-
tion of variability choices in the form of Feature Models, making the
selection of the most ideal software product a Feature Selection problem.
With the increase in the number of properties, the problem needs to
be defined as a multi-objective optimisation where objectives are con-
sidered independently one from another with the goal of finding and
providing decision-makers a large and diverse set of non-dominated solu-
tions/products. Following the optimisation, decision-makers define their
own (often complex) preferences on how does the ideal software product
look like. Then, they select the unique solution that matches their prefer-
ences the most and discard the rest of the solutions—sometimes with the
help of some Multi-Criteria Decision Analysis technique. In this work, we
study the usability and the performance of incorporating preferences of
decision-makers by carrying-out Multi-Criteria Decision Analysis directly
within the multi-objective optimisation to increase the chances of finding
more solutions that match preferences of the decision-makers the most
and avoid wasting execution time searching for non-dominated solutions
that are poor with respect to decision-makers’ preferences.

Keywords: Feature Selection, Software Product Line, Multi-Objective Evolution
Algorithm, Multi-Criteria Decision Analysis.

1 Introduction

Software Engineering is divided into multiple domains [1]. One of these domains is
Software Product Lines (SPL) which considers groups of related software systems
as a whole, rather than dealing with every single one of them separately [2].
Feature Models (FMs) is the most recurrent representation of SPLs. Furthermore,
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the FM holds a listing of all the possible feature configurations/combinations
which could be viewed as constraints. Therefore, making the FM a representation
of all valid software products that could be made out the features in the SPL.
Building a software product out of a particular SPL requires the selection
of features that respect the desired software configuration. With the multiple
characteristics/objectives that are interesting to decision-makers in practice (e.g.,
cost, technical feasibility, or reliability), the problem of finding the ‘best’ feature
configuration is seen as an instance of a multi-objective optimisation problem [3,4].

Evolutionary algorithms have long been used to efficiently optimise problems
in various domains from Computer Networks (e.g., [5–7]) to Intelligent Transport
Systems (e.g., [8]), to Software Engineering, based on analytical/mathematical
(e.g., [5, 6]) or simulated (e.g., [8, 9]) models. Evolutionary algorithms are par-
ticularly effective when dealing with multi-objective optimisation problems in
software engineering (e.g., [10–13]). This is also the case for multi-objective feature
selection in SPL for which the state-of-the-art SATIBEA [3] is an Indicator-Based
Evolutionary Algorithm (IBEA) that uses a SAT solver as a mutation operator
to correct infeasible solutions.

Multi-objective optimisation techniques result in a set of non-dominated
products/solutions from which decision-makers select the product that fits their
preferences the most. Given that the number of solutions in the set of non-
dominated solutions is often large and that preferences of decision-makers are
often complex, decision-makers are usually assisted by Multi-Criteria Decision
Analysis (MCDA) tools to accomplish this task [14]. There exist multiple MCDA
techniques that take decision-makers’ preferences (each of them with its degree of
preference expressibility) and return the product that match them the most. We
show in this paper that: (i) some MCDA techniques are simplistic and can only
handle a limited number of preference types (e.g., only take weights into accounts
such as ELECTRE-IV), but they are fast, whereas (ii) other more elaborate
MCDA techniques handle larger preference variations (e.g., they enable the use
of different utility functions such as PROMETHEE-II), but they are slower and
more time-consuming.

In this paper, we aim to include preferences of the decision-makers directly in
the multi-objective search process to avoid spending a precious execution time
searching for solutions that are (despite being non-dominated) far from decision-
makers’ preferences. In this paper, we study the effects of using MCDA techniques
in the selection process of SATIBEA instead of the Indicator-Based technique
(i.e., based on the contribution in Hypervolume of each solution). Particularly,
we would like to evaluate the impact in terms of both: (i) the execution time
overhead that it would induce, and (ii) quantity of non-dominated solutions
matching preferences of decision-makers missed by SATIBEA.

This paper makes the following contributions:

– We propose SAT MCDA EA, a hybrid algorithm that includes decision-
makers preferences in an MCDA form directly in the evolutionary search
process.
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– We show that using MCDA techniques as a selection operator has an insig-
nificant impact in terms of execution time overhead in comparison to the
execution time taken by one generation of SATIBEA.

– We also show that using MCDA techniques (particularly PROMETHEE-II)
enables finding a large number of solutions which better match preferences of
decision-makers and that are missed by SATIBEA (despite not outperforming
SATIBEA on most of the multi-objective performance metrics).

Combining MCDA techniques with multi-objective evolutionary algorithms
has already been attempted in a few recent works (e.g., [15–17]). However, to
the best of our knowledge, this is the first time it is attempted in the Software
Engineering domain in general and on the multi-objective feature selection in
FM in particular.

The remainder of this paper is organised as follows: Section 2 presents the
background of our study. Section 3 describes some common MCDA techniques
and details our SAT MCDA EA approach. Section 4 provides our overall set-up
and benchmark for multi-objective feature selection in SPL. Section 5 reports the
results of our evaluation in terms of execution time overhead and performance of
SAT MCDA EA against SATIBEA. Finally, Section 6 concludes the paper.

2 Background

In this section, we detail two aspects that make up the background of our work.

2.1 Software Product Line Engineering

Software Product Line Engineering is the paradigm that attempts to manage
software variations more systematically and provide tools that cover the do-
main engineering and the application engineering processes with their multiple
phases/activities [18]. In SPL, all software artefacts (i.e., variations of the same
feature) could be picked and put together to form a particular product as long
as they are compatible.

Feature Models is a way to represent an SPL. FMs represent the set of all
available features with their variations and incompatibilities (i.e., constraints).
Figure 1 shows a toy FM example with ten inter-connected features. It shows, for
example, that the final product requires a ‘Screen’. It also shows that there exist
three ‘Screen’ types (i.e., ‘Basic’, ‘Colour’ or ‘High Resolution’) and only one of
them could be selected for the final product. To build a software product from
the SPL, we need to select a subset of features S ⊆ F such that constraints of
the FM F are satisfied. Constraints of the FM can be modelled as a satisfiability
(SAT) problem for instantiating Boolean variables to true or false (in our case,
every variable represents a feature) in a way that satisfies all the constraints. A
variable fi ∈ {true, false} is set to true if the feature Fi ∈ F is picked to be part
of S, and false otherwise.

An FM can be represented in a conjunctive normal form (CNF). Therefore,
searching for a valid software product in the SPL is equivalent to searching
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for a feasible solution to the SAT problem. For instance, the FM in Figure 1
describes the screen alternatives in its SAT model with these clauses: (Basic ∨
Colour∨High resolution)∧(¬Basic∨¬Colour)∧(¬Basic∨¬High resolution)∧
(¬Colour ∨ ¬High resolution).

Figure 1: Example of a Feature Model

2.2 Multi-Objective Optimisation

Multi-Objective Optimisation (MOO) considers the optimisation of more than
two objective functions at the same time. Software products can be seen from
various perspectives (e.g., development cost, reliability, performance). Therefore,
by considering each of the perspectives as independent objectives, feature selection
in SPL is a suitable candidate for MOO [14].

As a meaningful sample case, we use a set of commonly used optimisation
objectives in the literature [19–21]:

– Correctness – reduce the number of violated constraints.
– Richness of features – increase the number of picked features (have products

with more functionality, minimisation of its negative value is considered).
– Features used before – reduce the number of picked features that were not

used before.
– Known defects – reduce the number of known defects in picked features.
– Cost – reduce the cost of the picked features.

3 State-of-the-Art and Proposed Approach

In this section, we describe the state-of-the-art algorithm SATIBEA and our
proposed approach.

3.1 SATIBEA

SATIBEA [3] is an extension to the Indicator-Based Evolutionary Algorithm
(IBEA) which guides the optimisation through a quality indicator selection
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process (in this case, the Hypervolume); a SAT solver has been introduced as a
mutation operator to assist IBEA.

Note that there are multiple algorithms designed to address the multi-objective
feature selection in SPL problem. Most of these algorithms perform in a similar
fashion as SATIBEA (evolutionary algorithm + exact algorithm such as SMT [20]
or MILP [21, 22]). In this work, we do not compare to them as we do not aim
to design an algorithm that is better in terms of multi-objective metrics (even
if we report the performance with respect to those metrics below). Instead, our
goal is to showcase the fact that including preferences of the decision-makers
in the evolutionary search process is worth considering when decision-makers
have complex preferences as: (i) it only adds a marginal execution time overhead,
and (ii) it finds solutions that are interesting with respect to decision-makers’
preferences, but missed by particular IBEA algorithms (in our case SATIBEA).

3.2 Multi-Criteria Decision Analysis

Providing a set of non-dominated solutions, decision-makers explore them to
find their preferred one. Given the large size of the non-dominated sets that are
obtained after performing the multi-objective optimisation, decision-makers take
advantage of MCDA techniques to select the ideal solution with respect to their
preferences.

MCDA deals with decision-making constrained by multiple and often con-
flicting criteria (or objectives or goals). MCDA has been broadly divided into
two categories [14]: (i) Outranking Methods: builds a preference relation, and
(ii) Multiple Attribute Utility and Value Theory: the ‘utility’ of every action is
scored based on its utility.

In this work, we select three commonly used MCDA techniques: two outrank-
ing methods (ELECTRE-IV [23] and PROMETHEE-II [24]) and one Multiple
Attribute Utility and Value Theory method (MAUT [25]).

We propose in this paper to substitute the Indicator-Based selection oper-
ator in the original SATIBEA algorithm by one of the aforementioned MCDA
techniques (i.e., ELECTRE-IV, PROMETHEE-II or MAUT) to create what we
call SAT MCDA EA. Therefore, we are creating three distinct algorithms under
the same umbrella of SAT MCDA EA: (i) SAT ELECTRE-IV EA, where we use
ELECTRE-IV as the selection operator, (ii) SAT PROMETHEE-II EA, where
we use PROMETHEE-II as the selection operator, and (iii) SAT MAUT EA,
where we use MAUT as the selection operator.

4 System Set-up

This section presents the different elements that we have used in our experiments:
the dataset, the multi-objective performance metrics, the parameters of the
genetic algorithms (i.e., SATIBEA and SAT MCDA EA), the parameters we use
for the MCDA techniques, and the hardware configuration.
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4.1 System and Algorithms Set-up

We use the implementation of SATIBEA that is made available to us by its
creators (implemented in Java) and implement our approach on top of it. We
conduct our experiments on a machine with a 4 core CPU (our algorithms use
a core at a time though) and 16 GB of RAM. We ran all our algorithms and
determined the average results over 30 runs for each instance.

We use the same parameters for SATIBEA as those defined by its authors
(e.g., population size: 300, crossover rate: 0.8, mutation rate of each feature
selection: 0.001, and solver mutation rate: 0.02). We also use the same parameters
as SATIBEA for our SAT MCDA EA approach. Furthermore, we define addition
parameters for the MCDA techniques to simulate preferences of decision-makers.
Note that the chosen preferences are only selected to showcase different capabilities
of each MCDA method. Therefore, it will be worth performing a more robust
analysis with different kinds of preferences and a full parameters sweeping for
each of these MCDA methods in a future work.

– ELECTRE-IV: requires a parameter triplet (optimisation threshold, prefer-
ence threshold, and indifference threshold) for every objective. We set these
triplets to (5,6,5), (3,4,3), (0.1,0.3,0.1), (1,2,1) and (3,4,3) for Correctness,
Richness of features, Feature used before, Known defects, and Cost.

– PROMETHEE-II: requires a parameter pair (weight and preference function)
for each objective. We set equal weights for all objectives and set their prefer-
ence functions to Level, Linear, Linear, Level, and Gaussian for Correctness,
Richness of features, Feature used before, Known defects, and Cost.

– MAUT: only requires one parameter per objective (weight) that we set equally
for all the objectives.

Based on the parameters that each of the MCDA techniques requires, we
see that PROMETHEE-II is the most expressive between them as it enables
decision-makers to design their own custom utility function for each objective
and feed it to the MCDA.

4.2 Dataset

For our experiments, we use the five of the largest open source FMs we could
find [20]. Table 1 shows the version and the size of each of the FMs that we
consider in our experiments. The table also reports the number of features and
the size of the SAT problem necessary to represent the FM in a conjunctive
normal form (in terms of number of variables and number of clauses). Similarly to
the SATIBEA paper [3], we set the execution time on the Linux Kernel to 1,200s.
For the other datasets, we use smaller execution times based on the convergence
time of SATIBEA [19,26].

4.3 Multi-Objective Performance Metrics

To assess the performance of our algorithms we use 5 multi-objective performance
metrics: 4 quality metrics (Hypervolume, Epsilon, Generation Distance, and
Inverted Generation Distance) and 1 diversity metric (Spread).
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Table 1: Versions and characteristics of the feature models used in our experiments.
Dataset Version #Features #Variables #Clauses Time (s)

Linux kernel 2.6.28.6 5,701 6,888 343,944 1,200

eCos 20100825 1,244 1,244 3,146 50

Fiasco 2011081207 300 1,638 5,228 200

FreeBSD 8.0.0 1,396 1,396 62,183 200

µClinux 3.0 616 1,850 2,468 100

– Hypervolume (HV): computes the volume (measured in k dimensions of the
problem’s search space) that is dominated by the Pareto front (to maximise).

– Epsilon (ε): evaluates the smallest distance that is needed for every solution
in Pareto front to dominate the Reference front (to minimise).

– Generation Distance (GD): evaluates the smallest distance needed for every
solution in Pareto front to dominate the Reference front (to minimise).

– Inverted Generation Distance (IGD): evaluates average distance between
every solution in Reference front and its closest solution in Pareto front (to
minimise).

– Spread (S): computes the solutions’ distribution to evaluate their extent
spread in Pareto front (to maximise).

5 Evaluation

5.1 Execution Time Overhead

One of the major issues that kept designers of evolutionary algorithms away
from using MCDA techniques within the search process is the excessive execution
time that these techniques require. More researchers and practitioners favour less
time-consuming indicator-based methods. This is even more true with problems
that are only given a few seconds as a total optimisation time budget. In this
section, we evaluate the overhead execution time that is introduced by the use of
MCDA techniques. We compare the execution time of MCDA techniques to the
execution time needed to evolve a full generation and also to the execution time
of the default indicator-based method (in our case, the Hypervolume).

Table 2 shows the average execution time in millisecond over 30 iterations
of the second generation of SATIBEA (the generation following the evolution
of the randomly generated initial population) using the default indicator-based
(Hypervolume). The table also shows the average execution time of each partic-
ular selection technique from Indicator-Based, to the three considered MCDA
techniques (i.e., ELECTRE-IV, MAUT, and PROMETHEE-II).

We clearly see that the execution time of a full SATIBEA generation is very
large in comparison to the execution time of the different selection operators
(148 times larger on average than the largest selection time per instance). A
single generation takes on average 531, 11, 84, 100, and 12 times larger execu-
tion times than the most time-consuming selection process (in this case, using
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Table 2: Average execution time (ms) of the second generation of SATIBEA,
indicator-based selection, and MCDA selection methods.

Dataset Generation Indicator-Based ELECTRE-IV MAUT PROMETHEE-II

Linux Kernel 53,788 30.50 1.71 62.75 101.23

eCos 1,235 30.22 1.93 60.33 114.82

Fiasco 12,477 44.49 1.42 59.68 149.04

FreeBSD 12,742 29.57 1.56 71.28 127.30

uClinux 1,197 31.6 1.55 58.09 96.44

PROMETHEE-II) on the instances Linux Kernel, eCos, Fiasco, FreeBSD and
uClinux respectively. This is a clear indication that using any of the studied
MCDA techniques is less likely to add a significant execution time overhead. The
execution time of the section process is particularly insignificant when dealing
with the large instances (Linux Kernel, Fiasco and FreeBSD).

We see that with the exception of ELECTRE-IV, MCDA techniques (i.e.,
MAUT and PROMETHEE-II) necessitate a larger execution time than the default
Indicator-Based selection. This is one of the main reasons why the simplistic
weighted-sum is the de-facto go to in absence of a pure multi-objective objective
optimisation (keeping objectives separate with no aggregation). However, we
notice in our usecase that the order by which the execution time of these MCDA
techniques exceed the Indicator-Based selection is rather small (∼0.9 and ∼2.5
more execution time on average for MAUT and PROMETHEE-II respectively).

Therefore, we could claim that from an execution time perspective and in the
context of multi-objective feature selection in large software product lines such
as the ones studied in our paper, decision-makers should no longer be reluctant
to provide their preferences in advance to be embedded in the multi-objective
optimisation process.

5.2 Multi-Objective Performance Metrics

Knowing that using MCDA techniques in the multi-objective optimisation process
does not add a significant execution time overhead is good, but obtaining improved
results is better –despite not being the most important in our case as our goal is
to find more solutions that match decision-makers’ preferences. Therefore, we
would like to evaluate the impact of our approach in terms of performance and
quantify it using the different multi-objective metrics seen in Section 4.

Table 3 shows the average performances achieved by SATIBEA and SAT -
MCDA EA techniques (i.e., SAT ELECTRE-IV EA, SAT MAUT EA, SAT -
PROMETHEE-II EA) with respect to the quality metrics HV, IGD, GD, Epsilon
and Spread. We put in bold the best achieved performances per instance and
per metric. We also put (*) when results are not statistically significant between
SATIBEA and the best performing SAT MCDA EA technique (p-value ¡ 0.05
when evaluated using the non-parametric two-tailed Mann-Whitney U test).
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Table 3 clearly shows that SATIBEA achieves the best performances on
the metrics HV and IGD on all instances. SATIBEA also achieves the best
performances on Epsilon in 4 out of 5 instances on average. This is a clear
indication that SATIBEA maintains its supremacy with regards to very important
multi-objective performance metrics. This is quite understandable as SATIBEA’s
aim by design is to cover most of the search space, which yields better multi-
objective quality metrics performances. However, SAT MCDA EA algorithms
target solutions that better match the predefined preferences of the decision-
makers and leave large parts of the search space unprobed, which yields low
multi-objective quality metrics performances.

Table 3 also shows that SATIBEA does not always achieve the best results
with respect to the Spread metric. SAT ELECTRE-IV EA achieves the best
performance on Spread on 3 out of 5 instances on average. Although, Spread is a
secondary metrics and should not be interpreted alone without the other quality
metrics. Looking at SAT ELECTRE-IV EA’s performance in terms of HV, we
see that it is poor, which reduces the importance of its Spread performance.

Table 3 also shows that SATIBEA is not achieving the best GD on any instance
(achieved by SAT PROMETHEE-II EA ). This is an indication that most of the
solutions that are found by SAT PROMETHEE-II EA are non-dominated by the
solutions found by the other algorithms. However, given that the performance
of SAT PROMETHEE-II EA in terms of HV is poor, we can deduce that its
solutions are not diverse enough. While this might seem negative, we believe
that this is a good characteristic. Decision-makers would rather be provided
with several non-dominated solutions that are similar and better match their
preferences, rather than a set of non-dominated solutions covering a larger space,
but match their preferences less. Furthermore, SAT MAUT EA also achieves a
better performance than SATIBEA in terms of GD on 3 out of 5 instances on
average.

5.3 SAT MCDA EA’s Strictly Non-Dominated Solutions

With SAT PROMETHEE-II EA and SAT MAUT EA achieving good GD per-
formances, we would like to measure the ratio of non-dominated solutions found
by SAT MCDA EA algorithms, but missed by SATIBEA. We gather all non-
dominated solutions found over all iterations by each algorithm and perform a
pairwise non-dominance comparison. Table 4 shows the ratio (in percentage) of
solutions found by each SAT MCDA EA that are strictly non-dominated (neither
equal nor dominated) by any solution found by SATIBEA.

Table 4 confirms our assumption that many solutions found by SAT MAUT -
EA and SAT PROMETHEE-II EA are strictly non-dominated by those found
by SATIBEA. We see that SAT PROMETHEE-II EA finds the largest number
of solutions non-dominated by those found by SATIBEA (∼83% non-dominated
solutions on average, and 94% on Fiasco). Therefore, if decision-makers have
a prior knowledge of what makes a good software, they are better off using
PROMETHEE-II as a selection operator. While this will not yield optimal
multi-objective metrics, it will yield more solutions matching their preferences.
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Table 3: Comparison of the average performances achieved by SATIBEA and the
various SAT MCDA EA algorithms.

Dataset Metric SATIBEA SAT ELECTRE-

IV EA

SAT MAUT EA SAT PROMETHEE-

II EA

Linux Kernel

HV 0.136 0.124 0.123 0.134
IGD 0.010 0.016 0.016 0.012
GD 0.030 0.130 0.012 0.007
ε 1982 2047 2051 1991
S 1.16 1.24 1.21 1.19

eCos

HV 0.252 0.206 0.188 0.085
IGD 0.0071 0.0072 0.008 0.016
GD 0.0722 3.8714 0.0935 0.0031
ε 147 260 217 149
S 1.51∗ 1.30 1.33 1.55

Fiasco

HV 0.195 0.133 0.132 0.124
IGD 0.009 0.022 0.024 0.018
GD 0.065 0.237 0.076 0.008
ε 277 917 950 171
S 1.58 1.14 1.16 1.27

FreeBSD

HV 0.24 0.18 0.18 0.08
IGD 0.006 0.011 0.012 0.018
GD 0.091 0.156 0.066 0.004
ε 133 303 308 498
S 1.21 1.23∗ 1.20 1.21

uClinux

HV 0.893 0.89 0.891 0.805
IGD 0.054 0.055 0.056 0.060
GD 0.043 0.016 0.015 0.012
ε 598∗ 611 604 1199
S 1.067 1.229 1.198 1.003

Table 4: Ratio (in per cent) of strictly non-dominated solutions found over the 30
iterations by SATIBEA using one of the MCDA methods in comparison with the
solutions found by SATIBEA when using the default Indicator-Based method.

Dataset
SAT ELECTRE-IV EA

vs SATIBEA

SAT MAUT EA

vs SATIBEA

SAT PROMETHEE-II EA

vs SATIBEA

Linux Kernel 40 41 66

eCos 33 42 90

Fiasco 27 59 94

FreeBSD 26 48 92

uClinux 5 34 73
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6 Conclusion and future work

In this paper, we proposed using MCDA techniques directly within the multi-
objective search process by employing them as the selection operator. We have
evaluated their impact both in terms of induced execution time overhead and in
terms of quality of the obtained solutions. We have seen that using the MCDA
techniques introduces a non-significant overhead execution time with respect to
the execution time of the other operators that make up the evolution. However,
we have also seen that using the MCDA techniques within the search process
impacts negatively the performance of the algorithm with respect to various
multi-objective performance metrics with the exception of GD. We have confirmed
that the SAT MCDA EA algorithms perform particularly well with respect to
GD as they find a large number of solutions that match their preferences but that
are not dominated by the solutions found by SATIBEA. The insight obtained
from this study encourages us to deepen the investigation of combining MCDA
techniques with the multi-objective feature selection in SPL.
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Abstract. Understanding the phenomenon of disinformation and its
spread through the internet has been an increasingly challenging task,
but it is necessary since the effects of this type of content have their
impacts in the most diverse areas and generate more and more impacts
within society. Automated fact-checking systems have been proposed by
applying supervised machine learning techniques to assist in filtering fake
news. However, two challenges are still present, the first related to under-
standing disinformation in its subgroups. The second challenge is related
to the availability of datasets containing news classified between true and
false. This article proposes an exploratory analysis through unsupervised
algorithms and the t-SNE technique to visualize data with high dimen-
sionality, identify the subgroups present in the disinformation, and the
identification of possible outsiders between the classes. We also propose
a new Corpus in Portuguese containing 19446 news, classified as true
and false, and 15 linguistic features extracted from this dataset. Finally,
we propose to use two classification models using the Random Forest
techniques, with and without intruders. In the end, the model without
intruder achieved superior performance, reaching an accuracy of 97.33%

Keywords: Disinformation · Unsupervised Learning · Clustering

1 Introduction

Disinformation can change political opinions, influencing the results of elections,
contributing to the spread of diseases, causing problems in public health, and
even causing deaths with hate campaigns and generating extremist groups [13].
The growth of ”Fake News” was stimulated by the change in society, which
started to live more and more in a network [3], organized around interconnected
universes of digital communication driven by the internet. The network society
has generated a reduction in complexity and agility in the dispersion of content,
thus allowing news, whether true or false, written by any individual, to reach an
audience of hundreds of millions of readers [1].

One of the solutions that emerged in this fight against the disinformation
ecosystem is fact-checking, a service proposed by journalists that seek to identify

208



2 M. Marinho et al.

evidence, understand the context of the information and what can be inferred
from that evidence through a fact verification process [14]. However, due to the
complexity linked to this solution, the conclusion of the analyzed fact’s veracity
can take days [7]. This complexity creates a challenge, as human fact-checkers
are unable to keep up with the amount of disinformation and the speed with
which they spread, and in this way, the opportunity arises for the creation of
automated fact-checking systems (AFC).

Typically, AFCs are developed to assist in the classification activity, where
the news is labeled as true or false. In this type of activity, supervised machine
learning techniques are used in most cases, with a model previously trained from
a set of data containing the types of news evaluated. However, for the successful
construction of these models used in the AFC, two things need to be taken into
account: (i) identify the main characteristics that need to be taken into account
when evaluating the news and the strengths of these features in the process [12]
and identify the relationships between the variables input and output, as well
as the relationships between features and; (ii) the use of a diverse dataset since
the precision of the model generated by supervised machine learning is directly
related to the quality of the data contained in the classifier training dataset.

This paper aims to make an exploratory analysis of Fake.br Corpus [9], a
dataset related to disinformation, through the generation of clusters, to under-
stand: how the features are distributed in each cluster; the main characteristics of
these groups and; the relations of the features with the type of news (true/fake).
In this paper, we also present a new set of disinformation data with news in Por-
tuguese, increase the existing corpus of Fake.br, and perform analysis of possible
noisy data, which may hinder the process of generating the classification model.
In the end, we present the characteristics of these noisy data and compare the
results with and without noisy data.

Although the data already have a classification, the present paper seeks to
identify possible intrusive data existing in the data sets and understand the
characteristics existing in the subgroups related to disinformation and true news.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 offers the background theory about Hierarchical Clustering and
t-SNE. Section 4 describes the methodology. Section 5 shows the results. Finally,
Section 6 presents conclusions and future work.

2 RELATED WORK

In [11], the authors analyzed news features: n-grams, punctuation, psycholin-
guistics, legibility, and syntax. For each class, they proposed different classifiers
using a linear support vector machine (SVM). The authors observed that de-
pending on the dataset analyzed, a different category has the best performance.
In this case, the legibility and punctuation classes had a better performance.
The authors also considered only semantic characteristics and can conclude that
actual news tends to have more function words, negations, and express relativity.
On the other hand, the language used to report fake content uses more social and
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positive words and focuses on the present and future actions. Also, fake news
authors use more adverbs, verbs, and punctuation characters than legitimate
news authors.

Reis et al. [12] listed 11 categories for the evaluation of news and pro-
posed 294,292 models, each with 20 features randomly selected from the existing
classes. The work concluded that features related to the social media data class,
such as the number of shares or reactions related to the news, the credibility of
the domain, and characteristics that indicate political bias, are the most present
in the models. In these cases, the models obtained better performance in the
separation of trustworthy news and disinformation.

For the application of machine learning techniques, a fundamental require-
ment is a dataset capable of representing the problem in question. However, on
the theme of Disinformation, it was only in 2018 that the authors [9] were the
first to build a Corpus containing true and false news in Portuguese. Fake.br
Corpus, contains 7200 news items, divided equally between true news and disin-
formation, collected between the years 2016 and 2018. Among the themes present
in the data set, are politics and economics. The authors also made available a
set containing 25 characteristics, 21 of which related to linguistic issues.

3 Background Theory

In this section, we present the relevant concepts to allow the reader to understand
the proposal properly.

3.1 Hierarchical Clustering

The process of unsupervised learning in the generation of clusters consists of
dividing the data into groups so that the data present in the same cluster are
as similar as possible, and the difference between groups is as significant as
possible [6]. Clustering techniques can be divided into two categories: hierarchical
and non-hierarchical. Unsupervised techniques are distinguished, as they do not
constitute a specific number of groupings; however, they generate groups through
an increasing sequence of divisions or continuous group connections.

Hierarchical methods are composed of two classes of algorithms for generating
clusters: agglomerative clustering and divisive clustering [5].

Agglomerative clustering is a conventional clustering method that can pro-
duce an informative hierarchical structure of clusters. The algorithm starts with
a large number of small initial clusters. The agglomerative cluster iteratively
merges a pair of clusters with the highest affinity under a given criterion until
some stop condition is reached [4]. There are many conventional methods for cal-
culating the affinity between a pair of clusters, such as single linkage, full linkage,
medium linkage, and ward [2]. In this work, we use the ward link to reduce the
variance between the merged clusters. We used agglomerative clustering in this
work because we aim to analyze the purity of the formed clusters in different
aggregation levels.
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3.2 t-SNE

T-Distributed Stochastic Neighbor Embedding is a method for exploring high-
dimensional data, proposed by Maaten and Hinton [8]. Visual exploration is an
essential component of data analysis, as it allows the development of intuitions
and hypotheses for the processes that generated the data. Stochastic neighbor
embedding techniques calculate an N x N similarity matrix both in the original
data space and in the small dimension embedding space so that similarities form
a probability distribution over pairs of objects, these probabilities are usually
provided by a kernel Normalized Gaussian or Student-t calculated from the input
data [15].

T-SNE minimizes the divergence of the distribution that measures similari-
ties between pairs of the input objects and a distribution that measures similar-
ities between pairs of the corresponding low-dimension points in the embedding,
through a function that calculates the distance between a pair of objects, typi-
cally uses the Euclidean distance. Another critical parameter is perplexity, which
is used to compare probability models, the performance of the SNE is quite ro-
bust to changes in perplexity, and the typical values are between 5 and 50.

4 Methodology

In this section, we present the Fake.br Corpus, how the data preprocessing meth-
ods and the use of agglomerative clustering. After that, we discuss the dataset
proposed in this paper, how it was built, its final configuration, and the existing
features. Finally, the process of applying the t-SNE technique to identify regions
of conflict between true and false news will be discussed, as well as how we apply
the supervised technique to verify if there was a better convergence of the clas-
sifier after removing this news and applying the statistic tests in the validation
process between the existing classifiers.

4.1 Fake.br Corpus

This paper aims to understand the construction of disinformation in Brazil. In
this context, we found that there is a wide variety of datasets in the English
language. However, it is not easy to obtain this type of information in the Por-
tuguese language. The Fake.Br dataset [9] is the first with this purpose. The
language of the data set is Portuguese and contains 7200 news collected from
websites. The dataset is divided equally between fake and true news and grouped
into six categories: politics; tv and celebrities; society and daily news; science
and technology; economy and; religion.

The authors also made available a set with 25 features regarding each news.
Among them, we can cite the number of words, the number of verbs, and the
average sentence size. In the data set, the features’ types are distributed as
follows: 21 features are numeric with linguistic information, and four are cat-
egorical, which are related to the date of publication, author, news link, and
category.
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4.2 Pre-processing

After analyzing the distribution of features, we discarded the categorical fea-
tures. Since we observed that the information in them is irrelevant and does
not influence the model’s response, for example, taking the author as a param-
eter could bias the proposed model. Thus, instead of having clusters that group
true and false news, groups divided the authors or the categories of each news
item. Because of this, we used the 21 numerical features related to linguistic
characteristics.

Finally, we normalized the data using a Min-Max algorithm that outputs a
value in the range between 0 and 1. It allows an easy way to compare measured
values using different scales or measures.

4.3 Agglomerative Clustering

The clustering algorithm was applied using the scikit-learn toolkit [10]. We used
the following configurations: the amount of cluster equal to 16; the affinity is
the ward, and; the metric is the Euclidean distance. Then, we calculate each
cluster’s purity according to the majority of news belonging to a specific class,
which, in turn, labels that cluster. For example, suppose that we have a cluster
containing 100 news, 80 of which are true, and 20 are fake. Then, we label the
cluster as true with a purity of 80%.

We propose an evaluation of the purity of each cluster to understand: (i)
what are the characteristics of the purest, that is, that it contains only news of
the same classification; and (ii) identify which subgroups exist within each class
of classification, in order to understand the different behaviors that may exist
within disinformation and true news.

4.4 Brazilian Disinformation Corpus

To increase diversity and update Fake.br Corpus, this article proposed an up-
date with 12246 more news, collected in the following ways: (i) for a part of the
true news, three web crawlers were proposed, to automate the extraction of con-
tent from the Globo, Sistema Jornal do Commercio and Diário de Pernambuco.
Among the types of news, those related to politics and health were extracted,
as they are the most relevant topics at the moment due to the state elections
in November 2020 and the amount of disinformation generated in the health
area related mainly to treatments and ways of propagation of COVID-19. These
three communication vehicles were chosen because they are companies that do
not publish disinformation. (ii) For collecting a part of the disinformation news,
a web crawler was developed to extract content from Boatos.org, a service man-
aged by journalists to compile the fake content that circulates on the internet.
Finally, (iii) texts were extracted through Monitor do Whatsapp, a project that
provides texts extracted from public groups within the communication platform,
with themes related to politics. The classification of these texts was carried out
by a team of journalists with experience in the fact verification process, and only
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news related to disinformation was used in this work, as it was the class with
the least amount of examples. At the end of this collection process, the new data
set configuration can be seen in Table 1, containing 12127 true news and 7319
disinformation.

Table 1. Brazilian Disinformation Corpus configuration

Source Quantity

Fake.br Corpus - Fake 3600

Fake.br Corpus - True 3600

Globo 935

Sistema Jornal do Commercio 5661

Diário de Pernambuco 1931

Monitor do Whatsapp 887

Boatos.org 2832

Regarding the extracted characteristics, we initially attempted to replicate
those existing in Fake.br Corpus, however of the 21 numerical characteristics, 6
were not capable of replication because they did not beat their value with those
existing in the original data set, leaving the new set of data with 15 character-
istics, they were: number of tokens; words without punctuation; the number of
types; the number of uppercase; the number of verbs; the number of nouns; the
number of adjectives; the number of adverbs; the number of pronouns; pausal-
ity; the number of characters; average sentence length; average word length;
emotiveness; and diversity.

4.5 Outsiders Analysis

We proposed two analyzes using the technique for data exploration and visual-
ization of high-dimensional data, t-SNE, at the Brazilian Disinformation Corpus.
In the first evaluation, we used the Corpus classifications, making it possible to
identify conflicting regions, with intruders both from the real news inside the fake
news region, and the opposite. For the second evaluation, a new classification
was proposed using an unsupervised technique, called k-means. This analysis
aims to visualize the subgroups existing within each class and understand which
groups are more reliable to their class: purer, and which groups contain that in-
trusive data. For this, different values were tested in the cluster quantity, seeking
to find the quantity that best represented the problem, which in this case, is a
high purity value in all groups, and this value in the Brazilian Disinformation
Corpus was nine groups.

After identifying the intruders and an analysis of their characteristics, two
supervised classifiers were proposed: one with all Corpus data and; another with-
out the intruding elements. We aim to validate whether the removal of such news
would increase the classification accuracy, as the models would not be trained
with data that may be noisy. For this last stage, classifiers were generated using
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the Random Forest technique, as we have presented the latest work using Fake.br
Corpus, this technique performed well in the disinformation classification pro-
cess. For this evaluation, we used precision, recall, and F1. Besides, we used the
t-student test to verify if there was a statistically significant improvement among
the models.

5 Results

We carried out the initial analysis using the unsupervised technique at Fake.br
Corpus, to identify and understand the subgroups present in the truthful news
and the disinformation. We emphasize that it is not our intention to carry out
a classification process, as the data are already previously classified. Analyzing
the dendrogram (Figure 1) generated by the hierarchical clustering algorithm,
it is possible to observe that this technique was able to separate the two groups
contained in the dataset (fake and true news). In the first level (see Table 2),
we obtained a cluster with 93.82% purity with its data mostly belonging to the
class of true news and a second cluster with 93.70% purity, this being composed
mostly by false news. Thus, in general analysis, only 449 news items were grouped
erroneously, and this value corresponds to only 6.24% of the total data. In con-
trast, 93.76% of the news items were correctly separated between the generated
clusters.

Fig. 1. Dendrogram

Thirty clusters were formed, of which 18 clusters have the most accurate
news, and 12 clusters contain mostly fake news. This information reveals more
considerable variability in the characteristics belonging to the data of this class
within the true news. However, the true clusters ended up being repeated in
4 cases; that is, the lower level cluster is the same as the upper-level cluster.
This repetition may be evidence that these clusters contain strong characteris-
tics and therefore did not go through changes in the merges performed by the
agglomerative technique.

In general, of the 30 clusters proposed (Figure 1, 26 are more than 90% pure,
of these 13 clusters are more than 99%, and five are 100% pure. Analyzing the
perspective of classes: from the total of 26 clusters, 15 have the class of the true
ones, and 11 are fake clusters; of the 13 clusters, nine are true, and only four are
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fake and; of the five clusters with 100% purity, four are true, and only one is fake.
It reinforces the initial conclusion that the true clusters have a greater variety
in the characteristics’ values, so it has a larger number of clusters. However, this
information is different, consequently allowing a good separation between the
true news.

Analyzing clusters with 100% purity, these are the characteristics present in
each cluster: (i) in the only fake cluster, the feature that stands out from the
others is the number of links, this value is higher than in all others groups, that
is, the 462 news items in this group have a large number of links in the text; (ii)
the first of the four true clusters, consists of only six news items and these have
a high value in 13 of the 21 characteristics analyzed; (iii) the second cluster has
25 true news items, these have the values of 14 characteristics above the average,
with 13 characteristics with lower values than the previous cluster and with the
characteristic of the quantity of first and second personal pronouns with the
highest value between clusters and; (iv) the other two true clusters with 100%
purity is generated from the (ii) and (iii) cluster, that is, they have the same
characteristics previously presented.

Table 2. Purity from k = 2

Cluster Class True News Fake News Purity (%)

0 True 3373 222 93.82
1 Fake 227 3378 93.70

For the analysis of subgroups, we chose to analyze the dendrogram sheet con-
taining 16 groups, as it contains the largest number of divisions, thus generating
a more detailed (specific) level among the news within each macro class (fake
and true). In the disinformation group, it is possible to observe that there are
not many differences between the groups. The group with the most significant
difference is the one that has a high value in the number of links, and the rest
has a small variation in the characteristics of average word size, average sentence
size, and diversity. This was already expected, as stated earlier, were more true
than false groups were generated.

After the analysis the subgroups existing in the set of true news, we observed
that they are initially divided by the number of tokens, the number of words
without punctuation and the number of types. Another thing that distinguishes
them is the number of pronouns and the number of characters. Finally, the
higher the values in these characteristics mentioned above, the greater their
purity related to the true groups.

The second analysis was related to applying the t-SNE technique in the
dataset generated by this paper, the Brazilian Disinformation Corpus. In Figure
2, in blue, we have the points related to true news and, in red, disinformation.
Note that there is a separation zone between the groups; however, intruders are
in both classes. To understand, the characteristics of these news items that do
not belong to their zone, a cut was proposed in the reduced plan, where the
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Fig. 2. t-SNE Brazilian Disinformation Corpus

Table 3. Outsiders characteristics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 class

0,46 0,49 0,49 0,25 0,46 0,42 0,38 0,26 0,33 0,27 0,46 0,35 0,28 0,20 0,60 true

0,57 0,60 0,60 0,33 0,58 0,53 0,51 0,43 0,51 0,29 0,57 0,38 0,29 0,24 0,51 fake

region of each class of news was determined, and in this way, the news that did
not belong to their zone was classified as outsiders. The characteristics of these
news items can be seen in Table 3, where the class indicates which one it belongs
to and therefore, if the class is true, it means that it is the set of real news that
was in the region of fake news and vice versa and columns 1 until 15 represent
the features.

Analyzing the table of intruders, it is possible to understand the reason why
these news invaded regions that did not belong, because in the case of true
intruders, they are news that has a high value of diversity, and as seen earlier,
this is a characteristic of related news disinformation. On the other hand, the
disinformation classified as an intruder presented high values in most of the
features, which was mapped as a characteristic of the real news, for example,
the features of number of tokens, number of types, and numbers of nouns. In
total, 670 intruders were identified, grouped into 429 false and 241 true.

The third analysis was carried out by applying an unsupervised k-means
technique to find the subgroups existing in the Brazilian Disinformation Dataset.
In this case, the number of groups that best represented the set was 9, and from
that identification, we applied the technique of dimensionality reduction t-SNE
again. The result can be seen in Figure 3. Groups 3, 5, and 8, respectively, dark
green, light blue, and pink, are related to disinformation, and the rest related to
true news. Again, out of 9 proposed groups, the class with the largest number
of groups is true.

From the image, it is possible to notice that three groups are well separated
from the others, they are: 2; 3 and; 7, and 3 groups have their data in a conflict
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Fig. 3. t-SNE Brazilian Disinformation Corpus with k-means and k = 9

zone, the groups: 1; 5 and; 6. Making a more detailed analysis in groups 3 and 7,
which are the groups of the right and left extremities, and they have the following
characteristics: group 3, which is true news, has a high value in the first three
features (number tokens, word number without punctuation and number types);
and group 7, in turn, related to disinformation has a high value in the diversity
characteristic and a low value in the others.

Table 4. Supervised Results Brazilian Disinformation Dataset

Dataset Class Precision Recall F1 Accuracy

Raw
Fake 93.72 92.72 93.07

94.85
True 95.76 96.14 95.90

Outsiders
Fake 96.42 96.37 96.35

97.33
True 97.93 97.89 97.89

The last analysis was done by applying the supervised machine learning tech-
nique to assess the impact of generating a classifier using the intrusive data. For
this purpose, the Random Forest algorithm was used in the Brazilian Disin-
formation Dataset, and the results can be seen in Table 4. In all metrics, the
removal of intruders increased the accuracy from 94.85% to 97.33%. In a partic-
ular way, in each class, intruders’ absence contributed to an increase in precision
and recall metrics. Analyzing the F1 measure of the true class, the best result
reached 97.89%, and the disinformation class obtained 96.35%.

6 Conclusion

Society is increasingly connected through the internet, and news has been spread-
ing in a massive and fast way. The absence of filters has allowed an increase in
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the circulation of fake news. Automated fact-checking systems have gained global
attention to combat disinformation. It can be implemented by combining com-
putational intelligence techniques and journalistic concepts. Thus, it is possible
to create models capable of identifying probable false news and alerting the
network readers.

This article had the following objectives. The first is constructing a new Cor-
pus, entitled Brazilian Disinformation Corpus, containing 19446 news items and
15 language features. This new data set allowed for mapping more news related
to disinformation. The second objective is to apply unsupervised techniques to
identify existing subgroups in the categories of true and false news, reinforcing
once again that we did not intend to carry out a classification activity but rather
to have a deeper understanding of the Corpus. From the obtained results, we
observed that there are more subgroups related to true news than related to
disinformation, and it can also be concluded that within the pure subgroups,
the features that stood out the most were a high value in the number of links in
fake class and in the true news a high value in 13 out of 21 features proposed in
[9].

The third objective is the identification of the existing subgroups in the
Brazilian Disinformation Dataset. For this, we applied the k-means technique 9
clusters. Despite the difference in the datasets’ size, the number of true clusters
was greater than that of false ones and what differentiated the subgroups was
also the different values in the features of the number of tokens, word number
without punctuation, and number types. The true news had a high value, and
the fake news groups had a low value, and in the diversity feature, this behavior
was reversed. The fourth assessment was related to identifying intrusive news
through a technique of visualization of data of high dimensionality. We identified
the regions that characterized the real news and the fake news, and finally, we
extracted the intruder news. In the end, 670 news items were classified as in-
truders, and their characteristics show behavior that diverged from the pattern
found in each macro group (true and false). The true intruders had a high diver-
sity value and fake content a high value of token quantity features and number
of types.

Lastly, two classification models were proposed, generated from the Random
Forest algorithm, for the disinformation and true news classification process.
The first model contained all the news from the Brazilian Disinformation Corpus
and the second model was generated without the outsiders elements identified
through the analysis of the regions generated by the t-SNE technique. In the
end, the model without the existence of outsiders obtained statistically better
performance. Thus, we can conclude that removing the outsiders improved the
classifier efficiency, reaching an accuracy of 97.33% and F1 measure of 96.35%
for fake news and 97.89% for true news.

We plan to analyze entropy, purity, and statistical tests to discard the features
for this work highlighted as irrelevant in the clustering process. We believe we
can obtain even more concise results in the formation of supervised models. We
will also perform a more detailed analysis of the intruder data to understand
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whether or not there is a possible miss classification of this data. Finally, all of
this will contribute to constructing an automated fact verification system using
computational intelligence techniques.
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Abstract. This study is about the implementation and test of a branch-and-cut algorithm for an Inventory-
Routing Problem (IRP). The considered mathematical model and the dedicated problem instances have been 
published by C. Archetti and others. The performance of the implementation on present day computer hard-
ware has been compared to results published in literature several years ago. Also, the influence of the configu-
ration of the used optimizing software package as well as experiences with the publication of the mentioned 
researchers are documented in this paper. 

Keywords: Inventory Routing Problem, Logistics, Numerical Optimization, branch-and-cut, Gurobi. 

1 Introduction 

The supply chain facilitates the procurement of materials and transforms them into a finished product when it can 
be distributed to the customers. A supply chain interconnects the supplier, the distributor, the manufacturer, the 
logistic, the retailer and the end customer. This relation between suppliers till end customers involves a lot of 
processes and the involvement of the electronic supply chain management (e-scm). Supply chain management is 
nowadays a crucial factor for success. The role of IT is becoming more and more important and to stay competi-
tive it is inevitable to continuously improve the information system. Larger international companies are facing a 
lot of challenges like the growing complexity of electronic supply chain integration, the increasing customer 
demands and global competition (Jitpaiboon 2005). 

One part of the supply chain is the distribution of goods. In this study we will focus on the outbound logistic. 
Products have to be distributed between manufacturer, retailers and customers. In the oil industry gas has to be 
distributed to the gas stations. In the retailer market products have to be shipped to the retailer stores. What these 
market segments have in common is that customers will eventually buy from a competitor if products are not 
available. Depending on market segments products should never run out of stock. But costs incur by storing a 
product. Depending on the storing condition the product storage can be cheaper in the main warehouse than in 
the retailer’s warehouse. Larger companies, especially global operating corporations, have recognized that opti-
mizing their logistic can yield tremendous cost reductions. In the industry today new ways of relationships have 
been established in the supply chain. The regular scenario for inventory management is that each retailer will 
place orders to the supplier to prevent stock out (Retailer Managed Inventory). One of the new scenarios is the 
so-called Vendor Managed Inventory (VMI). This system moves the inventory planning responsibility to the 
supplier. The supplier has to monitor the inventory of each retailer and will replenish according to a defined re-
plenishment policy to prevent stock out as well as holding inventory costs as low as possible. The applied model 
is explained in more detail in Section 3. 

Due to its significance to the global industry the research sector has started to address these issues more than 
half a century ago.  One of the first problems that came up in the 1930s was the mathematical optimization prob-
lem of visiting all cities on a map with respect to find the shortest tour where each city must be visited only once. 
This problem is called Traveling Salesman Problem (TSP) and a solution represents a Hamiltonian Circle. The 
TSP is one of the most basic problems and has its limitations. For traveling to the destinations only one vehicle is 
available. The vehicle has unlimited capacity and there is no time limitation when a destination should be deliv-
ered (Bertazzi & Speranza 2013). Before the algorithm can start calculating all destinations must be known. 
Solving this simple model is already NP-hard and is classified in most literature as NP-complete shown by Pa-
padimitriou (Papadimitriou 1977). 

On top of the TSP another subproblem is in between to the Inventory Routing Problem (IRP). The Vehicle 
Routing Problem (VRP) extends the raw routing problem by introducing at least one or more vehicles, demand-
ing customers, and other constraints such as multiple suppliers, capacity constraints or time windows, which 
increases the complexity dramatically. Every vehicle starts and returns after a defined route to the same depot. 
Between the depot and every customer as well as between all customers is one link that has a specified cost. The 
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VRP algorithm minimizes the cost to fulfill the customers demand while satisfying the defined constraints (Ber-
tazzi & Speranza 2013). Constraints can be vehicle capacity limitation or the retailer opening hours. 

In addition to the VRP the Inventory Routing Problem (IRP) considers time horizon. The algorithm can run 
over a period of time, for example three days.  The calculation can be extended by the decision, if it is better to 
deliver a customer on day one, two or three. This increases the problem significantly because the quantity to be 
delivered can vary day by day. To simplify the problem and depending on the products to be delivered a con-
straint can be defined for example when a customer is visited the stock has to be filled up to the maximum level. 
The IRP is deciding day by day, which customer has to be served with how much of the specified product (Ber-
tazzi & Speranza 2013).  The results of the algorithm are optimized routes and costs.  Daily consumption is most 
of the time an assumption and has to be predicted. This implies in some scenarios a calculation cannot be made 
in advance. In some environments time can be essential.  There are many ways to calculate the companies IRP.  
The simplest way is the brute-force method which tries out every permutation. This solution needs a lot of com-
puting power and is not solvable for larger instances even not with distributed computing. 

The branch-and-cut method is a popular technique to solve many variations of integer linear problems (ILPs) 
and can be tailored to a specific integer programming problem (Mitchell 1999). There are different libraries or 
solvers available to find solutions in linear programming. The paper of Archetti et al. (Archetti, Bertazzi, Laporte 
& Speranza 2007) has used the CPLEX solver from IBM. This paper will give new benchmark results - produced 
with up-to-date consumer hardware - for the Vendor-Managed Inventory Routing Problem with a deterministic 
order-up-to level policy. In this implementation we have used the Gurobi solver package. The implemented exact 
branch-and-cut approach is explained in the paper of Archetti et al. (Archetti et al. 2007). These benchmarks are 
necessary to have a sound baseline for other solution approaches. They can be compared against that. 

This paper is structured as follows. Section 2 gives a literature survey of research papers which has been con-
sulted and read to become acquainted with the topic of inventory routing problems and the understanding of 
optimization algorithms. Section 3 introduces the reader into the chosen model for what an efficient algorithm is 
researched. Explanations and finding to certain algorithms have been given in Section 4 whereas Section 5 will 
list the received results and compare them to existing approaches. 

2 Literature Survey 

This is not meant to be a comprehensive review of literature in the field of inventory routing but rather give an 
overview of activity in the field and especially put in context some papers which are relevant for the specific 
model dealt with in this paper. The first studies on inventory routing problems were conducted in the eighties. 
Mentionable pioneering work was done by Bell, Dalberto, Fisher, Greenfield, Jaikumar, Kedia, Mack & Prutz-
man (1983), Federgruen and Zipkin (1984) or Blumenfeld, Burns, Diltz & Daganzo (1985).  Since then numer-
ous studies about different variants of inventory routing problems have been discussed in literature. A standard 
version of the problem does not exist. The discussed problems differ in several criteria. There are several litera-
ture surveys which make a classification of the problems presented in published research papers. Among them is 
Coelho, Cordeau & Laporte (2013) which applies these criteria to about 30 published inventory routing prob-
lems: time horizon (finite, infinite), structure (one-to-one, one-to-many, many-to-many), routing (direct, multi-
ple, continuous), inventory policy (maximum level, order-up-to level), inventory decisions (lost sales, back-
order, non-negative), fleet composition (homogeneous, heterogeneous), fleet size (single, multiple, uncon-
strained). Another survey by Andersson, Hoff, Christiansen, Hasle & Løkketangen (2010) classifies about 70 
publications in similar categories and elaborates on industrial aspects of combined inventory management and 
routing. 

The problem considered in this study was developed and solved with an exact algorithm by Archetti et al. 
(Archetti et al. 2007). This paper describes the first attempt to solve an inventory routing problem exactly. The 
authors developed a branch-and-cut algorithm and a set of problem instances. The instances have been published 
and used by other researchers in the field for benchmarking. The algorithm of Archetti et al. has later been ana-
lyzed and improved by Solyalı and Süral (2011). They use an a priori tour heuristic to simplify the routing deci-
sion and found their algorithm to perform better than the one initially proposed by Archetti et al. Also Coelho 
and Laporte (2013) reference the same model. They extended the model to a multi vehicle problem and devel-
oped an algorithm for solving multi vehicle instances to optimality. Archetti, Bertazzi, Hertz & Speranza (2012) 
also developed a hybrid heuristic based on the problem defined by Archetti et al. (2007). 
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3 Model 

The treated model - Vendor Managed Inventory Routing Problem with a deterministic order-up-to level policy - 
was introduced first by Bertazzi, Paletta & Speranza (2002). This kind of problem is still very hard to solve ex-
actly for bigger instances even though the computation power of a single consumer computer has increased mas-
sively. The defined model behind this paper is reduced to its main characteristics for simplification and compa-
rability to other benchmarks. 

A product is shipped from one common supplier to several retailers, where each retailer has a deterministic 
consumption in each time frame over a given finite time horizon. The goal is to find tours starting from the sup-
plier to only these retailers which have to be served at the respective time frame. The total costs, consisting of 
inventory and transportation costs, have to be minimized. 

3.1 Problem Description and Formulation  

A single product is shipped from a supplier s0 to a set of retailers M = {1, 2, ..., n} over a time horizon H. At 
each discrete time t ∈ T = {1, ..., H} a single product of quantity r0t is produced at the supplier and a quantity of 
rst is consumed at each retailer s ∈ M. A starting inventory level B0 at the supplier and Is0 at the retailers is given. 
The maximum inventory level at the supplier is not restricted whereas a retailer has a given maximum inventory 
level Us ≥ Is0. The current inventory level at time t for the supplier s0 is Bt ≥ 0 and for each retailer s the current 
inventory level at time t is Ist ≥ 0.  The inventory cost h0 for the supplier is charged in T’ = T ∪ {H + 1}.  The 
extended time horizon H + 1 considers that for the time frame before start, the inventory cost must be considered. 
Inventory costs are always calculated at the end of a time frame that means after replenishment and consumption 
took place.  The retailer s, s ∈ M, has inventory cost hs of and the total inventory cost over time horizon is 
then ∑ ℎ𝑠𝑠𝑡𝑡∈𝑇𝑇′ 𝐼𝐼𝑠𝑠𝑠𝑠. The inventory level after the time horizon is not relevant, which means that after the last time 
frame an unfeasible status can occur. Shipments can be performed at any time frame t ∈ T by one vehicle with 
capacity C. The vehicle’s capacity must not be exceeded at any time.  The transportation cost cij where cij = cji, i, 

j ∈ M’ = M ∪ {0} is calculated by the Euclidean distance 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  ��𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗�
2 + �𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑗𝑗�

2
. The inventory 

policy at the retailers is denoted by order-up-to level (VMIR-OU) that means if a retailer is visited 𝑦𝑦𝑡𝑡
𝑖𝑖𝑖𝑖 ∈ {0,1} at 

time t the inventory must be replenished up to maximum inventory level Us. In each time frame t ∈ T’ the suppli-
er replenishes its inventory by r0t. The objective function is to minimize the total transportation and inventory 
costs without violating any constraint. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �ℎ𝑜𝑜𝐵𝐵𝑡𝑡
𝑡𝑡∈𝑇𝑇′

+ ��ℎ𝑠𝑠𝐼𝐼𝑠𝑠𝑡𝑡
𝑡𝑡∈𝑇𝑇′𝑠𝑠∈𝑀𝑀

+ � � �𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡

𝑡𝑡∈𝑇𝑇′𝑗𝑗∈𝑀𝑀′,𝑗𝑗≠𝑖𝑖

                    
𝑖𝑖∈𝑀𝑀′

(1) 

3.2 Mathematical Formulation  

Variable Description 
M  Set of retailers 
MI = M ∪ {0} Set of supplier and retailers 
H Time horizon 
T Set of discrete time frames 
T I = T ∪ {H + 1} Set of discrete time frames including one time frame before delivery takes place 
C Vehicle capacity 
r0t Production at supplier at time t 
rst Consumption at retailer s at time t 
h0 Unit inventory cost at supplier 
hs Unit inventory cost at retailer s 
B0 Starting inventory at supplier 
Bt Inventory at supplier at time t 
Is0 Starting inventory at retailer s 
Ist Inventory at retailer s at time t 
Us Maximum inventory at retailer s 
cij Transportation cost from retailer i to retailer j 
xst Shipped quantity to the visited retailer s at time t 
zst 1 if retailer s at time t is visited. Otherwise, 0 
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    𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡  Arc from retailer i to retailer j traveled at time t 

 
MIP formulation. An exact definition of the model with all constraints and inequalities has been given by (Ar-
chetti et al. 2007). Next to the VMIR-OU policy they also consider other inventory policies such as VMIR and 
VMIR-ML. 
 
Constraints. The following constraints have been assessed as useful and efficient. 

Inventory and stock-out constraints 

                               𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡−1 + 𝑟𝑟0𝑡𝑡−1 − ∑ 𝑥𝑥𝑠𝑠𝑠𝑠−1,𝑠𝑠∈𝑀𝑀     𝑡𝑡 ∈ 𝑇𝑇′  (2) 

The supplier’s inventory level is calculated at time t by the level at time t-1 plus the produced quantity of prod-
ucts r0t-1 at time t-1, minus the sum of quantity shipped xst-1 to the retailers at time t-1. 

 𝐵𝐵𝑡𝑡 ≥ ∑ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠∈𝑀𝑀  (2) 

Supplier stock-out constraint: This constraint ensures that the inventory level at the supplier has sufficient quanti-
ty in stock for the upcoming deliveries at time t. 

 𝐼𝐼𝑠𝑠𝑠𝑠 = 𝐼𝐼𝑠𝑠𝑠𝑠−1 + 𝑥𝑥𝑠𝑠𝑠𝑠−1 − 𝑟𝑟𝑠𝑠𝑠𝑠−1, 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇′ where 𝑥𝑥𝑠𝑠0 = 𝑟𝑟𝑠𝑠0 = 0, 𝑠𝑠 ∈ 𝑀𝑀         (4) 

Retailer inventory definition: The retailer’s inventory level is given a time t by the level at time t-1, plus the 
quantity xst-1 delivered at time t-1, minus the used quantity rst-1 at time t-1. 

                                                           𝐼𝐼𝑠𝑠𝑠𝑠 ≥ 0, 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇′ (5) 

Replenishment constraints 

 𝑥𝑥𝑠𝑠𝑠𝑠 ≥ 𝑈𝑈𝑠𝑠𝑧𝑧𝑠𝑠𝑠𝑠 − 𝐼𝐼𝑠𝑠𝑠𝑠 , 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇 (6) 

 𝑥𝑥𝑠𝑠𝑠𝑠 ≤ 𝑈𝑈𝑠𝑠 − 𝐼𝐼𝑠𝑠𝑠𝑠 , 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇 (7) 

 𝑥𝑥𝑠𝑠𝑠𝑠 ≤ 𝑈𝑈𝑠𝑠𝑧𝑧𝑠𝑠𝑠𝑠 , 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇 (8) 

Order-up-to level: These constraints define that if a retailer s is served the quantity xst shipped to the retailers will 
fill up the inventory to the maximum Us. If a retailer s is served at time t the variable zst is 1 and otherwise equals 
0. 

Capacity constraint 

 ∑ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠∈𝑀𝑀 ≤ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇  (9) 

Capacity constraint: This constraint ensures that the delivered product quantity does not exceed the load capacity 
C of the transportation vehicle at any time t ∈ T’. 

Routing constraints  

       ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗∈𝑀𝑀′,𝑗𝑗<𝑖𝑖 + ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗∈𝑀𝑀′ ,𝑗𝑗>𝑖𝑖 = 2𝑧𝑧𝑖𝑖𝑖𝑖   (10) 

Routing constraint: When a retailer s is served at time t the vehicle must use a route leaving from retailer s at 
time t.  

(a) Subtour elimination constraint according to Fischetti, Gonzalez & Toth (1998) and (Gendreau, Laporte 
& Semet (1998) 

 ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗∈𝑆𝑆,𝑗𝑗<𝑖𝑖 ≤ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆 − 𝑧𝑧𝑘𝑘𝑘𝑘 , 𝑆𝑆 ⊆ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇 for some 𝑘𝑘 ∈ 𝑆𝑆𝑖𝑖∈𝑆𝑆  (11) 

(b) Traditional subtour constraint according to (Dantzig, Fulkerson & Johnson 1954) 

 ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗∈𝑆𝑆,𝑗𝑗<𝑖𝑖 ≤ |S| − 1, 𝑆𝑆 ⊆ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖∈𝑆𝑆  (12) 

(c) Improved subtour constraint (11) 
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        ∑ �∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡′𝑗𝑗∈𝑆𝑆,𝑗𝑗<𝑖𝑖      ≤ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖′𝑖𝑖∈𝑆𝑆 − 𝑧𝑧𝑘𝑘𝑘𝑘′𝑖𝑖∈𝑆𝑆 �,𝑡𝑡∈T′  𝑆𝑆 ⊆ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇, 𝑘𝑘 ∈ 𝑆𝑆 where 𝑆𝑆 is subtour of 𝑡𝑡   (13) 

 𝑥𝑥𝑠𝑠𝑠𝑠 ≥ 0, 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇 (14) 

Non-negativity constraint: When a retailer s is visited at time t the delivered good xst cannot be below zero. 

         𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ∈ {0,1}, 𝑖𝑖, 𝑗𝑗 ∈ 𝑀𝑀, j < i, 𝑡𝑡 ∈ 𝑇𝑇       (15) 
 
Path constraint: When the path between retailer i to retailer j is traveled at time t the value is equal 1 otherwise 0. 

         𝑦𝑦𝑖𝑖0𝑡𝑡 ∈ {0,1,2}, 𝑖𝑖 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇          (16) 
 
Path constraint: When the path between supplier and retailer i is traveled at time t and continued to another re-
tailer the value 𝑦𝑦𝑖𝑖0𝑡𝑡  is equal 1 and when same path is taken back to the supplier the value 𝑦𝑦𝑖𝑖0𝑡𝑡  is equal 2. If the path 
has not been taken yet the value 𝑦𝑦𝑖𝑖0𝑡𝑡  is zero. 
 

         𝑧𝑧𝑖𝑖𝑖𝑖 ∈ {0,1}, 𝑖𝑖 ∈ 𝑀𝑀′, 𝑡𝑡 ∈ 𝑇𝑇          (17) 
 

Retailer visit constraint: When the retailer zit is visited at time t the value is equal 1 otherwise zero. 
 
Inequalities 
The following inequalities have been assessed as useful and efficient. 

 𝐼𝐼𝑠𝑠𝑠𝑠 ≥ (1 − 𝑧𝑧𝑠𝑠𝑠𝑠)𝑟𝑟𝑠𝑠𝑡𝑡 , 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇 (18) 

When the retailer s is not visited (zst is equal zero) at time t, then the inventory level Ist must be at least equal to 
the product quantity rst consumed at time t. 

 𝐼𝐼𝑠𝑠𝑠𝑠−𝑘𝑘 ≥ �∑ 𝑟𝑟𝑠𝑠𝑠𝑠−𝑗𝑗𝑘𝑘
𝑗𝑗=0 ��1 − ∑ 𝑧𝑧𝑠𝑠𝑠𝑠−𝑗𝑗𝑘𝑘

𝑗𝑗=0 �, 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇, 𝑘𝑘 = 0, … , 𝑡𝑡 − 1 (19) 

This inequality extends the inequality (18) by the value k. The period of time retailers are not served is calculated 
by t − k. 

 𝐼𝐼𝑠𝑠𝑠𝑠 ≥ 𝑈𝑈𝑠𝑠𝑧𝑧𝑠𝑠𝑠𝑠−𝑘𝑘 − ∑ 𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡−1
𝑗𝑗=𝑡𝑡−𝑘𝑘 , 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇, 𝑘𝑘 = 1, … , 𝑡𝑡 − 1 (20) 

The inventory at a retailer Ist at time t must be equal or greater than the inventory at the last delivery minus the 
sum of consumed goods since then. 

 𝑧𝑧𝑠𝑠𝑠𝑠 ≤ 𝑧𝑧0𝑡𝑡 , 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇 (21) 

When any retailer s is visited at time t, zst is equal 1. Additionally, the supplier has to be included in the route at 
time t, z0t equals 1. This inequality is to prevent that a retailer can be visited without ever having visited the sup-
plier. 

 𝑦𝑦𝑖𝑖0𝑡𝑡 ≤ 2𝑧𝑧𝑖𝑖𝑖𝑖 , 𝑠𝑠 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇 (22) 

If the arc between supplier and retailer i has been traveled at time t then retailer i must be visited. 

 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑧𝑧𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇 (23) 

If the arc between retailer i and j has been traveled, then both retailers must be visited. 

3.3 Test instances 

Archetti et al. (2007) produced a large set of 160 test instances classified into three groups and five test 
sets. These instances are specific to the Vendor-Managed Inventory Routing Problem and are the most 
common and most used instances to benchmark. The three parameters which  identify  the  test  instance  
and  its  respective  properties  are  the  time  horizon h = {3, 6} that describes how many discrete time 
frames should be taken into account. The inventory costs c = {low, high} are grouped into two ranges of 
values. Each retailer and the supplier are in this inventory cost range. The low group has inventory costs 
between 0.01and 0.05 and the high group has inventory costs multiplied by 10 in the range of 0.1 to 0.5. 
The third parameter describes how many retailers s are involved. A test set i = {1, …, 5} contains every 
combination of the parameters mentioned before. To identify the file the following naming convention 
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has been applied: h[h][c][i]n[s]. For example, a test instance from test set 2 with 6 time frames, 30 retail-
ers and low inventory costs is named as h6low2n30. A complete test set with all combinations is listed at 
Table 2 on page 10. The whole collection could be obtained from (Coelho n.d.). Therefore, one test set 
consists of 32 test instances. Table 1 summarizes the properties within one test set. 

Table 1. Content of a test set provided by Archetti et al. 

Inventory cost c Time frames h Retailers s 
Low [0.01, 0.05] 
Low [0.01, 0.05] 
High  [0.1, 0.5] 
High  [0.1, 0.5] 

3 
6 
3 
6 

5 ≤ x ≤ 50, x   mod 5 = 0 
5 ≤ x ≤ 30, x   mod 5 = 0 
5 ≤ x ≤ 50, x   mod 5 = 0 
5 ≤ x ≤ 30, x   mod 5 = 0 

 
In this paper only the first two test sets have been fully benchmarked and compared. The results of the 

other three test sets are quite similar. Test set three and four have the same characteristics as test set 
two. And test set five has the same characteristics as test set one. 

4 Algorithm  

To solve the inventory routing problem the commercial solver package from Gurobi has been examined. The 
development has been done in C# and .NET 4.0. The developed implementation fully concentrates on the 
branch-and-cut algorithm and its limited options to fine tune the behavior of the solving process. The evaluated 
parameters are specific to the used solver package and do not allow further in-depth controlling. 

 
• CPU cores: The default setting is set to the amount of available physical cores. Intel based CPUs with 

Hyper-Threading support offer the double number of cores to use. 
• Heuristic ratio: The percentage of heuristic influence as a ratio of the total computation time to in-

crease finding feasible solutions. 
• Presolve capabilities: How much effort should be invested to try to tighten the model. 
• Solving strategy: Sets the focus with which strategy a feasible solution should be found. Strategy can 

be set to balanced, focus on finding fast feasible solutions, focus on optimality or focus on best 
bounds. 

• Branching priority: Without configuration the branching priority is set automatically and can change 
during the execution. Setting the branching priority for certain decision variables overrides the auto-
matic behavior and considers the set value with priority. 

 
Next to the configurable properties, optimization has been tried to apply through finding stronger constraints 

for the subtour elimination (see 4.1). Adding each subtour elimination constraint at the beginning is not feasible 
because of the number of available permutations to form the constraint. Next to time issues this will blow up 
computer memory at the time. According to best practice this kind of constraints will be added as soon as a vio-
lated intermediate solution will occur. Adding the additional constraint just after the solving process and resolve 
the model again has been deemed as insufficient. This has been proven by some simple runs of more complex 
test instances. Thus, the approach using a callback method is even more efficient. If the callback method recog-
nizes an optimal solution with a violated subtour, a lazy constraint according to (11) will be added.  In Apple-
gate, Bixby, Chvátal & Cook (2007) different approaches for subtour elimination are examined. For the test se-
ries in this paper the two most promising algorithms have been implemented. The proposed subtour elimination 
algorithm by (Archetti et al. 2007) is the separation algorithm of (Padberg & Rinaldi 1991) with the constraint 
definition of (11) that was introduced by (Fischetti et al. 1998) and (Gendreau et al. 1998). The side constraint k 
= arg maxj {zjt} has been also considered but simplified. Then zjt is a binary decision variable that is only 1 if j∈ 
M has been visited in time t∈T. Under the condition that j ∈ S and S ⊆ M, every k is part of the subtour and has 
been visited.  But we found a more efficient way to find an optimal solution faster. If a violated constraint will 
not only be added for the violated time frame but also be added to all time frames of the test instance, then an 
average time saving of factor 1.5 can be expected. The traditional subtour elimination algorithm (12) mostly used 
in TSP related problems has been proven as inefficient. 

Unfortunately, the consumed literature did not provide any exact implementation details even for the most 
critical part - namely the subtour elimination constraint. Based on a personal interpretation of the mathematical 
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equation the first implementations and all further deviates have been implemented as best possible. Also, source 
code was not available - neither on request - from the paper authors. 

4.1 Implementation of Subtour Elimination Constraints  

When the solver finds a feasible solution the callback method checks its routes for subtours. For this the algo-
rithm starts at the supplier (i = 0) and transits to a retailer j through an arc which is part of the tour (𝑦𝑦𝑜𝑜𝑜𝑜𝑡𝑡 ≥ 0). 
From this retailer j the tour proceeds through an arc to another retailer k (𝑦𝑦𝑗𝑗𝑗𝑗𝑡𝑡 = 1). In this way the arcs forming 
the route are followed from retailer to retailer until the supplier is reached again. Subtours exist when not every 
served retailer (zst = 1) has been visited by following these adjacent arcs. The retailers visited in this tour form a 
subtour but this subtour is not considered a real subtour because it contains the supplier. 

From the remaining retailers which are served but have no connection to the supplier a retailer is selected as 
the starting point of the first real subtour. From there adjacent arcs are followed until this retailer is reached 
again.  The visited retailers are then part of the first subtour.  If there are still retailers which are served but not 
part of the first subtour and also are not connected to the supplier again one is selected as the starting point for 
the second subtour. This procedure is repeated until all served retailers are part of a subtour. 
For every real subtour (subtour that does not contain the supplier) the following constraints are added to the 
model as lazy constraints: 

 ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗∈𝑆𝑆,𝑗𝑗<𝑖𝑖 ≤ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆𝑖𝑖∈𝑆𝑆 − 𝑧𝑧𝑘𝑘𝑘𝑘 , 𝑡𝑡 ∈ 𝑇𝑇 for every 𝑘𝑘 ∈ 𝑆𝑆 (24) 

where S is the set of retailers forming a subtour. Because similar subtours were likely to appear in multiple time 
frames the constraints (24) were not only constructed for the time frame t in which the specific subtour was 
found but for all t ∈ T. 

5 Results 

5.1 Algorithm Optimization Results 

Experiments showed that subtle adjustments to some of the settings of the Gurobi solver sometimes resulted in 
noticeable change of the calculation time. Also experimenting with attributes of variables resulted in unexpected 
changes of performance. 

With Gurobi the type attribute of variables can be defined as integer, binary or continuous. Variables also 
have attributes for upper and lower bound. The following two examples illustrate what was observed when ex-
perimenting with these attributes.  Changing the attribute type of the 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡   (vertex i to j is part of the route at time 
t) variables from binary to integer with a lower and upper bound of 0 and 1 respectively, improved the perfor-
mance of the program. Another example of the influence of variable attributes was observed with the xst variables 
(delivered quantity). Initially the upper bound attribute of these variables was set to the maximum inventory level 
Us which is valid for the VMIR-OU and VMIR-ML policy. Decreased calculation time was observed when the 
upper bound attribute was set to infinity. The maximum value for xst was restricted by the replenishment con-
straints (6) to (8) which were added to the Gurobi model. 

Calculations have been performed for several different combinations of settings for the Gurobi solver. A com-
parison of the program performance with different settings for the number of used CPUs was made. A selection 
of instances was calculated using four and eight CPUs.  The total time used for calculating the test set instances 
was lower when using eight CPUs. However, some instances were calculated faster with only four CPUs. A pat-
tern relating the computation times to the instance size by number of retailers or time frames was not recogniza-
ble, although instances with a rather long computation time were more likely to perform better with eight CPUs. 

To determine the influence of the branching priority settings of the solver, several computations were com-
pared. For each computation over a set of problem instances a different variable group was prioritized. That 
means the instance set was solved setting the branching priority attribute of for example all zst to 1 while for all 
other variables the attribute was 0 by default. Then the calculation was repeated for other variable groups, e.g., xst 
or yt with increased branching priority. 
The conclusion from these experiments was that the branching priority did not have any noticeable impact on the 
overall performance of the solving process. The usage of different solving strategies by alteration of the MIPFo-
cus parameter of the solver did not result in faster computation compared to the default setting. With the default 
setting the solver automatically balances between finding new feasible solutions and proving that the current 
solution is optimal. Neither emphasizing the first nor the later nor a focus on the bound improved the perfor-

226



mance of the calculation. The increase of time the solver should spend for feasibility heuristics by raising the 
according parameter had a negative impact on the computation time. 

5.2 Computation Results 

Computation results have been calculated on a system with a Microsoft Windows 8.1 64bit operating system and 
a quad core Intel i7 3770k CPU with 16GB of memory. The source code is written in C# .NET 4.0 and compiled 
with enabled code optimization. The MIP solving package is provided by Gurobi in version 6.0.4. Maximum 
running time is limited to 1800s (30min). Source code is available on request to the authors. 

The computation results are structured into two different benchmark categories. The first category compares 
the different implemented solutions discussed in section 4. The second category shows the evolution of computa-
tion power. The results are compared to the initial results from Archetti et al. (2007) and the newer result from 
(Coelho & Laporte 2014). 

The test runs in this paper have been executed with four different settings. At first the difference of computa-
tion time has been examined if different thread counts have been used (4T or 8T). The CPU in this test environ-
ment has four physical cores and the ability to use the Hyper-Threading technology from Intel which doubles the 
count of virtual cores. Other settings than four or eight threads has been proven to be not efficient. Lower counts 
don’t use the full power of the machine and higher counts have the disadvantage of rescheduling overhead within 
the process execution. Between the two chosen settings no overall winner has been evaluated. For some test in-
stances the setting with four threads performs better than using eight threads. And for some others the opposite is 
the case. But no prediction is possible which performs better according to retailer count or involved time frames. 
Regarding to all tests that have been done, the average computation time of the four thread count settings is 
slightly lower. The second setting was the introduction of the more efficient subtour elimination constraint (13) 
(SEE1 - Extended subtour elimination constraint (13) used / SEE0 - Original subtour elimination constraint (11) 
used). Implementation details of the new constraint are described in Section 4.1. This extension has been proven 
as more efficient. In most cases the computation time could be reduced. In some special cases the algorithm was 
able to find an optimal solution within the time limit for test instances, which are not solvable with the original 
subtour elimination constraint in time. 

Unfortunately, the implementation in this paper was not able to produce similar or better results in case of 
computation time as the results from Coelho et al. Even after this study it is not evident why the implementation 
is worse. Reasons could be the implementation itself or the chosen solver package from Gurobi. 

Table 2. Computation results for the self-implemented branch-and-cut algorithm 

Instance Costs 8T-SE E1 4T-SEE1 8T-SEE0 4T-SEE0 
t [s] G [%] t [s] G [%] t [s] G [%] t [s] G [%] 

h3high1n10 4’970.62 0  0  0  0  

h3high1n15 5’713.84 0  0  0  0  

h3high1n20 7’353.82 1  1  1  1  

h3high1n25 8’657.70 2  1  1  1  

h3high1n30 12’635.55 232  324  1’007  850  

h3high1n35 11’984.69 28  6  21  35  

h3high1n40 14’006.60 *1’800 2.7% *1’800 0.3% *1’800 1.6% *1’800 1.6% 
h3high1n45 14’661.20 40  83  342  213  

h3high1n5 2’149.80 0  0  0  0  

h3high1n50 15’235.80 *1’800 0.8% *1’800 0.6% *1’800 0.5% *1’800 1.8% 
h3low1n10 2’167.37 0  0  0  0  

h3low1n15 2’236.53 0  0  0  0  

h3low1n20 2’793.29 1  1  1  1  

h3low1n25 3’309.64 1  1  1  1  

h3low1n30 3’918.76 229  199  1’032  529  

h3low1n35 3’694.48 7  5  18  13  

h3low1n40 4’263.43 *1’800 0.9% *1’800 7.6% *1’800 1.9% *1’800 10.0% 
h3low1n45 4’369.38 67  70  134  145  

h3low1n5 1’281.68 0  0  0  0  

h3low1n50 4’629.92 *1’800 8.2% *1’800 1.3% *1’800 4.9% *1’800 5.6% 
h6high1n10 8’870.15 1  1  4  3  

h6high1n15 12’118.83 2  1  2  12  

h6high1n20 14’702.95 329  141  134  159  

h6high1n25 15’581.47 16  7  51  75 5.0% 
h6high1n30 23’184.00 *1’800 4.8% *1’800 3.9% *1’800 n/a *1’800  
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h6high1n5 5’942.82 0  0  0  0  

h6low1n10 4’499.25 1  1  1  2  

h6low1n15 5’462.68 1  1  2  2  

h6low1n20 6’490.18 466  128  353  159  

h6low1n25 7’095.86 92  35  138  69  

h6low1n30 8’319.59 *1’800 19.4% *1’800 10.8% *1’800 7.1% *1’800 1.9% 
h6low1n5 3’335.24 0  0  0  0  

 
Average [s] 

  
385 

 
369 

 
439 
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Solved 26 / 32 26 / 32 26 / 32 

30  32 

* = Not able to solve test instance to optimality within time limit 

Table 3. Computation result comparison - Current implementation vs. Archetti vs. Coelho et al. 

Instance Costs 4T-SS E1 Archetti Coelho et al. 
t [s] G [%] t [s] G [%] t [s] G [%] 

h3high2n10 4’803.17 0  0  0 
h3high2n15 5’821.04 0  0  1 
h3high2n20 7’385.03 1  10  6 
h3high2n25 9’266.87 1  14  9 
h3high2n30 11’351.36 324  164  18 
h3high2n35 10’706.91 6  199  24 
h3high2n40 11’722.58 *1’800 2.7% 1’003  74 
h3high2n45 13’675.96 83  1’205  76 
h3high2n5 1’959.05 0  0  0 
h3high2n50 15’453.80 *1’800 0.8% *1’800 n/a 148 
h3low2n10 2’510.13 0  0  2 
h3low2n15 2’506.21 0  0  0 
h3low2n20 2’799.90 1  12  7 
h3low2n25 3’495.97 1  25  7 
h3low2n30 3’737.11 199  84  13 
h3low2n35 3’796.80 5  173  27 
h3low2n40 4’166.95 *1’800 0.9% 1’500  74 
h3low2n45 4’226.82 70  1’133  38 
h3low2n5 1’176.63 0  0  0 
h3low2n50 4’919.75 *1’800 8.2% *1’800 n/a 235 
h6high2n10 8’569.73 1  11  7 
h6high2n15 11’932.10 1  22  6 
h6high2n20 14’646.96 141  1’536  470 
h6high2n25 16’823.20 7  578  35 
h6high2n30 20’090.29 *1’800 4.8% *1’800 n/a 802 
h6high2n5 5’045.91 0  0  1 
h6low2n10 5’236.98 1  7  16 
h6low2n15 5’494.74 1  39  10 
h6low2n20 6’082.54 128  *1’800 n/a 688 
h6low2n25 7’484.84 35  548  27 
h6low2n30 7’761.53 *1’800 19.4% *1’800 n/a 1’190 
h6low2n5 2’722.33 0  0  1 

 
Average [s] 

  
369 

 
539 

 
125 

Solved 26 / 32 27 / 32 32 / 32 

* = Not able to solve test instance to optimality within time limit 
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Table 4. Computation results for the self-implemented branch-and-cut algorithm 
 

Instance Costs 8T-SE E1 4T-SEE1 8T-SEE0 4T-SEE0 
t [s] G [%] t [s] G [%] t [s] G [%] t [s] G [%] 

h3high2n10 4’803.17 0  0 0  0  

h3high2n15 5’821.04 1  0 1  1  

h3high2n20 7’385.03 1  1 1  1  

h3high2n25 9’266.87 85  69 89  85  

h3high2n30 11’351.36 8  50 31  14  

h3high2n35 10’706.91 3  2 3  4  

h3high2n40 11’722.58 128  187 570  456  

h3high2n45 13’675.96 338  119 262  244  

h3high2n5 1’959.05 0  0 0  0  

h3high2n50 15’453.80 702  1’191 1’250  422  

h3low2n10 2’510.13 0  0 0  0  

h3low2n15 2’506.21 0  0 0  1  

h3low2n20 2’799.90 1  1 1  1  

h3low2n25 3’495.97 60  48 126  262  

h3low2n30 3’737.11 67  11 41  35  

h3low2n35 3’796.80 23  3 3  3  

h3low2n40 4’166.95 90  257 1’119  783  

h3low2n45 4’226.82 428  303 232  349  

h3low2n5 1’176.63 0  0 0  0  

h3low2n50 4’919.75 246  462 386  408  

h6high2n10 8’569.73 1  0 1  0  

h6high2n15 11’932.10 2  2 10  11  

h6high2n20 14’646.96 16  5 79  46  

h6high2n25 16’823.20 1’352  1’432 1’204  *1’800 0.3% 
h6high2n30 20’090.29 287  417 215  191  

h6high2n5 5’045.91 0  0 0  0  

h6low2n10 5’236.98 0  0 1  1  

h6low2n15 5’494.74 1  2 2  16  

h6low2n20 6’082.54 12  9 41  32  

h6low2n25 7’484.84 *1’800 0.9% 419 *1’800 1.1% *1’800 1.0% 
h6low2n30 7’761.53 711  182 437  240  

h6low2n5 2’722.33 0  0 0  0  

 
Average [s] 

  
199 

 
162 

 
247 

 
225 

Solved 31 / 32 32 / 32 31 / 32 

31  32 

* = Not able to solve test instance to optimality within time limit 
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Table 5. Computation result comparison - Current implementation vs. Archetti vs. Coe-
lho et al. 

Instance Costs 4T-SSE1 Arche etti Coelho et al. 
t [s] G [%] t [s] G [%] t [s] G [%] 

h3high2n10 4’803.17 0 0  0 
h3high2n15 5’821.04 0 1  3 
h3high2n20 7’385.03 1 8  5 
h3high2n25 9’266.87 69 47  7 
h3high2n30 11’351.36 50 130  20 
h3high2n35 10’706.91 2 97  21 
h3high2n40 11’722.58 187 449  29 
h3high2n45 13’675.96 119 553  145 
h3high2n5 1’959.05 0 0  0 
h3high2n50 15’453.80 1’191 1’782  251 
h3low2n10 2’510.13 0 0  0 
h3low2n15 2’506.21 0 1  2 
h3low2n20 2’799.90 1 6  7 
h3low2n25 3’495.97 48 53  16 
h3low2n30 3’737.11 11 128  18 
h3low2n35 3’796.80 3 74  23 
h3low2n40 4’166.95 257 369  38 
h3low2n45 4’226.82 303 928  158 
h3low2n5 1’176.63 0 0  0 
h3low2n50 4’919.75 462 1’235  133 
h6high2n10 8’569.73 0 7  4 
h6high2n15 11’932.10 2 31  6 
h6high2n20 14’646.96 5 354  37 
h6high2n25 16’823.20 1’432 1’732  113 
h6high2n30 20’090.29 417 *1’800 n/a 197 
h6high2n5 5’045.91 0 0  1 
h6low2n10 5’236.98 0 4  2 
h6low2n15 5’494.74 2 22  8 
h6low2n20 6’082.54 9 282  52 
h6low2n25 7’484.84 419 1’710  222 
h6low2n30 7’761.53 182 *1’800 n/a 220 
h6low2n5 2’722.33 0 0  1 

 
Average [s] 

  
162 

 
425 

 
54 

Solved 32 / 32 30 / 32 32 / 32 

* = Not able to solve test instance to optimality within time limit 
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6 Conclusions 

The initial idea of this research project was to do experiments with a heuristic to solve 
a problem in the field of inventory routing. Probably a heuristic, ideally with problem 
instances for bench- marking, could be found and improved. However, the search in 
literature for such a heuristic was not successful, but problem instances for an inven-
tory routing model could be found. The problem instances were created during the 
development of an exact branch-and-cut algorithm for solving an inventory routing 
problem by (Archetti et al. 2007). 

With the existence of an optimal solution a heuristic could be benchmarked against 
it. For a benchmark to be valid the computing environment would have to be similar. 
Because the results by Archetti et al. were calculated some years ago and the algo-
rithms implementation was not available, the work concentrated on re-implementing 
the branch-and-cut algorithm. Due to the limited time horizon for this research project 
the work concentrated on the exact algorithm and its implementation. 

The algorithm was implemented using the Gurobi Optimizer software package. It 
was then run against the mentioned problem instances and the outcomes were com-
pared to results available in literature. In general, we found the optimal solution fast-
er, which is undoubtedly due to the better performance of the computer hardware and 
maybe, also to the advancement of the solver software (although not the same prod-
ucts were used than in other papers).  However, for bigger instances the computation 
time significantly exceeded earlier results if they were at all solvable in the given time 
limit.  It is not quite clear why this is the case.  Probable causes could lie in the inter-
nals of    the used solver software. We also assume that the detailed handling of the 
subtour elimination constraints could be different.  The description of these con-
straints in the referred literature was not detailed enough for us to be clear on how 
exactly these were constructed and implemented. 

Several experiments were made with solver specific settings and variable argu-
ments.  These tests showed that the performance of the calculation depends a lot on 
the configuration of the underlying solver software and on the specific problem in-
stance. 
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Abstract

This paper presents a new approach for bi-objective continuous optimization
based on the exploitation of available gradient information. Given any two
Pareto solutions, the proposed algorithm integrates the multiple gradient de-
scent algorithm (MGDA) to carry out a path-relinking in the objective space
using a retroactive process. It can be used as an intensification procedure for
any multi-objective metaheuristic. Using the anchor solutions as input Pareto
solutions, the algorithm can approximate the whole Pareto front.

The proposed PR-MGDA (Path-Relinking MGDA) algorithm shows its effi-
ciency in the generation of evenly distributed solutions in the Pareto front con-
necting two given Pareto solutions in the objective space. Considering the two
anchor solutions, the algorithm outperforms popular evolutionary algorithms
both in terms of the quality of the obtained Pareto fronts (convergence, diver-
sity and spread) and specially the search time.

Keywords: Path-relinking, Bi-objective Optimization, Gradient methods,
MGDA algorithm, Anchor points.

1. Introduction

Optimization problems encountered in practice are seldom single-objective.
In general, there are many conflicting objectives to handle: for instance, to
minimize the cost and to maximize the quality (e.g. physic, mechanic, service).
Indeed, many diverse areas (networking, computational biology, logistics and
transportation, engineering design, finance, environment among others) are con-
cerned by multi-objective optimization problems (MOPs). The optimal solution
for MOPs in not a single solution as in single-objective optimization problems,
but a set of solutions defined as Pareto optimal solutions. A solution is Pareto
optimal if it is not possible to improve a given objective without deteriorat-
ing at least another objective. This set of solutions represents the compromise
solutions between the different conflicting objectives.

1The ELSAT2020 project is co-financed by the European Union with the European Re-
gional Development Fund, the French state and the Hauts de France Region Council
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Gradient based methods are widely used for solving single-objective opti-
mization problems, with or without constraints. However, for MOPs, this is
less well established. In order to solve MOPs using gradient based methods,
a popular strategy is the weighted sum formulation (WSF), which consists in
combining all the objectives into a single objective using a linear agregation
method. Multiple solutions can be obtained by varying the weight coefficients
among the objective functions to hopefully generate different Pareto solutions.
Many other scalarization functions have been used in the literature, such as
the normal boundary intersection (NBI) [1], normal constraint method (NC)
[2], physical programming method (PP) [3], goal programming (GP) [4], ε-
constraint method [5], and the directed search domain (DSD) [6, 7]. Another
gradient based strategies are used in memetic algorithms in which we hybridize
multi-objective evolutionary algorithms (MOEAs) with local search strategies
where gradient information is used to built a Pareto descent direction [8]. For
instance, Harada et al. proposed a new gradient based local search method
called the Pareto Descent Method, based on random selection of search direc-
tions among Pareto descents [9]. Kim et al. presented a directional operator
to further enhance convergence of any MOEAs by introducing a local gradi-
ent search method to multi-objective global search algorithms [10]. Recently,
Lara et al. compared hybrid methods with a new local search strategy without
explicit gradient information and showed that using the gradient information
was beneficial [11]. Many other works propose pure gradient based methods
for MOPs. In [12][13][14], a common descent direction is computed along all
objectives. For instance, the multiple gradient descent algorithm (MGDA) was
developed as an extension of the steepest descent method to MOPs [12]. In
[15], an analytical description of the entire set of descent directions, that can be
integrated in a new gradient based method for MOPs, have been presented.

Without loss of generality, we assume that all objectives are to be minimized,
then we consider a MOP of the form:

min
X∈S

F(X) = (f1(X), · · · , fm(X))
T

(1)

where:
fk : IRn −→ IR, for k ∈ {1, · · · ,m}, denotes the objective functions, S is the

decision space: S =
n∏
i=1

[li, ui], X is the decision vector with n decision variables:

X = (x1, · · · , xn) ∈ IRn,.
For the convenience of later discussion, we introduce some basic concepts:

Definition 1. Pareto dominance: letX = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn)
be decision vectors (solutions). Solution X is said to dominate solution Y , de-
noted as X � Y , if and only if :

∀i ∈ [1,m] : fi(X) ≤ fi(Y )) ∧ (∃j ∈ [1,m] : fj(X) < fj(Y ) (2)

Definition 2. Pareto optimal solution: a solution X is Pareto optimal if it is
not dominated by any other solution which means there is no other solution

2
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Y ∈ S such that Y � X.

Definition 3. Pareto Set & Pareto front: the set of all Pareto optimal solutions
is called Pareto set (PS). The corresponding set of Pareto optimal objective
vectors is called Pareto front (PF).

In this paper, we propose a new gradient based approach for path-relinking
in bi-objective optimization problems using two complementary dynamics: The
MGDA gradient approach combined to a backtracking approach. Starting with a
couple of Pareto solutions (e.g. anchor points or any potential Pareto solutions)
the proposed algorithm alternates the two approaches in a way that generates a
zigzag move along the PF connecting the two Pareto solutions. Starting from a
Pareto solution, a MGDA descent is first applied locally and then a reverse move
is applied to get a new solution from which we operates again a new MGDA
descent (toward the PF) and so on until meeting the second Pareto solution.

The remainder of this paper is organized as follows. Section 2 is a brief
presentation of the MGDA algorithm. Section 3 describes our proposed path-
relinking approach. Section 4 reports the computational results. Finally, Section
5 presents the conclusions and future research perspectives.

2. The MGDA algorithm

The Multi-Gradient Descent Algorithm (MGDA) is an extension of the clas-
sical Gradient Descent Algorithm to MOPs [16]. The main idea of MGDA is
to identify a direction common to all criteria along which the value of every
objective improves. For a MOP minimization problem we seek a descent di-
rection common to all criteria. This algorithm is proved to converge towards a
Pareto stationary solution. The common descent vector is defined as the unique
element minimizing the norm in the convex hull U of the gradients of each
objective, where U is defined for a given x ∈ IRn as:

U = {ω ∈ IRn, ω =

n∑

i=1

αi∇fi(x),

n∑

i=1

αi = 1} (3)

Indeed, since U is a closed, bounded and convex set associated in the affine
space IRn, then U admits a unique element of minimum norm, say δ. Two cases
are possible:

• δ = 0, and then x represents a Pareto-stationary solution, a necessary
condition for Pareto-optimality.

• δ 6= 0, and the directional derivatives of the objective functions satisfy the
inequalities:

(∇fi, δ) ≥ ‖ω‖2 (4)

Hence, −δ is a descent direction common to all the objective functions.

The MGDA procedure is given in the following algorithm:

3
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Algorithm 1 : MGDA procedure

1: Solution initialization X = X0

2: Evaluate n objective fi(X) ; ∀i = 1 · · ·n; Compute the normalised gradient
vectors δi = ∇fi(X)/Si; ∀i = 1 · · ·n;

3: Determine the minimal-norm element δ in the convex hull U ;
4: If δ = 0 ( or under a given tolerance ) , stop ;
5: Else perform line search to determine the optimal step size ρ
6: Update solution X to X − ρδ

3. The proposed PR-MGDA path-relinking algorithm

3.1. Principle and motivation
Starting from a giving solution (e.g. Potential Pareto solution), the MGDA

allows to converge to a stationary Pareto point following a direction of common
descent constructed by linear combination of the gradients of the involved ob-
jectives. The major drawback of the MGDA algorithm is that it can easily be
trapped on a local Pareto front because of Pareto stationarity which exhausts
the common direction of descent as we approach a Pareto (local) front. There-
fore this method is ineffective on MOPs presenting a multi-modality, as for the
the gradient descent in the presence of multi-modality in the single-objective
context.

On the other hand, if the starting solution is close to the Pareto front then
the MGDA succeeds in reaching the FP. If we move back locally from this
solution using a direction other than the direction of descent used by MGDA,
one can obtain a new starting solution which is different from the first. Hence,
by applying the MGDA to reach a new solution on the Pareto front, one can
iterate the process again to carry out a path-relinking between any two Pareto
solutions, as shown in Fig.1.

f2

f1

backtracking move

MGDA dynamic

Figure 1: Alternation of MGDA/backtracking dynamic
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f2

f1

Vertical Ascent
MGDA dynamic

Pareto Solution
(or anchor point)

f2

f1

horizontal Ascent
MGDA dynamic

Pareto Solution
(or anchor point)

Figure 2: Illustration of Retro-MGDA mechanism

Our proposed path-relinking strategy is able to capture the Pareto front
which connects any pair of Pareto solutions. It can be used as an intensification
procedure for any multi-objective metaheuristic. To approximate the whole
Pareto front, one can use the Anchor solutions as the starting Pareto solutions
(Fig.2).

3.2. Our gradient-based path-relinking strategy

The path-relinking strategy is based on controlling moves on the objec-
tive space by using the gradient information. Consider a solution X such as
(∇f1(X),∇f2(X)) 6= (0, 0). Let ηi = ‖∇fi(X)‖, and consider the normalized
gradients: δi = ∇fi(X)/ηi Let α =< δ1, δ2 > and t ∈ IR. Consider the com-
bined gradient direction δt built on the two gradients and defined as:

δt = tδ1 + (1− t)δ2 (5)

Due to the linear approximation, for a small enough step λ:

F (X + λδt)− F (X) ' λδt∇F (X) (6)

But:
δt∇F (X) = δ1(η1δ1, η2δ2)T = (η1δtδ1, η2δtδ2)T (7)

Thus:
F (X + λδt)− F (X) ' λ(η1δtδ1, η2δtδ2)T (8)

In the objective space, we say that the displacement is vertical if:

f1(X + λδt)− f1(X) = 0. (9)

Likewise, we say that the displacement is horizontal if:

f2(X + λδt)− f2(X) = 0 (10)

Hence, to get locally a vertical displacement, one should move along δtv such
that η1δtδ1 = 0 or δtδ1 = 0. But:

δtδ1 = (tδ1 + (1− t)δ2)δ1 = tδ21 + (1− t)δ1δ2 = t+ (1− t)α (11)

5

238



Thus δtv corresponds to
tv + (1− tv)α = 0, (12)

which means:
tv =

α

α− 1
=

< δ1, δ2 >

< δ1, δ2 > −1
(13)

Likewise, to get locally a horizontal displacement, one should move along
δth such that η1δtδ1 = 0 or δtδ1 = 0. But:

δtδ2 = (tδ1 + (1− t)δ2)δ2 = tδ1δ2 + (1− t)δ21 = tα+ 1− t = t(α− 1) + 1 (14)

Thus δth corresponds to

1 + (1− α)th = 0, (15)

which means:
th =

1

α− 1
=

1

< δ1, δ2 > −1
(16)

Besides the two directions δh and δv, we can also consider the transverse
direction δ⊥ = 1

2 (δ2− δ1) which has the particularity of being orthogonal to the
direction of descent δ = 1

2 (δ1 + δ2). Indeed:

δ · δ⊥ =
1

2
(δ2 − δ1) · 1

2
(δ1 + δ2) =

1

4
(‖δ2‖2 − ‖δ1‖2) = 0 (17)

The proposed path-relinking gradient-based algorithm (PR-MGDA) is de-
tailed below:

Algorithm 2 : PR-MGDA pseudo code

1: Input : F, λ, (MGDA stepsize), α (backtracking stepsize)

2: Output: RND : Approximation of the PF

3: determine the anchor points X∗1 , X
∗
2 , which represent the solutions of single-

objective problems X∗i = Argmin
X∈S, li≤xi≤ui

fi(X) (see Fig. 2).

4: Set X = X∗2 (or X = X∗1 with horizontal backtracking scenario)

5: Set Xp = X; Y = F (X); Y s = F (X∗1 )

6: Set α = 0.005× ‖F (X∗2 )− F (X∗1 )‖;
7: while Y1 > Y s1 do

8: Compute the normalized gradients of the two objectives: δi = ∇fi(X)/ηi
9: Compute the vertical direction using equations (5,13): δt = tvδ1 + (1− tv)δ2.

10: Normalize the vertical direction δt = δt/‖δt‖
11: Compute the transverse displacement according to : Xd = X + αδ⊥

. We can also consider a variant with a vertical displacement involving δv
12: Update the current solution X by applying the MGDA algorithm to Xd :

Xd = MGDA(X,λ)

13: Update the current objective: Y = F (X)

14: end while

6
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4. Computational experiments

4.1. Parameters setting and performance indicators

The input of the PR-MGDA algorithm is a pair of any two potential Pareto
solutions. In this paper, we have used the anchor solutions to approximate
the whole Pareto front using path-relinking. Hence, one can use any single-
objective algorithm to approximate the anchors points. In our experiments, we
use a genetic algorithm (GA)2 to handle this issue.

The step size of the MGDA move is set to λ = 0.01. This parameter config-
uration was adopted for all the experiments. The algorithm have been run on
each test problem for 10 times.

In order to evaluate the performance of the proposed PR-MGDA algorithm,
seven complementary test problems are selected from the literature: ZDT1,
ZDT2, ZDT3, ZDT4, ZDT6, Pol and Kur. These problems are covering different
type of difficulties and are selected to illustrate the capacity of the algorithm
to handle diverse type of Pareto fronts. In fact, all these test problems have
different levels of complexity in terms of convexity and continuity. For instance,
the test problems KUR and ZDT3 have disconnected Pareto fronts; ZDT4 has
too many local optimal Pareto solutions, whereas ZDT6 has non convex Pareto
optimal front with low density of solutions near Pareto front.

Three performance measures were adopted in this study: the generational
distance (GD) to evaluate the convergence, the Spacing (S) and the Spread (∆)
to evaluate the diversity and cardinality.

• The convergence metric (GD) measure the extent of convergence to the
true Pareto front. It is defined as:

GD =
1

N

N∑

i=1

di, (18)

where N is the number of solutions found and di is the Euclidean distance
between each solution and its nearest point in the true Pareto front.

• The Spread ∆, beside measuring the regularity of the obtained solutions,
also quantifies the extent of spread in relation to the true Pareto front.
The Spread is defined as:

∆ =

df + dl +
N∑
i=1

|di − d|

df + dl + di + (N − 1)d
. (19)

where di is the Euclidean distance between two consecutive solutions in
the obtained set, df and dl denotes the distance between the bound-
ary solutions of the true Pareto front and the extreme solutions in the
set of obtained solutions, d denotes the average of all distances di, i =
1, 2, · · · , N −1 under assumption of N obtained non-dominated solutions.

2Available in the yarpiz library www.yarpiz.com.
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• The Spacing metric S indicates how the solutions of an obtained Pareto
front are spaced with respect to each other. It is defined as:

S =

√√√√ 1

N

N∑

i=1

(di − d)2 (20)

4.2. Computational results

The proposed algorithm PR-MGDA is compared with three popular evo-
lutionary algorithms: MOEA/D [17], NSGA-II [18] and PESA-II [19] 3. The
obtained computational results are summarized in Table 1 in term of the mean
and the standard deviation (Std) of the used metrics (GD,S,∆), the average
number of Pareto solutions found (NS), the average number of function evalu-
ations (FEs), the average execution time in seconds (Time).

(a) PF captured by PR-MGDA for ZDT1 problem (b) PF captured by PR-MGDA for ZDT2 problem

3MATLAB implementation obtained for the yarpiz library available at www.yarpiz.com.
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(c) PF captured by PR-MGDA for ZDT3 problem (d) PF captured by PR-MGDA for ZDT4 problem

(e) PF captured by PR-MGDA for Pol problem (f) PF partially captured by PR-MGDA for

ZDT6 problem

(g) PF captured by PR-MGDA for Kur problem

9
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Table 1: Comparison of MOEA/D, NSGA-II, PESA-II and PR-MGDA for some considered
test problems.

GD S ∆
Fct Method Mean Std Mean Std Mean Std NS CPU(s)

MOEA/D 2,81e-02 2,92e-02 2,42e-02 6,83e-03 9,95e-01 7,98e-02 100 86,67
ZDT1 NSGA-II 9,17e-02 1,03e-02 2,17e-02 1,56e-03 7,95e-01 2,86e-02 100 105,08

PESA-II 5,38e-02 5,31e-03 3,73e-01 2,68e-02 8,82e-01 6,01e-02 100 40,97
PR-MGDA 8,36e-04 2,56e-07 9,16e-03 1,03e-06 7,52e-01 9,71e-07 116 9,58

MOEA/D 1,32e-01 4,55e-02 2,66e-02 3,87e-03 1,13e+00 8,99e-03 100 61,61
ZDT2 NSGA-II 1,49e-01 1,74e-02 1,65e-02 2,31e-03 9,10e-01 1,69e-02 100 113,18

PESA-II 9,04e-02 3,42e-03 5,40e-01 4,61e-02 8,32e-01 2,73e-02 100 32,82
RGDA 2,65e-04 2,14e-05 3,34e-03 9,50e-05 7,34e-01 6,54e-06 115 10,61

MOEA/D 2,08e-02 8,00e-03 6,01e-02 1,52e-02 1,19e+00 3,43e-02 100 82,50
ZDT3 NSGA-II 6,27e-02 4,74e-03 3,75e-02 1,23e-02 8,25e-01 2,12e-02 100 112,91

PESA-II 4,45e-02 3,42e-03 3,54e-01 3,22e-02 8,48e-01 1,04e-01 100 33,93
PR-MGDA 4,70e-03 3,34e-04 5,38e-02 6,26e-04 9,62e-01 1,65e-03 33 8,48

MOEA/D 8,28e-01 5,75e-01 1,70e-01 1,45e-01 1,09e+00 5,77e-02 100 62,65
ZDT4 NSGA-II 4,46e-01 1,33e-01 3,03e-01 1,79e-01 8,85e-01 9,56e-02 100 129,75

PESA-II 1,12e+01 5,16e-01 2,72e+01 4,86e+00 1,11e+00 5,16e-02 100 18,00
PR-MGDA 1,03e-03 4,93e-04 1,11e-02 3,00e-03 7,52e-01 3,05e-04 60 8,54

MOEA/D 5,40e-01 1,08e-01 1,35e+00 1,01e+00 1,25e+00 1,54e-01 100 91,11
Pol NSGA-II 2,48e+00 5,84e-02 1,75e+00 2,09e-03 9,72e-01 3,55e-03 100 123,86

PESA-II 1,52e+01 6,02e+00 1,01e+01 1,16e+00 9,77e-01 9,85e-02 100 45,64
PR-MGDA 1,48e-03 9,34e-06 6,03e-01 2,13e-02 9,59e-01 3,70e-08 22 5,24

MOEA/D 4,22e-01 1,18e-01 4,63e-02 2,02e-02 1,09e+00 5,98e-02 100 57,86
ZDT6 NSGA-II 3,08e-01 2,38e-02 1,57e-01 4,15e-02 8,73e-01 2,93e-02 100 121,89

PESA-II 4,42e-01 4,69e-03 2,00e+00 6,31e-01 1,03e+00 4,97e-02 100 29,17
PR-MGDA 7,83e-03 6,31e-03 1,04e-01 4,14e-03 7,20e-01 2,05e-02 35 5,65

MOEA/D 5,51e-03 5,51e-03 6,76e-01 4,35e-01 1,42e+00 1,80e-01 100 80,83
Kur NSGA-II 5,31e-04 2,64e-05 1,22e-01 4,15e-03 4,10e-01 3,10e-02 100 117,86

PESA-II 1,78e-01 1,28e-02 4,15e+00 4,86e-01 9,04e-01 5,75e-02 100 33,76
PR-MGDA 3,71e-03 3,05e-04 1,50e-01 8,56e-03 9,03e-01 9,92e-06 24 12,02

In terms of the quality of the Pareto front approximation, by analyzing the
GD metric statistics, we can see that the proposed PR-MGDA is well converging
to the true Pareto front for all tested problems. Furthermore, the Spacing
and Spread measures indicate that the proposed PR-MGDA has the ability
of generating uniform and diverse solutions. Except for the ZDT6 problem
whose PF presents folds (Pareto many-to-one problems) [20] which leads to
the presence of several points with a zero gradient according to one of the two
objectives. In this case the PR-MGDA algorithm can only get a partial capture
of the FP. To prevent this problem we have been led to slightly shift the points
where this occurs, which has partially overcome this problem. Indeed, despite
this precaution, it happens that the PR-MGDA does not capture the whole of
the FP for this problem (Fig.3(f)).

In terms of the execution time, the proposed PR-MGDA largely outperforms
MOEAs. For instance, the PR-MGDA is at least 10 times faster than NSGA-
II, even including the time to generate the anchor solutions. Note that all the
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simulations for the considered problems did not exceed 70,000 FEs of which
50,000 FEs were reserved for the resolution of the anchors points. However,
the number of solutions obtained strongly depends on the step of the retreat
which was previously set to 0.5% of the difference Da between the two anchor
solutions. Thus, if we decide to reduce this step for example to 0.1% of Da, we
can easily multiply the number of solutions obtained while respecting the limit
of the FEs imposed for the comparison.

5. Conclusion and perspectives

In this paper, we have proposed a Gradient-based approach for path-relinking
in bi-objective non-constrained continuous optimization problems. The algo-
rithms is based on the MGDA approach combined to a backtracking approach.

The computational results for many test functions were compared with pop-
ular MOEAs: MOEA/D, NSGA-II and PESA-II. The results indicate that the
PR-MGDA algorithm outperforms the algorithms both in quality of the approx-
imations and specially in the execution time.

Our proposed approach can be integrated in any multi-objective optimiza-
tion algorithm as an intensification search procedure. Indeed, PR-MGDA can
be applied to any pair of solutions in order to generate evenly solutions be-
tween them. We will also investigate an extension of our PR-MGDA approach
to many-objective optimization problems. Moreover, we are working strategies
to handle constrained multi-objective optimization problems using projected
gradient descent.
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1 Introduction

Makers design commercial airplanes in a form optimized for cruise conditions; therefore, they lack
the lift during takeoff and landing. Many research and developments have been implemented on
high-lift devices to solve this problem [1]. Our previous study advocated the idea of adding a
yaw-wise rotational degree of freedom to a trailing-edge slotted flap to raise the lift in its landing
condition without appending any new devices and proved that the yaw-wise rotation grows the
lift [2]. The previous research conducted only a parametric study for five positions for one variable
of the yaw-wise rotation angle; it did not wholly explore the flap position. Hence, by raising the
number of parameters that determine the flap position and exploiting an optimization method
to probe the design space exhaustively, we will pursue the potential of the simple idea of adding
yaw-wise rotational degrees of freedom to the flap to gain the lift further.

2 Problem settings

Reference [2] provides details of the target geometry. The objective function is to maximize the
lift coefficient CL of the computational model shown in Fig. 1. We ponder two design variables:
the yaw-wise rotational angle ψ (defined in Fig. 2) and the flap gap between the wing and the
flap (height in the z-direction) gapflap. Initially, the overlap and flap deflection angle would also
be design variables. However, due to this problem’s time-consuming nature, we would rise with a
small number of design variables and use them as a touchstone to discern if we can expand the
issue to a large-scale one. The applicable range of each design variables is −4.0 ≤ ψ◦ ≤ +4.0 and
0.01c ≤ gapflap ≤ 0.03c, where c denotes the chord length of the wing.

3 Evaluation system

Metaheuristics are suitable for engineering product design optimizations with extreme nonlinear-
ity, such as fluid phenomena, because they need no gradient information for objective functions.
Real-world design problems often use global design space search approaches descending from meta-
heuristics such as evolutionary computations and swarm optimizations. These optimizers enable
global explorations for nondominated solutions that are candidates of compromise solutions for
large-scale design problems with multiple objectives and many design variables. They likewise
can play a role in creating an efficient database for obtaining various design knowledge. However,
metaheuristics requires at least O(104) evaluations before convergence. Time-consuming to assess
objectives by computational fluid dynamics is a severe bottleneck in fluid machinery design. Hence,
problems involving fluid evaluation cannot generally converge in a realistic period.

In contrast, some researchers proposed surrogate optimizations using the Kriging model [3]/the
radial basis function [4]. Small-scale design problems, which have the number of design variables
O(100), can diminish the evaluation frequency significantly than with metaheuristics. The Kriging
model uses no problem-dependent parameters; past studies have provided derivative Kriging models
as a general-purpose method [5]. The original Kriging model appends only one additional sample
point. However, our Kriging model is an enhanced algorithm that permits an arbitrary number of
sample points to be augmented based on expected improvement (EI) values on the approximate

247



2 K. Chiba and M. Kanazaki

Fig. 1. Configuration of the computational model
consisting of a fuselage, a wing, and a single slotted
flap. This figure visualizes the flap at the neutral con-
dition without any yaw-wise rotation.

Fig. 2. The definition of yaw-wise rotation angle ψ
and its acceptable range on top view. The figure
depicts the wing translucently to see the overlap of
the wing for the flap.

surface [6]. This study set the number of samples added at one time to 3, considering the CL

evaluation time.
We use a compressible flow solver FaSTAR [7], which solves the 3D Raynolds-averaged Navier-

Stokes equations by an unstructured MUSCL-type cell-vertex finite volume method [8] with Hishida’s
differentiable limiter for keeping second-order spatial accuracy. FaSTAR utilizes schemes: Harten-
Lax-van Leer-Einfeldt-Wada method [9] for numerical flux computations; lower-upper symmetric
Gauss-Seidel implicit method [10] for time integration. This study adopts the explicit algebraic
Reynolds stress model [11] as a turbulence model because [12] stated being suitable for estimating
high lift devices’ transonic aerodynamic performance. Computations run on the part of the clus-
ter with Intel Xeon E5-2670v2 2.50 GHz in our laboratory. It takes approximately 100 hours to
evaluate one individual in 100 parallel runs.

4 Result

We have evaluated the ten initial and the first three additional sample points; we are assessing the
second extra sample point. Figure 3 depicts the response surface created from the results procured
so far. As for gapflap, the narrower the passage, the more CL tends to increase; we can physically
explain this by a simple mechanism: narrowing gapflap grows the pressure and accelerates the flow,
raising the pressure on the upper surface of the flap and the wing.

In contrast, ψ is asymmetric for 0◦; we can discuss ψ quantitatively that can improve CL over
0◦. Moreover, there seems to be a multi-modal response to 0◦ on both sides. We would further
consider the physics of this point in future results.

5 Conclusion

This research explored appropriate spots of a trailing-edge slotted flap with a yaw-wise rotational
degree of freedom to grow the lift in an airplane’s landing configuration without affixing new
devices. Our previous research conducted a parametric study on a single variable: yaw-wise rotation
angle, and found that yaw-wise rotation gains lift. Therefore, we would expand the number of
parameters that fix the flap position and penetrate the potential of the simple idea of adding
yaw-wise rotational degrees of freedom to the flap to improve the lift further. Hence, we define
a two-design-variable problem by adding the flap gap to the yaw-wise rotational angle as design
variables. Since the number of design variables is small, this study adopted enhanced Kriging-based
global optimization and efficiently explored design space. The increase in the degree of freedom of
positioning has enabled the lift’s further growth and specified the physical mechanism. Therefore,
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Fig. 3. response surface.

we would conduct a four-design-variable problem, including the flap overlap and the flap angle, to
reveal the relationship between the lift performance and the relative position between the main
wing and the slotted flap.
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1 Context and motivations

Bayesian Optimization (BO) is a global optimization framework that uses bayesian surrogate mod-
els such as Gaussian Processes (GP) to address black-box problems [1], [2] with costly-to-evaluate
objective functions. Bayesian models and especially GPs are attractive for their ability to provide
the uncertainty over their predictions. Using this information, one can build an indicator of utility
for a point to be simulated. This indicator, named Infill Criterion (IC) or Acquisition Function
(AF), is used to guide the optimization process and find valuable new point(s) to be exactly evalu-
ated. Based on this procedure, Jones et al. [3] introduce the Efficient Global Optimization (EGO)
algorithm that uses the Expected Improvement (EI) AF. Many approaches emerged from the idea
of making EGO parallel. In particular, Ginsbourger et al. [4] introduced the q-dimensional EI cri-
terion (q-EI), able to provide q candidate points when optimized. In [5], Ginsbourger et al. write
that even though q-EI and its optimization methods are mathematically founded, it is not ”math-
ematically tractable beyond a few dimensions”. This motivates the introduction of the Kriging
Believer (KB) and Constant Liar (CL) heuristics also presented in [5]. The two heuristics allow to
approximate the optimization of q-EI at a much lower time cost. EGO using q-EI is called q-EGO
in the following. Many other approaches based on EI or q-EI are constructed. For example, in [6]
the authors use Infinitesimal Perturbation Analysis (IPA) to construct a gradient estimator of the
q-EI surface, and a multi-start heuristic to find the set of points to evaluate. Zhan et al. [7] use
a niching strategy to locate several optimal areas of the single point EI. Marmin et al. [8] write
the analytical form of the multi-point EI gradient to be able to optimize the function with gra-
dient information and reduce the computational cost compared to sequential heuristics or Monte
Carlo sampling of [5]. However, none of the methods are efficient on parallel architectures including
dozens of processing units. The creation of the batch of candidates is often time consuming, and the
GP model fitting cost increases fast. The reference q-EGO algorithm has been experimented and
driven to its limits in Briffoteaux et al. [9]. The analysis revealed that q-EGO performs well with
small budgets (i.e. number of calls to the objective function) and small batches (q ≤ 8). However,
it suffers from early stagnation, poor scalability, and budget seems misspent since increasing q does
not necessarily improve the final target for a given number of algorithm iterations (called cycles).
The limits of q-EGO comes from at least two aspects: (1) we need to update q times the model to
provide q candidate and the Kriging model becomes extremely time consuming to fit as the size of
the learning set is increased; (2) the way the candidates are selected is not suited for large batches.

2 The proposed approach

From the previous assessment, our approach called Binary Space Partitioning EGO (BSP-EGO)
revisits the way the candidates are selected - i.e. the Acquisition Process (AP). BSP-EGO uses EI
as it is known to work consistently well on various problems. To preserve diversity in the candidate
selection process BSP-EGO recursively splits the search space D into sub-domains. The partition
can be seen following a binary tree where each node is a sub-domain and the leaves form a cover of
D without overlap. One sub-AP is performed for each leaf using the same surrogate model fitted
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Algorithm 1 multi-model BSP-EGO pseudo-code

Input
f : function to optimize, D: search space
ninit: initial sample size, ncycle: number of cycles, nlearn: learning size
depth: tree depth

1: X, y ← initial sampling(D, ninit, f)
2: T ← build tree(depth)
3: for i in 1 : ncycle do
4: Bcandidates ← ∅
5: for leaf in T do . parallel loop
6: Xleaf ,yleaf ← gather points(leaf, nlearn)
7: modelleaf ← learn model(Xleaf ,yleaf )
8: c← find best candidate(Dleaf ,modelleaf , Infill criterion)
9: Bcandidates ← Bcandidates ∪ c

10: end for
11: Bcandidates ← selection(Bcandidates)
12: T ← update tree(T ,Bcandidates)
13: X ←X ∪ Bcandidates

14: y ← y ∪ f(Bcandidates) . parallel evaluation
15: end for
16: return x∗, y∗

over all known points, and the best candidates regarding the chosen AF are selected. Then, the
partition evolves according to the performance of each sub-domain. If the sub-domain is attractive
(in terms of AF), it is split once more while the worst is merged to maintain a fixed number of
sub-domains. The full description is available in [10]. BSP-EGO is designed to improve parallelism
by providing an arbitrary big number of candidates from its AP, and to improve the balance
in exploration/exploitation. Indeed, being able to dig deep into a sub-domain allows to sample
more this area without neglecting others by forcing the sampling in sub-domains of a priori poor
interest. Results of [10] show that even though we are able to increase the degree of parallelism,
and improve the optimization in restricted time, the fast increasing time of GP fitting is still a
bottleneck. Actually, the database is filling even faster as the number of cores increases since nbatch
points are added per cycle.

This work investigates the use of multiple surrogate models (on per sub-domain) to limit the size
of the learning set and lower the computational cost. For each sub-domain, the closest nlearn points
the closest from the center of the sub-domain are collected to fit a GP model over them. Besides
considerably lowering the fitting cost, this approach has several benefits. First, all models are
distinct and independent, favoring diversity as experienced in Villanueva et al. [11] where space
partitions and distinct surrogate models in sub-regions are used to locate several local optima.
Second, the whole AP can be performed in parallel, meaning that each worker performs one fast
GP fitting. Moreover, search space partitioning is reported as a viable method to deal with non
stationary objective functions [12][13]. Algorithm 1 displays the pseudo-code of the multi-model
BSP-EGO. It starts with the creation of an initial learning set, and the initialization of the tree
T . Then, until the budget runs out, BSP-EGO goes to every leaves (line 6 of Alg. 1) to create a
GP model. Note that if the total number of points is smaller than nlearn, the model is fitted with
all available points. Given an infill criterion, the local AP proposes a candidate for the considered
leaf. Finally, a sub-set of candidates is exactly evaluated to be incorporated in the learning set.

3 Results and conclusions

Preliminary experiments have been conducted on three 6-dimensions benchmark functions to mea-
sure the walltime and solution quality as a function of the batch size nbatch and the size of the
learning set nlearn. The functions are chosen with very distinct landscapes: the rosenbrock function
is regular and unimodal with a large valley, the ackley function is noisy and multimodal, and the
alpine function is highly multimodal but not noisy. The two firsts are optimized on the domain
D = [−32, 32]6 and the last one on D = [0, 10]6. Experiments are performed on Lille site of the
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Grid’5000 testbed [14]. Up to 4 nodes using 2 Intel Xeon E5-2630 v4 of 10 cores each are used.
For a total of 48 cycles allocated to each experiment (whatever the batch size) we observe that
the multi-model approach total execution time does not increase much with the batch size, which
indicates a good scalability. With a learning size of 128, and a batch size of 32, this approach is
up to 300 times faster compared to the global model one with only an acceptable reduction of the
final target quality. To achieve equivalent results in terms of solution quality, we can use a more
precise model learnt over 256 points, still with nbatch = 32, and have a speed up of approximately
54. This approach also makes possible the use of more than 64 computing cores that increases
considerably the global evaluation budget (and the final objective value) in a restricted time. For
example, running 48 cycles with nbatch = 64 and nlearn = 128 takes less than 3 minutes for non-
expensive benchmark functions evaluations, which is barely more than the same experiment with
nbatch = 8, 16, 32. The partitioning approach also seems to perform well when the landscape to
optimize presents many local optima and needs more exploration. Indeed, each model focuses on
its specific sub-region and is not influenced by data of distant regions. On the other side, it makes
it difficult to compare the value of the infill criteria coming from different models and can have
a negative effect when exploitation must be favored. The BSP-EGO with local-models algorithm
is a promising step towards scalable EGO-like approaches. However, increasing the degree of par-
allelism, the second problem is even more present: how can one take advantage of this scalability
to improve the candidate selection procedure (i.e. the AP) ? Recent developments in parallel BO
(batch BO) seems to indicate that using different infill criteria working cooperatively is promising.
Whereas the local-models BSP-EGO algorithm needs extensive testing and tuning, its framework
is highly compatible with the idea of multiple AF operating cooperatively to select a good batch
of candidates to exactly evaluate.
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Université Paris-Saclay, 91405, Orsay, France
{jiangnan.huang}{zixi.chen},{nicolas.dupin}@universite-paris-saclay.fr

Abstract. Having N points in a planar Pareto Front (2D PF), k-means
and k-medoids are solved by dynamic programming algorithms running
in O(N3) time. Standard local search approaches, PAM and Lloyd’s
heuristics, are investigated in the 2D PF case to solve faster large in-
stances. Specific initialization strategies related to the 2D PF case are
implemented with the generic ones (Forgy’s, Hartigans, k-means ++).
The local minimums obtained with different initialization algorithms af-
ter the PAM and Lloyd’s iteration are compared to the optimal values.
This study highlights that local minimums of a poor quality exist in the
2D PF case. A parallel or multi-start heuristic using four initialization
strategies avoids accurately poor local optimums.

Keywords : Clustering algorithms ; K-means; K-medoids; Heuristics ;
Local Search; bi-objective optimization ; Pareto front

1 Introduction

K-means clustering is one of the most famous unsupervised learning problem,
and is widely studied in the literature [12, 14]. The k-medoids problem, the dis-
crete variant of the k-means problem, maximizes the dissimilarity around a rep-
resentative solution [13]. If k-medoids clustering is more combinatorial than k-
means clustering, it is known to be more robust on noises and outliers [12]. Both
k-medoids and k-means problem are NP hard in the general and the planar case,
[11, 15]. One dimensional (1D) case of k-means is solvable in polynomial time,
with Dynamic Programming (DP) algorithms [19, 9].

Facing the NP-hard complexity, a seminal heuristic to solve k-means prob-
lems was provided by Lloyd in [14], it is a steepest descent heuristic converging
to local minimums. A careful initialization has also an important impact to solve
k-means, many initialization strategies were proposed and discussed [1, 8, 10, 12].
A comparative analysis was provided for general instances of k-means to analyze
the impact and efficiency of initialization strategies [2] Lloyd’s local search was
extended to solve heuristically k-medoids problems, this adaptation is named
PAM (Partitioning Around Medoids) [13]. Comparing empirically the efficiency
of initialization strategies for PAM local search is also of interest for k-medoids.
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The specific case of k-means and k-medoids clustering in a planar Pareto
Front (2D PF) holds for an application to bi-objective optimization problems and
algorithms [4, 7]. In both cases, there is a polynomial complexity with an exact
DP algorithm running in O(N3) time [4, 7]. However, this cubic complexity may
be a bottleneck to solve quickly large instances, which may be required for the
real-world application. PAM and Lloyd’s local search algorithms are still useful.
Similarly with [2, 17], this paper aims to compare the impact and efficiency of
local search initialization, in the case of a 2D PF instances. Contrary to [2,
17], local minimums can be compared to known optimal values thanks to the
DP exact algorithm. Another open question is to determine if the 2D PF case
induce also good properties for PAM and Lloyd’s local search heuristics.

This paper is organized as follows. In section 2, we define formally the prob-
lem and fix the notation. In section 3, initialization heuristics are presented. In
section 4, the experimental conditions are presented before describing and ana-
lyzing the computational results. In section 5, our contributions are summarized,
discussing also future directions of research.

Fig. 1. Illustration of a 2d Pareto Front and its indexation

2 Problem statement and notations

We suppose in this paper having a set E = {x1, . . . , xN} of N elements of R2

in a 2D PF. As illustrated in Figure 1, the 2D PF E can be re-indexed such
that E = {xk = (yk, zk)}k∈[[1,N ]] such that k ∈ [[1, N ]] 7→ xk is increasing and
k ∈ [[1, N ]] 7→ yk is decreasing, it is proven formally in [4]. Defining the binary
relation y = (y1, y2) ≺ z = (z1, z2) with y1 < z1 and y2 > z2, ≺ is a total order
in E and x1 ≺ · · · ≺ xN .

We define ΠK(E), as the set of all the possible partitions of E in K subsets.
Defining a cost function f for each subset of E to measure the dissimilarity, K-
sum-clustering problems are combinatorial optimization problems, minimizing
the sum of the measure f for all the K partitioning clusters:

min
π∈ΠK(E)

∑

P∈π
f(P ) (1)

2
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K-medoids and K-means problems are in the shape of (1). K-medoids prob-
lem considers the minimal sum of the squared distances from one point of P ,
the medoid, to the other points of P :

∀P ⊂ E, fmedoids(P ) = min
c∈P

∑

x∈P
||x− c||2 (2)

Note that || denotes the standard Euclidean norm in this paper, | is used to
denote the cardinal of a subset of E. K-means clustering considers the sum of
the squared distances from any point of P to the centroid :

∀P ⊂ E, fmeans(P ) = min
c∈R2

∑

x∈P
||x− c||2 =

∑

x∈p

∣∣∣∣∣

∣∣∣∣∣x−
1

|p|
∑

y∈p
y

∣∣∣∣∣

∣∣∣∣∣

2

(3)

The first equality in (3) shows the similarity with k-medoids, k-medoids is
the discrete version of k-medoids. The second equality in (3), proven with convex
optimization in [16], is used in this paper to compute fmeans(P ) in O(|P |) time,
whereas fmedoids(P ) is computed in O(|P |2) time using (2). This difference is
crucial in the computational efficiency to solve k-means and k-medoids.

PAM and Lloyd’s algorithm are similar local search algorithms iterating over
solutions encoded as partitioning subsets P1, . . . , PK and their respective cen-
troids c1, . . . , cK (or medoids for PAM). Having a current solution encoded like
previously, two steps are processed to improve the solution:

• The partitioning subsets P1, . . . , PK are modified, assigning each point to
the closest centroid or medoid ci. This step runs in O(NK) time.

• The centroids or medoids ci are recomputed with formulas (3) or (2) consid-
ering the updated partitioning subsets P1, . . . , PK . This step runs in O(N)
time for k-means in O(N2) time for k-medoids.

Each of the previous step improves the current clustering solution if any modifi-
cation is operated. Else, the current solution is a local minimum related to PAM
or Lloyd’s local search, that can be different from a global minimum, optimal for
optimization problems (1). The initial solution given to the local searches has
an influence to the quality of local minimums [2]. In the following we compare
the efficiency of specific and generic initialization strategies for the 2D PF case.
Considering the 2D PF case allows have the value of optimal solutions thanks
to the specific DP algorithm, event for some large instances [4, 7].

3 Initialization heuristics

In this section, we introduce an overview of the different initialization heuristics
which are implemented in the following computational experiments, distinguish-
ing the generic ones which are commonly used for any clustering instances, to
specific strategies related to specific properties of the 2D PF case. Initialization

3
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strategies were more studied for the k-means problem. We adapt such strategies
for the k-medoids problem defining the same clusters than the k-means initial-
ization, ie keeping the assignment of the points into clusters, and recomputing
the medoids with (2) instead of considering the centroids with (3). Hence, we
only describe how to define partitioning clusters, giving the complexity results of
this phase and keeping in mind that the computations of centroids and medoids
run respectively in O(N) and O(N2) time.

3.1 Generic initialization strategies

Firstly, we present generic initialization designed for the k-means problem :

• Random selection (RAND): this algorithm is one of the most naive algo-
rithms, selecting K points randomly (and uniformly) among N points in the
sample space to former an initialization of the centers. Clusters are defined
assigning each point to the cluster of its closest randomly selected point.
Defining such clusters runs in O(N) time.

• Furthest Point (FP) (max-min distance): FP selects randomly the first
point. Once k < K points are selected, the k + 1 new one maximizes the
minimal distance from this point to the previously k selected point. Consid-
ering that outliers are always the furthest from other points, this algorithm is
therefore easily affected by outliers. Selecting the K points runs in O(K2N)
time.

• K-means++: K-means++ is an upgraded and randomized version of FP.
K-m++ selects randomly the first point, and use different selection probabil-
ities instead of the deterministic max-min distance used by FP initialization
[1]. If a point is far from the already selected points, its selection probability
is higher. Selecting K points for K-means++ runs in O(K2N) time.

• Forgy’s method: Forgy’s initialization uniformly and randomly assigns
each point to one of the K clusters, it runs in O(N) time [8].

• Hartigan’s method: Hartigan’s initialization firstly sorts the points ac-
cording to their distances from the centroid of the N initial points. The i
-th i ∈ {1, 2, . . . ,K} center is then chosen to be the (1 + (i−1)N/K) - point
[10]. The computation cost is given by the sorting complexity, Hartigan’s
method runs in O(N logN) time to define partitioning clusters.

3.2 Initialization using 2D PF indexation

The 2D PF indexation, illustrated in Figure 1, allows to provide variants of
the random and Hartigan’s initialization, using this specific indexation. The
following strategies select initial centroids or medoids in O(N logN) time, the
time complexity of the sorting re-indexation:

• N/(K + 1)−Uniform: using the 2d PF indexation,N/(K + 1)− Uniform
selects the K points at indexes round

(
iN
K+1

)
for i ∈ {1, 2 . . . ,K}.
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• N/(2K)−Uniform: using the 2d PF indexation, N/(2K)− Uniform se-
lects the K points at indexes round

(
iN
2K

)
for i ∈ {1, 2 . . . ,K}.

• N/K-Random selection (N/K-RAND) N/K-RAND is a tailored vari-
ant of RAND selection, the K points points for initial centroids or medoids
in the sample space are randomly chosen in each of the N/K-size intervals
dividing uniformly the indexes of the 2D PF.

3.3 Initialization using p-dispersion for 2D PF

The p-dispersion problems select p > 2 points among N initial points, maxi-
mizing diversity measures, some variants are solvable in polynomial time in a
2D PF [3]. Similarly with Hartigan’s heuristic, one may select among diversified
points the ones to be defined as initial centroids or medoids. We use the stan-
dard p-dispersion (Max-Min p-dispersion) problem, having a time complexity in
O(pn log n), other variants are too much time consuming for our application, at
least in O(pn2) [3]. Selecting directly K points with (Max-Min) K-dispersion se-
lects the two extreme points. Two slight adaptations are thus provided to avoid
both extreme points, keeping the time complexity in O(pn log n):

• K+2-dispersion (K + 2-disp): a K + 2-dispersion is solved using the tai-
lored DP algorithm [3], and the two extreme points (x1 and xN after re-
indexation) are removed.

• 2K + 1 dispersion (2K + 1-disp):a 2K + 1-dispersion is solved using the
tailored DP algorithm [3], and we keep the even indexes reindexing the 2K+1
points from 1 to 2K + 1.

Note that the standard p-center problems have also time complexity allow-
ing quick initialisation [5]. However, such dissimilarity measures are based on the
most extreme points, that would include the outliers, which is a dangerous prop-
erty for k-means and k-medoids initialization. K-center initialization strategies
are thus not in our benchmark of initialization strategies.

3.4 Initialization using 1D dynamic programming

One dimensional (1D) k-means is solvable in polynomial time, with an imple-
mentation available in a R package [19]. A first DP algorithm runs in O(KN2)
time and using O(KN) memory space [19]. An improvement was proposed in
O(KN) time and using O(N) memory space [9]. Such complexity result allows
for our application to use this 1D DP algorithm as an initialization heuristic to
define first clusters, using two heuristics to reduce the 2D PF into a 1D case:

• 1D-DP-reduc: using the specific shape of a 2D PF illustrated in Figure 1,
one may approximate define a 1D structure, associating to each point xi of
the 2D PF the scalar zi =

∑i−1
j=0 ||xj−xj+1||. The 1D interval clustering define

the indexation for the 2D PF clustering, computing the costs of clusters in
the 2D PF requires respectively O(N) and O(N2) time computations for k-
means and k-medoids (which computes also the initial centroids or medoids).
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• 1D-DP-linReg: this initialization is similar to 1D-DP-reduc, the difference
being in the reduction from a 2D PF case to 1D. A linear regression is used,
1D points zi are now the orthogonal projection of points xi in the linear
regression, as illustrated Figure 2.

Fig. 2. From a 2dPF to a 1D case with 1D-DP-linReg approach

4 Computational experiments and results

4.1 Data generation

To the best of our knowledge, no specific datasets for 2D PF are available for our
study. Starting from any decreasing function f : [0, 1] → R, one may generate
2D PF with N random values in (yn) ∈ [0, 1]N and considering the 2d points
(yn, f(yn)) for n ∈ [[1;N ]]. With a uniform distribution in the random generation
and a linear function f , such generation would be too regular, and the naive
N/(2K)− Uniform initialization would be very close to the trivial optimal
solutions. Hence, a new data generator, described in Algorithm 1, was provided
to furnish 2D PF without regularity, like the one given in Figure 2:

Algorithm 1: random generation of a 2d-PF

Input: N the size of the wished 2D PF
initialize n = 2, L = {(0, 1000); (1000, 0)}, B = {(0, 1000, 1000, 0)}
for i = 3 to N

select randomly (x1, y1, x2, y2) ∈ B and remove it from B
select randomly x3 ∈]x1, x2[ and y3 ∈]y1, y2[
add (x3, y3) in L and add (x1, y1, x3, y3) and (x3, y3, x2, y2) in B

end for
return L

In Algorithm 1, the loop invariant is that the list L contains non-dominated
points, and B contains the couple of neighbor points in L with the indexation
of Figure 1. Starting from a point (x1, y1, x2, y2) and having x3 ∈]x1, x2[ and
y3 ∈]y1, y2[, we have (x1, y1) ≺ (x3, y3) ≺ (x2, y2). Hence, adding (x3, y3) in L
keep the two by two incomparability in L, and the neighboring properties in B.

6
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4.2 Computational experiments and conditions

Instances used in our computational results were generated by Algorithm 1 with
five values of N , N ∈ {50; 100; 500; 1000; 5000}, generating 10 instances for each
value of N . For each generated 2D PF, we experimented K-clustering with five
values of K, K ∈ {2; 3; 5; 10; 200}. This defines a total of 250 = 5 × 5 × 10
instances for k-medoids and k-means problems. For the reproducibility of the
results, these instances and the results instance by instance are available in
https://github.com/ndupin/Pareto2d. For these 250 instances, following results
are provided for each initialization strategy of k-means and k-medoids:

– the initial value of the heuristic solution;
– the value of the local minimum using PAM or Lloyd’s local search
– the number of iterations to converge to a local minimum

Having the optimal solutions for K-medoids, it allows to present the quality
of solutions in terms of over-cost gap related to the optimal solutions proven by
the DP algorithm [4]. For k-means, the similar DP algorithm is only a heuristic,
it can be proven that is is a lower bound of any local minimum of the previous
local searches [7]. Our experiments did not show any counter-example where a
better solution that the k-means 2D PF DP algorithm is found.

Note that we do not provide computation times. The heuristics converge very
quickly, in order of second, which is visible in the number of iterations. Com-
paring the solving time with heuristics and the exact DP could be interesting.
Optimal values with DP algorithms were provided using K = 20 computations,
and storing the values in the DP matrix. Note that RAND, N/K-RAND, Forgy,
Hartigan, k-means++ are randomized initialization strategies, the results are
given in average using 25 runs with different seeds. Other initialization heuris-
tics are deterministic, one run is enough to provide the results.

Similarly to [6], a parallel local search uses a portfolio of several initializa-
tion strategies, and computes independently the local search algorithms fr each
initial solution. It allows to have the best local minimum among the selected
initialization strategies. Having two threads, the 1D DP initialization were se-
lected, the results are reported as Paral 1D DP. Allowing four threads, both
previous initialization were selected with k-means++ and FP initialization, this
is denoted Parall4.

4.3 Analyses of computational results

The evolution of the average number of iterations to converge to a local minimum
when N is increasing are illustrated for k-means and k-medoids in Figures 3 and
4 respectively. It illustrates that the number of iteration is very small, and is also
slightly increasing. Keeping in mind that each iteration runs in O(N) or O(N2)
for k-means and k-medoids respectively, the initialization strategy is prominent
it the total computation time to apply PAM and Lloyd’s local searches. This
property is specific for 2D PF sub-cases, this does not hold for general isntances
of k-means and k-medoids. The 2D PF structure with non-nested optimality
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Fig. 3. Number of iterations for K=5 and 20 and Lloyd’s local search applied to the
initialization strategies, with N varying from 50 to 5000

Fig. 4. Number of iterations for K=5 and 20 and PAM local search applied to the
initialization strategies, with N varying from 50 to 5000

property allows to have exact polynomial DP algorithm, this is also useful for
the generic algorithms to solve k-means and k-medoids in the 2D PF sub-case.
We note also that the hierarchy among initialization strategies in Figures 3 and
4 is rather stable. It is actually related to the quality of the initial solutions,
that are measured in the exhaustive table of results online, and also to the final
quality of local minimums, comparing their hierarchy with Tables 1 and 2.

Tables 1 and 2 present statistical indicators for the quality of local minimums
induced by the different initialization strategies. The 250 instances provide for
each initialization strategy a sequence of 250 local minimums, that can be com-
pared to the values of the exact DP algorithms [7, 4]. Statistics are provided
based on the over-cost percentages, with average values and variance and quar-
tiles to appreciate the dispersion. Generally, local minimums exist with a very
poor quality, few such local minimums degrade dramatically the average values,
and the medians are much better than the average. Variance computations are
in such cases non significative. Note that Tables 1 and 2 provide results which
are very similar considering k-medoids or k-means clustering in a 2D PF.

RAND and Forgy’s initialization are the worst strategies in terms of quality
of local minimums. N/K-RAND improves the results obtained by the RAND
initialization, but the results are still unsatisfactory. FP, k-means ++ are the

8
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Table 1. Comparison of statistical indicators for the relative over-costs of local mini-
mums induced by the different initialization strategies for the k-means problem, com-
parison to the solutions from [7].

Init. Time Average Q1 Median Q3 variance

RAND O(N) 964,64 % 15,35 % 135,15 % 400,80 % -
Furthest P O(K2N) 41,75 % 1,90 % 18,80 % 50,43 % 57,21 %
Kmeans++ O(K2N) 74,67 % 14,03 % 48,05 % 93,10 % 94,38 %
Forgy O(N) 3224,63 % 31,48 % 330,15 % 2245,43 % -
Hartigan O(N logN) 1783,30 % 0,00 % 75,70 % 322,90 % -

N/(K+1)-Unif. O(N logN) 1280,03 % 0,00 % 43,95 % 253,60 % -
N/2K-Unif. O(N logN) 1221,94 % 0,00 % 42,40 % 249,25 % -
N/K-RAND O(N logN) 1142,18 % 6,83 % 50,30 % 236,43 % -

K+2 disp O(KN logN) 99,69 % 0,00 % 22,40 % 93,33 % 857,72 %
2K+1 disp O(KN logN) 399,72 % 0,00 % 12,35 % 72,20 % -

1D-DP-reduc O(KN) 336,50 % 0,00 % 0,15 % 115,18 % -
1D-DP-proj O(KN) 158,45 % 0,00 % 1,90 % 38,78 % 3677,36 %

best Parall 2,90 % 0,00 % 0,00 % 0,90 % 0,83 %
Paral 1D DP 154,77 % 0,00 % 0,00 % 10,95 % 3685,79 %
Parall4 3,90 % 0,00 % 0,00 % 1,90 % 1,70 %

Table 2. Comparison of statistical indicators for the relative over-costs of local
minimums induced by the different initialization strategies for the k-medoids prob-
lem,comparison to the optimal solution from [4].

Init Time Average Q1 Median Q3 var

RAND O(N2) 1661,16 % 27,70 % 162,85 % 499,75 % -
Furthest P O((N +K2)N) 43,38 % 3,73 % 19,60 % 54,38 % 66,13 %
Kmeans++ O((N +K2)N) 79,54 % 15,78 % 53,25 % 109,48 % 118,93 %
Forgy O(N2) 3687,94 % 39,25 % 336,15 % 2304,70 % -
Hartigan O(N2) 2214,39 % 0,15 % 102,70 % 387,18 % -

N/(K+1)-Unif. O(N logN) 1921,86 % 0,00 % 72,55 % 358,65 % -
N/2K-Unif. O(N logN) 1723,85 % 0,00 % 83,20 % 355,08 % -
N/K-RAND O(N logN) 1526,19 % 11,38 % 84,20 % 330,25 % -

K+2 disp O(KN logN) 340,92 % 0,00 % 31,85 % 131,43 % -
2K+1 disp O(KN logN) 820,99 % 0,00 % 21,95 % 90,68 % -

1D-DP-reduc O(N2) 677,31 % 0,00 % 0,15 % 74,45 % -
1D-DP-proj O(N2) 617,97 % 0,00 % 0,60 % 23,40 % -

best Parall 5,20 % 0,00 % 0,00 % 1,20 % 2,39 %
Paral 1D DP 615,29 % 0,00 % 0,00 % 16,53 % -
Parall4 5,87 % 0,00 % 0,00 % 2,78 % 2,58 %
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best generic approaches, and also the best approaches to avoid local minimums of
a poor quality. These initialization approaches are also the most time consuming,
as given by the complexities underlined in Tables 1 and 2.

Naive initialization using 2D PF indexation, N/(K+1)-Uniform and N/(2K)-
Uniform have very similar results, with more than a quartile of optimal solutions
found, and a degradation of the results for the other quartiles, with a quartile of
poor solutions. Initialization using p-dispersion improves the previous uniform
ones, with more than a half of excellent solutions, but the last quartile is mainly
composed of poor solutions. Initialization based in the 1D DP algorithm may
he seen as the best individual approaches to find optimal solutions, with more
than a half of excellent solutions. However, very poor local minimums still exist
for the resulting local search heuristic.

Combining in parallel both 1D DP initialization allows to improve signifi-
cantly the quality of quartiles, with more than a half of optimal solutions, but
this is still not enough to avoid the bad local minimums. This induced to con-
sider in the pool of initialization FP and k-means ++, these approaches having
less dispersed results. Table 3 presents aggregated results for the 10 instances
for several values of K and N, and illustrates the complementarity of FP and
k-means ++ with the 1D DP initialization. The resulting Parall4 heuristic pro-
vides accurately solutions of an excellent quality, close to the best reachable
ones with local search as shown in the row BestParall of Tables 1 and 2. Parall4
heuristic does not require a lot of computation times as in [7, 4], and requiring
only 4 threads for parallel computations, or one thread in a multi-start local
search with four sequential local searches.

5 Conclusions and perspectives

Standard local search approaches, PAM and Lloyd’s heuristics, are investigated
to solve faster large instances of k-means and k-medoids clustering in the 2D
PF case. Generally, local minimums with a poor quality are found using any
initialization heuristic. Two heuristic reductions to the 1D cases, allowing to use
the specific 1D DP algorithm provided the most optimal solutions. The generic
initialization methods, k-means ++ and Furthest Point, were the best to avoid
local minimums of a poor quality. Combining these four approaches in a parallel
or multi-start local search heuristic allows to have accurately solutions of a very
good quality. Such approach is much faster than the exact DP algorithms [7, 4],
for an application to large instance sizes.

This work offers several new research perspectives. In the applications to
evolutionary algorithms of 2D PF clustering already discussed by [7, 4, 5], it
allows to have faster solutions of a very good quality. Perspectives may be to
improve the local search for the specific 2D PF case instead of using the generic
PAM and Lloyd’s neighborhoods, to improve the accuracy. Lastly, one may try
to generalize such study and results to dimension 3 and more. A challenging
issue would be to extend an efficient projection to the 1D PF case, it was easier
considering the 2D PF case.
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Appendix: Results by instance size for k-medoids

Table 3. Comparison of average values on the datasets with N = 100, 1000, 5000 and
K = 3, 10 of the initial overcost gap to the optimal solutions after initialization and
after local search convergence for K-medoids. Bold values indicate the best average
values for a given size of instances.

For K = 3:

N=100 N=100 N=1000 N=1000 N=5000 N=5000
init init+LS init init+LS init init+LS

RAND 642,6% 39,5% 785,6% 34,7% 616,7% 50,7%
N/K-RAND 273,4% 29,1% 237,6% 28,5% 283,8% 30,5%

Furthest P 181,9% 37,4% 202,5% 23,0% 129,9% 18,4%
Kmeans++ 228,7% 55,5% 327,4% 56,3% 206,0% 15,0%
Hartigan’s 457,6% 54,3% 497,2% 24,2% 485,9% 84,1%
Forgy’s 1040,8% 97,0% 1247,0% 67,2% 1048,8% 73,6%

K+2 disp 372,8% 16,4% 562,8% 78,2% 262,4% 21,2%
2K+1 disp 165,1% 32,2% 321,8% 29,2% 161,1% 12,7%

N/(K+1)-Unif 307,2% 39,9% 259,2% 38,9% 373,0% 33,9%
N/2K-Unif 233,6% 41,1% 156,1% 39,1% 254,0% 36,6%

1D-DP-reduc 11,2% 0,2% 594,8% 134,8% 737,0% 154,6%
1D-DP-proj 13,1% 1,3% 136,2% 84,6% 737,0% 154,6%

For K = 10:

N=100 N=100 N=1000 N=1000 N=5000 N=5000
init init+LS init init+LS init init+LS

RAND 2624,14 % 501,14 % 3386,84 % 375,79 % 3633,05 % 418,77 %
N/K-RAND 822,59 % 298,63 % 1306,63 % 182,64 % 927,22 % 314,39 %

Furthest P 206,07 % 34,10 % 355,41 % 63,35 % 348,31 % 53,23 %
Kmeans++ 300,26 % 100,13 % 554,78 % 103,51 % 592,68 % 137,74 %
Hartigan’s 851,03 % 378,84 % 2646,14 % 249,99 % 1903,80 % 347,85 %

K+2 disp 1108,43 % 162,79 % 1170,57 % 125,64 % 1185,58 % 130,94 %
2K+1 disp 128,35 % 55,56 % 481,00 % 76,65 % 565,40 % 92,58 %

N/(K+1)-Unif 873,48 % 475,54 % 2122,56 % 212,33 % 1449,22 % 366,43 %
N/2K-Unif 733,31 % 271,75 % 1799,85 % 185,13 % 577,15 % 300,36 %

1D-DP-reduc 47,56 % 39,55 % 13,67 % 5,63 % 11,76 % 1,08 %
1D-DP-proj 47,17 % 41,58 % 23,47 % 6,87 % 19,89 % 5,06 %
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Abstract. The high computational capacity that we have thanks to
the new technologies allows us to communicate two great worlds such
as optimization methods and machine learning. The concept behind the
hybridization of both worlds is called Learnheuristics which allows to im-
prove optimization methods through machine learning techniques where
the input data for learning is the data produced by the optimization
methods during the search process. Among the most outstanding ma-
chine learning techniques is Q-Learning whose learning process is based
on rewarding or punishing the agents according to the consequences of
their actions and this reward or punishment is carried out by means of
a reward function. This work seeks to compare different Learnheuristics
instances composed by Sine Cosine Algorithm and Q-Learning whose
different lies in the reward function applied. Preliminary results indicate
that there is an influence on the quality of the solutions based on the
reward function applied.

Keywords: Learnheuristic · Sine Cosine Algorithm · Q-Learning · Re-
ward Function · Reinforcement Learning

1 Introduction

Optimization problems are very recurrent in the real world being very complex
to solve and it is necessary to obtain results in reasonable times. Approximate
optimization techniques such as metaheuristics provide good results in reason-
able times but when solving increasingly complex industry problems the quality
of the solutions worsen.

Nowadays there is a high computational capacity thanks to new technologies
allowing machine learning techniques to process large volumes of data in short
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times. During the optimization process a large amount of data is generated serv-
ing as input for some machine learning techniques to improve the optimization
process and obtain better quality solutions.

This hybridization is called Learnheuristic [1], where it is composed of an
optimization module and a machine learning module. The optimization module
solves an optimization problem and in each iteration generates a quantity of
data that is delivered to the machine learning module so that it learns and
makes decisions that affect the optimization technique in order to improve the
quality of the solutions.

This work applies the concept of Learnheuristic, where the optimization mod-
ule is composed of the metaheuristic Sine Cosine Algorithm (SCA) and the ma-
chine learning module is composed of Q-Learning. Q-Learning is used to learn
how to select binarization schemes when SCA solves the Set Covering Problem.
In particular, we seek to demonstrate the impact generated by different reward
functions applied in Q-Learning.

The paper is organized as follows: Section 2 presents the Set Covering Prob-
lem, Section 3 presents the reinforcement learning, Q-Learning and the reward
functions found in the literature, Section 4 presents Sine Cosine Algorithm, why
it is necessary to use binarization schemes and how the Learnheuristic is gener-
ated, Section 5 presents the experimental results to finish with the conclusions
in Section 6.

2 Set Covering Problem

The Set Covering Problem (SCP) is a classic optimization problem, which can be
used to model in different applications and various domains, such as assignment
problems, transport networks, among others. This problem is class NP-Hard [8]
and consists of finding the set of elements with the minor cost that meets a
certain amount of needs. The mathematical model of the Set Covering Problem
is available at [10].

The SCP allows modeling of real-life optimization problems such as the lo-
cation of gas detectors for industrial plants [22], the location of electric vehicle
charging points in California [25], the optimal UAV locations for the purpose
of generating wireless communication networks in disaster areas [17] and airline
and bus crew scheduling [18]. These studies allow us to appreciate the impor-
tance of solving this problem with optimization techniques that guarantee good
results.

3 Reinforcement Learning

Reinforcement learning is a subcategory of Machine Learning whose learning
process consists of an agent performing different actions in different states and
the objective of the agent is to learn what is the best action for each of the
states by judging the consequence of performing each of the actions. Some of the
classic examples are Q-Learning [23], Monte Carlo RL [11] and SARSA [19].
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3.1 Q-Learning

Watkins et. al. [23] proposed Q-Learning in 1992 and it is one of the best known
reinforcement learning techniques. The main objective is to maximize the accu-
mulated reward of an action in a particular state, in other words, to find the
best action for a state.

An agent travels in different states and in each one of them an action is
experienced immediately obtaining a reward or a punishment and the moment
when an action is taken in a particular state is called a episode.

The agent should learn to select the best action for each one of the possible
states. As the episodes pass the agent performs all possible actions for a state
and the best action is the one that obtains the best accumulated reward [23].

The Q-Learning algorithm tries to learn how much accumulated reward the
agent will get in the long run for each pair of action-state. The action-state
function is represented as Q(s, a) which returns the reward that the agent will
get when performing the action a in the state s and assumes that it will follow
the same policy obtained by the Q function until the end of the episode, this
value is called Q-Value.

These Q-Values are stored in the Q-Table, which is a matrix where the rows
correspond to the states and the columns correspond to the actions.

The Q-Value obtained for action a in state s when the n-th episode occurs is
calculated as follows:

Qn(s, a) =

{
(1− αn)Qn−1(s, a) + αn[rn + γVn−1(sn+1)] if s = sn and a = an

Qn−1(s, a) otherwise,
(1)

where,
Vn−1(sn+1) = max Qn−1(sn+1, b) (2)

sn corresponds to the current state, an corresponds to the action selected and
performed for the n-th episode, max Qn−1(sn+1, b) corresponds to the highest
Q-Value obtained for episode n−1 for the following state sn+1, in other words, the
best action for the following state sn+1, rn corresponds to the reward function
that allows rewarding or punishing the action based on its consequence, αn
corresponds to the learning factor and γ corresponds to the discount factor.

3.2 Reward Function

The big question when using Q-Learning is: How to reward or punishment the
consequences of carrying out an action? A good balance of reward and penalty
allows an equitable variation of the selection of actions so the best action found
is more reliable.

In the literature different Learnheuristics were found where metaheuristics
incorporate Q-Learning as a machine learning technique. The reward function
used by these Learnheuristics are diverse and adapted to the behavior of the
metaheuristic.
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For example, in [15] proposes 3 ways of reward or penalty for Ant Colony
Optimization where all are associated to the best ant tour and, in some cases,
they are calculated with respect to a predefined W constant.

On the other hand, other ways of rewarding or penalizing were found where
they are oriented to the performance of Metaheuristics and can be applied to
any of them. Such are the cases of [24] where the reward is 1 when the fitness
is improved or -1 otherwise and as a result of this the reward or penalty visible
in equation (4) is born where only the reward is given. The different reward
functions are shown in Table 1.

Reference Reward Function

[24] rn =

{
1, if the current action improves fitness
−1, otherwise.

(3)

- rn =

{
1, if the current action improves fitness
0, otherwise.

(4)

[15] rn =

{
W · fbest, if (r, s) ∈ tour done by the best agent

0, otherwise.
(5)

[15] rn =

{ W
fbest

, if (r, s) ∈ tour done by the best agent

0, otherwise.
(6)

[15] rn =

{√
fbest, if (r, s) ∈ tour done by the best agent
0, otherwise.

(7)

Table 1: Reward Function

4 Sine Cosine Algorithm

Sine Cosine Aalgorithm (SCA) is a population-based metaheuristic where initial
solutions are randomly generated and altered during the search process [13]. The
equations of movements proposed for both phases are as follows:

Xt+1
i,j =

{
Xt
i,j + r1 · sin (r2) · |r3P tj −Xt

i,j | , r4 < 0.5
Xt
i,j + r1 · cos (r2) · |r3P tj −Xt

i,j | , r4 ≥ 0.5
(8)

r1 = a − t
a

T
(9)

Where r1 is a parameter by equation 9, r2, r3 and r4 are random numbers,
Xt
i,j is the position of the i−th solution in the j−th dimension in t−th iteration

and P tj it is the position of the best solution in the j− th dimension in the t− th
iteration.

SCA is a metaheuristic that was built to solve problems in continuous do-
mains, that is why to solve combinatorial optimization problems such as the Set
Covering Problem it is necessary to transform the solutions from the continuous
domain to the discrete domain [4].
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One of the most used mechanisms to transfer solutions from the continuous
domain to the binary domain is the Two-Step Technique. This technique consists
of first transferring the values of the solutions from the continuous domain to the
[0, 1] domain by means of transfer functions and then taking the values of the
solutions in the [0, 1] domain and discretizing them by means of discretization
functions.

4.1 Learnheuristic framework

Recent studies [20, 2, 21] built a general Learnheuristics framework that incorpo-
rates Q-Learning as a machine learning module for operator selection. In particu-
lar, they select binarization schemes derived from combinations between transfer
functions and discretization functions of the Two-Step Technique.

In the present work, modifications were made to the proposal presented by
the authors in [2]. The actions to be taken by the agents are the binarization
schemes, the states are the phases of the metaheuristic, i.e. exploration or
exploitation, the episodes where an action is selected and applied in a particular
state will be the iterations and the agents will be the individuals of the Sine
Cosine Algorithm.

4.2 Balancing Exploration and Exploitation

To design a good metaheuristic is to make a proper trade-off between two forces:
exploration and exploitation. It is one of the most basic dilemmas that both
individuals and organizations constantly face. Exploration consists of looking
for alternatives different from those already found while exploitation consists
of exploiting a previously known alternative. This translates into selecting a
new product for an individual, innovating or not for an organization and for
metaheuristics into exploring the search space or exploiting a limited region of it.
Ambidextrous Algorithms [12, 3] aim at balancing exploration and exploitation
oriented to decision making.

Before solving the balancing problem between exploration and exploitation,
one must first have the ability to measure these indicators and then make a de-
cision. Diversity metrics allow the measurement of exploration and exploitation
because they quantify the dispersion of the individuals of the population.

There are different ways to quantify this diversity where the metrics based on
central measurements and others based on frequency stand out. Metrics based
on central measurements quantify diversity levels only in population algorithms.
This is because the best search agents tend to attract the other solutions to
them. In other words, the distance between solutions increases in exploration
search processes and decreases in exploitation search processes [14].

In the literature there are different ways to quantify diversity and for this
work the Dimensional-Hussain Diversity [9] was used. Dimensional-Hussain Di-
versity is a diversity based on central measurements and is defined as:
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Ddh(X) =
1

l · n
l∑

d=1

n∑

i=1

|mean(xd)− xdi | (10)

Where Ddh(X) corresponds to the Dimensional-Hussan Diversity of the pop-
ulation X, mean(xd) is average of the d-th dimension, n is the number of search
agents in the population X and l is the number of dimension of the optimization
problem.

Morales-Castañeda et. al. in [14] propose some equations which can obtain
a percentage of exploration (XPL%) and a percentage of exploitation (XPT%)
based on the diversity of the population. The particularity of these equations
is that they are generic, that is, any diversity metric can be used, since the
percentages are calculated around the diversity that the population has in a
given iteration in relation to the maximum diversity obtained during the search
process. These equations are as follows:

XPL% =

(
Divt
Divmax

)
× 100 , XPT% =

( |Divt −Divmax|
Divmax

)
× 100 (11)

Where Divt corresponds to the current diversity in the t-th iteration and
Divmax corresponds to the maximum diversity obtained in the entire search
process.

By obtaining these percentages of exploration and exploitation we can deter-
mine the current state to be used in Q-Learning. This determination is done in
the following way:

next state =

{
Exploration if XPL% ≥ XPT%
Exploitation if XPL% < XPT%

(12)

All of the above are summarized in Algorithm 1.

5 Experimental results

To evaluate the impact of the reward function in Q-Learning is that 5 different
instances of BQSCA were implemented where the main change lies in the reward
function to be applied. Table 2 shows the applied functions and their respective
names.

Each of the instances was run 31, with a population of 40 individuals and 1000
iterations performed in each run. As mentioned in Section 3.1, Q-Learning has
2 additional parameters and they are the learning factor (α) and the discount
factor (γ). The 5 versions of BQSCA were configured with the same learning
factor whose value is α = 0.1 proposed in [5] and the same discount factor whose
value is γ = 0.4 proposed in [5]. On another hand, the value of the constant a
of the parameter r1 of equation 9 is 2 [13].
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Reference Reward Type Equation Name

[24] Penalty -1 eq. (3) BQSCA-QL1
- with Out Penalty eq. (4) BQSCA-QL2

[15] global Best eq. (7) BQSCA-QL3
[15] root Adaptation eq. (6) BQSCA-QL4
[15] escalating Multiplicative Adaptation eq. (5) BQSCA-QL5

Table 2: Q-Learning Implementation

The Set Covering Problem instances proposed by OR-Library, which are
betchmarck instances where the different authors make their comparisons, have
been solved.

Table 4 shows the details obtained for the algorithms. The first column refers
to each evaluated instance, the second column refers to the best known optimum
for each instance, the fourth column indicates the best optimum obtained for
each algorithm, the fifth column indicates the average of the results obtained for
each algorithm and the sixth column indicates the Relative Percetage Deviation
(RPD%) for each algorithm. These last 3 columns are repeated for each algorithm
under analysis.

The RPD measures the percentage deviation of the best result obtained Z
in relation to the best known result Zopt for each instance. The measure is
calculated as follows:

RPD =
Z − Zopt
Zopt

× 100 (13)

The results indicate that the 5 instances of BQSCA obtain good results,
reaching optimal results in some instances. It should be noted that BQSCA-
QL1 obtains preliminarily better results than the other instances.

Additionally, a statistical test was performed to validate the results obtained.
Since the data does not come from nature, it does not have a normal distribution.
On the other hand, since the data are not independent of each other, a nonpara-
metric statistical test was performed. The Wilcoxon-Mann-Whitney test was
applied. The hypothesis used for this statistical test is the following:

H0 = Algorithm A ≥ Algorithm B , H1 = Algorithm A < Algorithm B

If the result of the statistical test is obtained a p-value < 0.05, we cannot
assume that Algorithm A has worse performance than Algorithm B, rejecting
H0.

The results indicate that the 5 instances of BQSCA obtain good results,
reaching optimal results in some instances. It should be noted that BQSCA-
QL1 obtains preliminarily better results than the other instances.The results
are shown in Table 3.

By being able to quantify the diversity of the population in a particular
iteration, we can analyze the behavior of the Binary Q-Sine Cosine Algorithm in
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QL1 QL2 QL3 QL4 QL5

QL1 - >0.005 0.0484 0.0360 >0.005
QL2 >0.005 - >0.005 >0.005 >0.005
QL3 >0.005 >0.005 - >0.005 >0.005
QL4 >0.005 >0.005 >0.005 - >0.005
QL5 >0.005 >0.005 >0.005 >0.005 -

Table 3: p-value average BQSCA

terms of exploration and exploitation. This information is shown in Figures 1a
and Figure 1b. It can be seen that the Learnheuristics on average reach a balance
close to 50% of exploration and exploitation but it is not a smooth transition
as there are sharp jumps from exploration to exploitation or from exploitation
to exploitation. In conclusion, the proposal perturb exploration and exploitation
but fails to control it.

0 200 400 600 800 1000
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100 XPL (Avg. 46.31%)
XPLT (Avg. 53.69%)

DimensionalHussain % 
 Exploration and Exploitation b4

(a) BQSCA-QL1 solving instance scpb4
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XPLT (Avg. 54.12%)

DimensionalHussain % 
 Exploration and Exploitation b2

(b) BQSCA-QL3 solving instance scpb2

Fig. 1: BQSCA-QL1 Exploration-Exploitation

By analyzing the results obtained from both Table 4 and the statistical test
in Table 3, we can see that BQSCA-QL1 stands out over some proposals. A
peculiarity of this instance is that it is the only one that considers negative
reward [6, 7, 16]. Experimental results show that considering negative reward
”deters” exploration in reinforcement learning algorithm.
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6 Conclusion

Learnheuristics improve the balance between exploration and exploitation to
obtain high quality solutions. In particular, they perturb the solutions by gen-
erating an exploration and exploitation balance but it is not a tenuous and
controlled balance. This evidences the great interest of researchers in Learn-
heuristics or Ambidextrous Algorithms and the great field of research they open
due to the two interacting worlds.

Algorithm 1 Binary Q-Sine Cosine Algorithm

Input: The population X = {X1, X2, ..., Xn}
Output: The updated population X ′ = {X ′

1, X
′
2, ..., X

′
n} and Xbest

1: Initialize Q-Table with q0
2: Initialize random population X
3: Set initial r1
4: Calculate Initial Population Diversity (X)
5: Define the initial state using equation (12)
6: for iteration (t) do
7: a : Select action from Q-Table
8: for solution (i) do
9: Evaluate solution Xi in the objective function

10: for dimension (j) do
11: Update P t

j , where P t
j = Xbest,j

12: Randomly generate the value of r2, r3, r4
13: Update the position of Xi,j

14: end for
15: end for
16: Binarization X with action a and apply reward function
17: Calculate Population Diversity (X)
18: Define the next state using equation (12)
19: Update Q-Table using equation (1)
20: Update r1
21: Update Xbest

22: end for
23: Return the updated population X where Xbest is the best result

Regarding the reward function, it can be concluded from the statistical eval-
uation that, to solve the Set Covering Problem with the metaheuristic Sine
Cosine Algorithm applying Q-Learning as a binarization scheme selector, there
is an influence of these but there is not a better one than the others.

In the future, this research can be extended to solve another optimization
problem, apply another metaheuristic or apply another reinforcement learning
technique to demonstrate the impact of the reward function in other work con-
texts.
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QL1 QL2 QL3 QL4 QL5

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 431.0 439.19 0.47 435.0 442.72 1.4 439.0 444.06 2.33 438.0 444.32 2.1 438.0 444.13 2.1
42 512 535.0 549.52 4.49 537.0 553.71 4.88 541.0 554.89 5.66 542.0 555.45 5.86 537.0 552.39 4.88
43 516 532.0 545.48 3.1 534.0 552.03 3.49 535.0 552.19 3.68 535.0 550.52 3.68 527.0 547.0 2.13
44 494 510.0 527.48 3.24 514.0 530.44 4.05 516.0 530.43 4.45 512.0 531.9 3.64 511.0 530.68 3.44
45 512 532.0 547.45 3.91 537.0 553.17 4.88 527.0 549.48 2.93 532.0 551.58 3.91 531.0 550.16 3.71
46 560 573.0 585.74 2.32 573.0 588.68 2.32 577.0 588.68 3.04 576.0 591.77 2.86 568.0 588.84 1.43
47 430 437.0 447.26 1.63 441.0 449.77 2.56 440.0 449.84 2.33 439.0 449.81 2.09 439.0 451.06 2.09
48 492 502.0 511.55 2.03 509.0 516.39 3.46 499.0 513.87 1.42 503.0 514.13 2.24 507.0 514.77 3.05
49 641 672.0 690.26 4.84 683.0 697.48 6.55 685.0 697.42 6.86 686.0 696.55 7.02 676.0 697.52 5.46
410 514 521.0 532.0 1.36 521.0 533.88 1.36 529.0 537.26 2.92 526.0 535.58 2.33 522.0 534.52 1.56

51 253 263.0 269.13 3.95 264.0 272.75 4.35 264.0 272.32 4.35 264.0 273.16 4.35 265.0 273.29 4.74
52 302 326.0 332.55 7.95 327.0 335.58 8.28 325.0 334.61 7.62 328.0 335.48 8.61 327.0 335.71 8.28
53 226 231.0 234.94 2.21 230.0 235.62 1.77 231.0 235.81 2.21 232.0 236.29 2.65 230.0 235.77 1.77
54 242 250.0 253.93 3.31 250.0 254.6 3.31 250.0 255.39 3.31 252.0 255.39 4.13 251.0 254.84 3.72
55 211 216.0 219.85 2.37 218.0 221.46 3.32 217.0 220.87 2.84 214.0 221.39 1.42 217.0 220.97 2.84
56 213 217.0 228.23 1.88 221.0 231.26 3.76 225.0 231.23 5.63 223.0 231.9 4.69 220.0 230.9 3.29
57 293 305.0 312.97 4.1 304.0 316.4 3.75 303.0 317.03 3.41 306.0 318.32 4.44 312.0 317.48 6.48
58 288 295.0 299.37 2.43 296.0 301.32 2.78 296.0 300.77 2.78 295.0 300.9 2.43 295.0 301.1 2.43
59 279 285.0 291.73 2.15 284.0 293.42 1.79 289.0 293.1 3.58 288.0 294.1 3.23 286.0 293.23 2.51
510 265 271.0 278.19 2.26 274.0 281.35 3.4 277.0 281.74 4.53 273.0 281.9 3.02 274.0 281.84 3.4

61 138 141.0 145.77 2.17 144.0 148.16 4.35 144.0 148.42 4.35 146.0 148.29 5.8 146.0 148.65 5.8
62 146 151.0 156.26 3.42 152.0 159.06 4.11 154.0 158.77 5.48 152.0 158.58 4.11 153.0 158.06 4.79
63 145 149.0 151.19 2.76 149.0 151.29 2.76 149.0 151.65 2.76 149.0 151.74 2.76 149.0 151.74 2.76
64 131 133.0 135.35 1.53 133.0 136.03 1.53 133.0 135.74 1.53 134.0 136.29 2.29 134.0 136.32 2.29
65 161 169.0 179.87 4.97 173.0 183.26 7.45 173.0 183.19 7.45 173.0 182.84 7.45 175.0 182.97 8.7

a1 253 262.0 267.24 3.56 266.0 269.42 5.14 263.0 268.81 3.95 263.0 268.9 3.95 265.0 269.68 4.74
a2 252 267.0 271.65 5.95 267.0 273.8 5.95 269.0 274.16 6.75 269.0 274.1 6.75 268.0 274.23 6.35
a3 232 243.0 247.85 4.74 245.0 248.87 5.6 245.0 249.45 5.6 242.0 249.71 4.31 242.0 248.63 4.31
a4 234 245.0 250.81 4.7 245.0 252.61 4.7 249.0 252.77 6.41 245.0 252.13 4.7 245.0 252.68 4.7
a5 236 245.0 248.92 3.81 247.0 251.27 4.66 245.0 250.48 3.81 245.0 251.29 3.81 244.0 251.26 3.39

b1 69 70.0 71.81 1.45 71.0 72.68 2.9 72.0 72.9 4.35 72.0 72.87 4.35 72.0 73.03 4.35
b2 76 76.0 80.16 0.0 78.0 81.35 2.63 76.0 81.13 0.0 78.0 81.06 2.63 78.0 81.23 2.63
b3 80 81.0 82.85 1.25 82.0 83.87 2.5 82.0 83.77 2.5 82.0 83.58 2.5 81.0 83.55 1.25
b4 79 82.0 83.82 3.8 83.0 84.9 5.06 82.0 84.68 3.8 83.0 84.9 5.06 81.0 85.1 2.53
b5 72 73.0 74.55 1.39 73.0 75.03 1.39 74.0 74.9 2.78 74.0 75.23 2.78 73.0 74.84 1.39

c1 227 240.0 245.55 5.73 246.0 251.85 8.37 244.0 251.03 7.49 239.0 251.0 5.29 244.0 250.94 7.49
c2 219 234.0 240.19 6.85 237.0 242.89 8.22 238.0 242.61 8.68 231.0 242.65 5.48 233.0 242.19 6.39
c3 243 255.0 260.97 4.94 259.0 263.25 6.58 257.0 262.74 5.76 256.0 263.0 5.35 256.0 263.48 5.35
c4 219 232.0 236.03 5.94 230.0 236.1 5.02 233.0 236.94 6.39 232.0 237.13 5.94 232.0 236.97 5.94
c5 215 225.0 231.62 4.65 229.0 234.2 6.51 226.0 233.35 5.12 227.0 233.42 5.58 226.0 233.45 5.12

d1 60 62.0 64.42 3.33 64.0 65.97 6.67 64.0 66.0 6.67 64.0 65.81 6.67 63.0 66.06 5.0
d2 66 67.0 69.52 1.52 69.0 69.97 4.55 68.0 69.97 3.03 69.0 70.26 4.55 68.0 70.03 3.03
d3 72 75.0 78.0 4.17 76.0 78.86 5.56 75.0 78.74 4.17 75.0 78.58 4.17 76.0 78.77 5.56
d4 62 62.0 64.0 0.0 63.0 64.16 1.61 62.0 64.13 0.0 62.0 64.16 0.0 63.0 64.29 1.61
d5 61 63.0 65.55 3.28 64.0 66.35 4.92 63.0 66.13 3.28 64.0 66.06 4.92 63.0 66.16 3.28

Table 4: Results obtained by solving instances of OR-library
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Abstract. We consider the horizontal linear complementarity problem
and we assume that the input data have the form of intervals, represent-
ing the range of possible values. For the classical linear complementarity
problem, there are known various matrix classes that identify interesting
properties of the problem (such as solvability, uniqueness, convexity, fi-
nite number of solutions or boundedness). Our aim is to characterize the
robust version of these properties, that is, to check them for all possible
realizations of interval data. We address successively the following matrix
classes: nonnegative matrices, Z-matrices, semimonotone matrices, col-
umn sufficient matrices, principally nondegenerate matrices, R0-matrices
and R-matrices. The reduction of the horizontal linear complementarity
problem to the classical one, however, brings complicated dependencies
between interval parameters, resulting in some cases to higher computa-
tional complexity.

Keywords: Linear complementarity· Interval analysis· Special matri-
ces· NP-hardness.

1 Introduction

The linear complementarity problem (LCP). The classical LCP problem is a
feasibility problem

y = Mz + q, y, z ≥ 0, (1a)

yT z = 0, (1b)

where M ∈ Rn×n and q ∈ Rn are given and y, z ∈ Rn are variables. Condition
(1a) is linear, but the (nonlinear) complementarity condition (1b) makes the
problem NP-hard [2]. The LCP is called feasible if (1a) is feasible, and it is

⋆ Supported by the Czech Science Foundation Grants P403-18-04735S (M. Hlad́ık)
and P403-20-17529S (M. Rada).
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2 M. Hlad́ık and M. Rada

called solvable if (1a)–(1b) is feasible. The LCP appears in many optimization
and operations research models such as quadratic programming, bimatrix games,
or equilibria in specific economies. More one properties and algorithms for LCP
see, e.g., the books [4,21].

The horizontal linear complementarity problem. The horizontal LCP [3] is a
slight generalization of LCP, first formulated by Samelson et al. [25]. It reads

Ay = Bz + q, y, z ≥ 0, (2a)

yT z = 0, (2b)

where A, B ∈ Rn×n and q ∈ Rn are given and y, z ∈ Rn are variables. Clearly,
provided A is nonsingular, we easily reduce the problem to LCP by multiplying
A−1

y = A−1Bz + A−1q, y, z ≥ 0, (3a)

yT z = 0, (3b)

Otherwise, a reduction is possible only under certain conditions [7,28]. In our
context, it is better to consider the horizontal form separately since the form
A−1B brings complicated correlations into the matrix. Notice that for the hori-
zontal and other extended forms of LCP, certain LCP-related matrix classes were
generalized [26]. For the horizontal LCP, also special algorithms were developed
[18,19,29].

Interval uncertainty. Properties of the solution sets of LCP and horizontal LCP
relate with properties of the constraint matrices. In this paper, we study the
situation when the matrix entries are not precisely known, but we have interval
type uncertainty. A justifications of using intervals for modelling uncertainty is
provided in [14,15] and many books, e.g., [20,22].

Formally, an interval matrix is a set

A := {A ∈ Rm×n; A ≤ A ≤ A},

where A, A ∈ Rm×n, A ≤ A, are given matrices and the inequality is understood
entrywise. The corresponding midpoint and radius matrices are defined as

Ac :=
1

2
(A + A), A∆ :=

1

2
(A − A).

The set of all interval m×n matrices is denoted by IRm×n. Following the notation
by Fiedler et al. [5], we introduce special matrices in A. Given sign vectors
s ∈ {±1}m and t ∈ {±1}n, denote

As,t = Ac − DsA∆Dt ∈ A,

where Ds stands for the diagonal matrix with entries s1, . . . , sm and similarly for
Dt. For more results and properties of interval computation, including interval
arithmetic, we refer the readers, e.g., to books [20,22].
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The horizontal LCP and robustness of matrix classes 3

The LCP with interval uncertainties was investigated in [1,17], among others.
They addressed the problem of computing an outer approximation of the solution
set of all possible realizations of interval entries. Our goal is different – in this
paper, we focus on the interval matrix properties that are related to the LCP.

Problem statement. Let A, B ∈ IRn×n be given. We consider a class of the
horizontal LCP problems with A ∈ A and B ∈ B. Let P be a matrix property
related to the (horizontal) LCP. We say that P holds strongly if it holds for each
A ∈ A and B ∈ B.

Our aim is to characterize strong versions of several fundamental matrix
classes appearing in the context of the (horizontal) LCP. If property P holds
strongly for an interval matrix A, then we are sure that P is provably valid
whatever are the true values of the uncertain entries. Therefore, the property
holds in a robust sense for the (horizontal) LCP problem.

Notation. We use the shortage [n] = {1, . . . , n}. Given a matrix M ∈ Rn×n and
index sets I, J ⊆ [n], MI,J denotes the restriction of M to the rows indexed
by I and the columns indexed by J ; it is the empty matrix if I or J is empty.
Similarly xI denotes the restriction of a vector x to the entries indexed by I.

The identity matrix of size n is denoted by In, and the spectral radius of a
matrix M by ρ(M). The symbol Ds stands for the diagonal matrix with entries
s1, . . . , sn and e = (1, . . . , 1)T for the vector of ones. The relation x 	 y between
vectors x, y is defined as x ≥ y and x 6= y. Inequalities and the absolute value of
matrices and vectors are understood entrywise.

2 Particular matrix classes

In the following sections, we consider important classes of matrices appearing in
the context of the (horizontal) LCP. We characterize their strong counterparts
when entries are interval valued. Other matrix properties were discussed, e.g.,
in [6,11,12,13,16] and in the context of LCP in Hlad́ık [10].

Basically, due to reduction (3), we will tackle the matrix A−1B for A ∈ A
and B ∈ B. The expression A−1B imposes complicated dependencies between
interval parameters, so that is why we have to deal with them carefully. A simple
evaluation by interval arithmetic (and estimation of the inverse) leads to (possi-
bly high) overestimation. For the sake of simplicity of exposition, we denote by
A−1B the set

{A−1B; A ∈ A, B ∈ B}.

Throughout the paper we assume that A is strongly nonsingular. For character-
ization of nonsingularity and sufficient conditions see [23,24], for instance.

2.1 S-matrices

A matrix M ∈ Rn×n is an S-matrix if there is x > 0 such that Mx > 0. The
importance of this class is that the LCP is feasible for each q ∈ Rn if and only
if M is an S-matrix.
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4 M. Hlad́ık and M. Rada

Proposition 1. We have that A−1B is strongly S-matrix if and only if the
system

As,ez = B−s,ex, x > 0, z > 0. (4)

is feasible for each s ∈ {±1}n.

Proof. We want to characterize feasibility of

(A−1B)x > 0, x > 0

for each A ∈ A and B ∈ B. Substitute y ≡ Bx and z ≡ A−1y. Then Az = y =
Bx and we reduced the problem to strong solvability of the interval system

Az = Bx, x > 0, z > 0. (5)

By [5,8], we obtain (4).

The problem of checking strong S-matrix property is computationally in-
tractable, which justifies the exponential formula 4.

Proposition 2. Checking strong S-matrix property of A−1B is co-NP-hard
even in the case when A is real.

Proof. By [5], checking solvability of the system

|Mx| ≤ e, eT |x| ≥ 1 (6)

is NP-hard even on a class of problems with M nonnegative positive definite.
This is equivalent to weak solvability (i.e., solvability for at least one realization)
of the interval system

|Mx| ≤ e, [−e, e]T x ≥ 1,

or to weak solvability of

Mx ≤ ey, −Mx ≤ ey, [−e, e]T x ≥ y, y > 0.

By Farkas’ lemma, it is equivalent to the situation that the interval system

(
−M M [−e, e]
eT eT −1

) 


u
v
w


 =

(
0

−1

)
, u, v, w ≥ 0 (7)

is not strongly solvable. We claim that strong solvability of this system is equiv-
alent to strong solvability of

(
0 −M M [−e, e]
1 eT eT −1

)



z
u
v
w


 =

(
0
0

)
, z, u, v, w > 0. (8)
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If (8) has a solution (z, u, v, w), then 1
z (u, v, w) solves (7). Conversely, let (u, v, w)

be a solution of (7). Situation w = 0 cannot happen since otherwise the second
equation is violated. Thus we have w > 0. If u, v > 0, then we put z := 1 and
(z, u, v, w) solves (8). Otherwise we put u := u + e, v := v + e and z := 2n + 1
and (z, u, v, w) solves (8).

Eventually, we obtained the interval system in the form of (5), where

A =

(
0 −M
1 eT

)
, B =

(
−M [−e, e]
−eT 1

)
.

Obviously, A is nonsingular.

2.2 Nonnegative matrices

Nonnegative matrices are important in the LCP since they represent an effi-
ciently recognizable subclass of copositive matrices.

Proposition 3. We have that A−1B is strongly nonnegative if and only if the
system

As,eX = B−s,e, X ≥ 0 (9)

is feasible for each s ∈ {±1}n.

Proof. We need to characterize feasibility of

AX = B, X ≥ 0

for each A ∈ A and B ∈ B. Thus we arrived at strong solvability of the interval
matrix system. Fortunately, for strong solvability, the fact that the system is a
matrix equation system makes no harm and we can simply call the characteri-
zation from [8], producing (9).

It is an open problem if checking strong nonnegativity is intractable; we
suspect it is.

2.3 Z-matrices

A matrix M ∈ Rn×n is called a Z-matrix if mij ≤ 0 for each i 6= j. Z-matrices
emerge in the context of Lemke’s complementary pivot algorithm, because it
processes any LCP with a Z-matrix.

Recall that Dy denotes the diagonal matrix with entries y1, . . . , yn, which in
the following proposition play the role of variables.

Proposition 4. We have that A−1B is strongly a Z-matrix if and only if the
system

As,eX − A−s,eDy = Bs,e, X ≤ 0, y ≤ 0 (10)

is feasible for each s ∈ {±1}n.

281



6 M. Hlad́ık and M. Rada

Proof. We need to characterize feasibility of

AX = B, Xij ≤ 0 i 6= j

for each A ∈ A and B ∈ B. We express the diagonal of X as a difference
of two nonpositive variables, which is an equivalent operation in view of [9].
Thus in matrix form we have X 7→ X − Dy, where X ≤ 0 and y ≤ 0. By
[8] strong feasibility of this system is equivalent to feasibility of (10) for each
s ∈ {±1}n.

2.4 Semimonotone matrices

A matrix M ∈ Rn×n is semimonotone if for each x 	 0 there is k such that
xk > 0 and (Mx)k ≥ 0. By [4], we can state two equivalent conditions of
semimonotonicity. First, the LCP has a unique solution for each q > 0. Second,
for each index set ∅ 6= I ⊆ [n] the system

MI,Ix < 0, x ≥ 0 (11)

is infeasible. From the computational complexity perspective, checking whether
M is semimonotone is a co-NP-hard problem [27].

Proposition 5. We have that A−1B is strongly semimonotone if and only if
for each index set ∅ 6= I ⊆ [n] the system

A[n],IzI + (A[n],J )−e,szJ ≤ B[n],Ix, (12a)

A[n],IzI + (A[n],J )e,szJ ≥ B[n],Ix, (12b)

DszJ ≤ 0, zI < 0, x ≥ 0 (12c)

is infeasible for each s ∈ {±1}|J|, where J = [n] \ I.

Proof. Let ∅ 6= I ⊆ [n]. We need to characterize infeasibility of

(A−1B)I,Ix < 0, x ≥ 0. (13)

Substitute y ≡ B[n],Ix and z ≡ A−1y. Then Az = y = B[n],Ix. Since (A−1B)I,I =

A−1
I,[n]B[n],I , we can equivalently write (13) as follows

Az = B[n],Ix, zI < 0, x ≥ 0.

Since this system should be infeasible for each A ∈ A and B ∈ B, we obtain by
[5,8] the characterization (12).

2.5 Principally nondegenerate matrices

A matrix M ∈ Rn×n is principally nondegenerate if all its principal minors
are nonzero. A principally nondegenerate matrix implies that the problem has
finitely many solutions (including zero) for every q ∈ Rn.
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Proposition 6. We have that A−1B is strongly principally nondegenerate if
and only if for each index set ∅ 6= I ⊆ [n] and s ∈ {±1}n the system

(A[n],I)s,e + (A[n],J)s,eZ
1 − (A[n],J)−s,eZ

2 = (B[n],I)s,−eX
1 − (B[n],I)s,−eX

2,
(14a)

Z1, Z2, X1, X2 ≥ 0. (14b)

is feasible, where J = [n] \ I.

Proof. Let ∅ 6= I ⊆ [n] and k = |I|. We need to characterize regularity of
(A−1B)I,I . For any particular instance, the system

A−1
I,[n]B[n],IX = Ik

should be feasible. Substitute Y ≡ B[n],IX and Z ≡ A−1
J,[n]Y . Then A[n],I +

A[n],JZ = Y = B[n],IX . Thus we arrive at strong solvability of the interval
matrix system

A[n],I + A[n],JZ = B[n],IX.

By [5,8], we obtain the characterization (14).

2.6 Column sufficient matrices

A matrix M ∈ Rn×n is column sufficient if for every x ∈ Rn

[xi(Mx)i ≤ 0 ∀i] ⇒ [xi(Mx)i = 0 ∀i].

Equivalently, by [4], for each pair of disjoint index sets I, J ⊆ [n], I ∪ J 6= ∅, the
system

(
MI,I −MI,J

−MJ,I MJ,J

)
x � 0, x > 0 (15)

is infeasible. Notice that the above constraint matrix reduces to MJ,J when
I = ∅, and similarly it reduces to AI,I when J = ∅.

It is known [27] that checking column sufficiency is a co-NP-hard problem,
which justifies necessity of inspecting all index sets I, J in (15). In the context
of LCP, column sufficiency guarantees that for any q ∈ Rn the solution set of
the LCP is a convex set (including possibly the empty set).

Proposition 7. We have that A−1B is strongly column sufficient if and only
if the system

A[n],IzI + A[n],JzJ ≤ B[n],IxI − B[n],JxJ , (16a)

A[n],IzI + A[n],JzJ ≥ B[n],IxI − B[n],JxJ , (16b)

zI ≤ 0, zJ ≥ 0, z 6= 0, x > 0. (16c)

is infeasible for each admissible I, J .
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Proof. Let admissible I, J be given. We want to characterize infeasibility of
system

(
(A−1B)I,I −(A−1B)I,J

−(A−1B)J,I (A−1B)J,J

) (
xI

xJ

)
� 0, x > 0.

Substitute

y ≡ B[n],IxI − B[n],JxJ , z ≡ A−1y.

Then Az = y = B[n],IxI − B[n],JxJ , so one can write the system as follows

Az = B[n],IxI − B[n],JxJ , zI ≤ 0, zJ ≥ 0, z 6= 0, x > 0.

By means of [5,8], infeasibility of this system for each A ∈ A and B ∈ B is
characterized by (16).

Notice that system (14) can easily be expressed as a system of linear in-
equalities. So checking its feasibility is a tractable problem by means of linear
programming (for fixed I, J).

2.7 R0-matrices

A matrix M ∈ Rn×n is an R0-matrix if the LCP with q = 0 has only the trivial
solution y = z = 0. Equivalently, for each index set ∅ 6= I ⊆ [n], the system

AI,Ix = 0, AJ,Ix ≥ 0, x > 0 (17)

is infeasible, where J = [n] \ I. The decision problem of a given matrix to be
a R0-matrix is a co-NP-hard [27] problem. If M is an R0-matrix, then for any
q ∈ Rn the LCP has a bounded solution set.

Proposition 8. We have that A−1B is strongly R0-matrix if and only if system

A[n],JzJ ≤ B[n],IxI , (18a)

A[n],JzJ ≥ B[n],IxI , (18b)

zJ ≥ 0, x > 0 (18c)

is infeasible for each admissible I, J .

Proof. Let admissible I, J be given. We want to characterize infeasibility of
system

(A−1B)I,Ix = 0, (A−1B)J,Ix ≥ 0, x > 0.

Substitute y ≡ B[n],IxI and z ≡ A−1y. Then Az = y = B[n],IxI and the system
reads

Az = B[n],IxI , zI = 0, zJ ≥ 0, x > 0
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or

A[n],JzJ = B[n],IxI , zJ ≥ 0, x > 0.

This system is infeasible for each A ∈ A and B ∈ B if and only if system(18) is
infeasible; see [5,8].

2.8 R-matrices

A matrix M ∈ Rn×n is an R-matrix if for each index set ∅ 6= I ⊆ [n], the system

MI,Ix + et = 0, MJ,Ix + et ≥ 0, x > 0, t ≥ 0 (19)

is infeasible w.r.t. variables x ∈ R|I| and t ∈ R, where J = [n] \ I. In the context
of the LCP, when M is an R-matrix, then for any q ∈ Rn the LCP has a solution.

Despite the (visual) similarity with R0-matrix, the R-matrix property is much
harder in the interval setting and for particular index sets I, J .

Proposition 9. We have that A−1B is strongly R0-matrix if and only if system

−A[n],Iet + (A[n],J )e,szJ ≤ B[n],IxI , (20a)

−A[n],Iet + (A[n],J )e,−szJ + et ≥ B[n],IxI , (20b)

DszJ ≥ 0, zJ + et ≥ 0, x > 0, t ≥ 0 (20c)

is infeasible for each admissible I, J and s ∈ {±1}|J|.

Proof. Let admissible I, J be given. We want to characterize infeasibility of
system

(A−1B)I,Ix + et = 0, (A−1B)J,Ix + et ≥ 0, x > 0, t ≥ 0.

Substitute y ≡ B[n],IxI and z ≡ A−1y. Then Az = y = B[n],IxI and the system
reads

Az = B[n],IxI , zI + et = 0, zJ + et ≥ 0, x > 0

or

−A[n],Iet + A[n],JzJ = B[n],IxI , zJ + et ≥ 0, x > 0, t ≥ 0.

This system is infeasible for each A ∈ A and B ∈ B if and only if system(20) is
infeasible for each s ∈ {±1}|J|; see [5,8].
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3 Conclusion

We considered various matrix classes that appear in the context of the LCP and
ensure that the problem has favourable properties (in view of its solvability and
properties of the solution set). We fully characterized stability of these matrices
on an interval domain and in the case the matrices originate from the horizon-
tal LCP. Practically it brings characterization of robustness of these matrices
because whatever are the realizations of the interval data, we are sure that the
corresponding property is satisfied.

Several open problems emerged, too. For copositivity and P-matrix property,
we presented no closed form characterization and we leave it for future research.
Next, notice that many matrix properties are computationally hard to verify
even in the real case, so the interval case cannot be easier. Therefore it would
be interesting to investigate some polynomially recognizable cases or to come up
with suitable sufficient conditions.
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13. Horáček, J., Hlad́ık, M., Černý, M.: Interval linear algebra and computational
complexity. In: Bebiano, N. (ed.) Applied and Computational Matrix Analysis,
Springer Proceedings in Mathematics & Statistics, vol. 192, pp. 37–66. Springer
(2017)

14. Kreinovich, V.: Why intervals? A simple limit theorem that is similar to limit
theorems from statistics. Reliab. Comput. 1(1), 33–40 (1995)

15. Kreinovich, V.: Why intervals? Why fuzzy numbers? Towards a new justification.
In: Mendel, J.M., Omori, T., Ya, X. (eds.) 2007 IEEE Symposium on Foundations
of Computational Intelligence. pp. 113–119 (2007)

16. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht
(1998)

17. Ma, H.q., Xu, J.p., Huang, N.j.: An iterative method for a system of linear comple-
mentarity problems with perturbations and interval data. Appl. Math. Comput.
215(1), 175–184 (2009)

18. Mezzadri, F., Galligani, E.: Splitting methods for a class of horizontal linear com-
plementarity problems. J. Optim. Theory Appl. 180(2), 500–517 (2019)

19. Mezzadri, F., Galligani, E.: A modulus-based nonsmooth Newton’s method for
solving horizontal linear complementarity problems. Optim. Lett. (2020), in press,
DOI: 10.1007/s11590-019-01515-9

20. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia, PA (2009)

21. Murty, K.G., Yu, F.T.: Linear Complementarity, Linear and Nonlinear Program-
ming. Internet edn. (1997)

22. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

23. Rex, G., Rohn, J.: Sufficient conditions for regularity and singularity of interval
matrices. SIAM J. Matrix Anal. Appl. 20(2), 437–445 (1998)

24. Rohn, J.: Forty necessary and sufficient conditions for regularity of interval matri-
ces: A survey. Electron. J. Linear Algebra 18, 500–512 (2009)

25. Samelson, H., Thrall, R.M., Wesler, O.: A partition theorem for euclidean n-spaces.
Proc. Am. Math. Soc. 9, 805–807 (1958)

26. Sznajder, R., Gowda, M.: Generalizations of P0- and P-properties; extended ver-
tical and horizontal linear complementarity problems. Linear Algebra Appl. 223-
224, 695–715 (1995)

27. Tseng, P.: Co-NP-completeness of some matrix classification problems. Math. Pro-
gram. 88(1), 183–192 (June 2000)
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Abstract. Dynamic pricing is a strategy for setting flexible prices for
products based on existing market demand. In this paper, we address
the problem of dynamic pricing of perishable products using DQN value
function approximator. A model-free reinforcement learning approach
is used to maximize revenue for a perishable item with fixed initial
inventory and selling horizon. The demand is influenced by the price and
freshness of the product. The conventional tabular Q-learning method
involves storing the Q-values for each state-action pair in a lookup
table. This approach is not suitable for control problems with large
state spaces. Hence, we use function approximation approach to address
the limitations of a tabular Q-learning method. Using DQN function
approximator we generalize the unseen states from the seen states,
which reduces the space requirements for storing value function for each
state-action combination. We show that using DQN we can model the
problem of pricing perishable products. Our results demonstrate that the
DQN based dynamic pricing algorithm generates higher revenue when
compared with conventional one-step price optimization and constant
pricing strategy.

Keywords: Dynamic pricing · Deep reinforcement learning · Perishable
items · Retail · Grocery · Fashion industry · Deep Q-network · Revenue
management.

1 Introduction

Dynamic pricing, also referred as revenue management, is a strategy to adjust
the selling prices of products at the right time for maximizing revenue under
changing circumstances. These changing circumstances are the factors which
affect the demand and supply. Examples include amount of inventory available,
age of the product, weather and customer preferences.

Perishable items are those likely to spoil after a fixed time period. The scope
of perishable item spans various industries including grocery, pharmaceuticals,
fashion and airlines. The consumer spend on perishables is increasing and
expected to further increase in the next few years. In particular, the demand for

? Rajan was an employee of TCS when this work was done.
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perishable food items such as vegetables, fruits, milk and eggs, are continuing
to increase as consumers are progressively becoming health conscious. In case of
fashion items, the demand is often short-lived due to several factors including the
impact of social media. The retailers are under great pressure to price perishables
optimally to offload inventory as well as maximize overall revenue. Hence, there
is a need to develop a dynamic pricing policy.

Feng et al. [8] developed an economic order quantity (EOQ) inventory model
for perishable items and hypothesize that for perishable products the demand
is dependent on its price, freshness and stock level. They have considered the
following characteristics for perishable food items:

1. Demand for a perishable product is dependent on its price, age and inventory
level.

2. The age of the product not only reduces the stocks but also decreases the
demand rate.

3. Product can not be sold after its expiration date.

Some work has been done for dynamic pricing through reinforcement learning
(RL), but there still exist some challenges. In this paper, we identify and address
three important challenges. First, the existing work on dynamic pricing of
perishable products using RL employ based tabular Q-learning approach. Pricing
policy using tabular Q-learning approach cannot be generalized to previously
unseen scenarios, i.e., we cannot estimate a pricing policy for a state unless
it has been visited several times. Second, the exisiting literature on dynamic
pricing through RL makes use of incremental method of learning a policy [22].
Incremental methods are not sample efficient and may lead to slower convergence
of policy. Third, most of the existing work on dynamic pricing makes use of
myopic approaches that try to optimize the immediate revenue. Harrison et al.
[14] showed that myopic policies can lead to incorrect policies. Furthermore, Ravi
Ganti et al. [12] have shown that far-sighted policies lead to increased profit in
the long term.

In this paper, we have made the following important and original
contributions in order to overcome the aforementioned challenges. First, we
make use of a model-free DQN function approximator [26, 18]. By making use
of a function approximator we address the problem of pricing for unseen states.
Also, using a function approximator drastically reduces the space requirement
for obtaining the pricing policy. To the best of our knowledge, this is the first
application of DQN for dynamic pricing of perishables. Second, reinforcement
learning provides an alternative approach for optimizing the revenue over the
entire selling horizon of the item. This leads to better proftability in the long
run.

The remainder of this paper is organized as follows. Section 2 provides
a review of related work. Section 3 gives some background on reinforcement
learning. Section 4 discusses MDP formulation. We discuss the methodology in
Section 5. Experimental results and findings are explained in Section 6.
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2 Related Work

In this section, we review literature relevant to our work. Dynamic pricing has
been receiving a lot of attention due to increase in competition in the market
and advancement of AI based modeling. Gallego et al. [11] formulated dynamic
pricing model for perishables having stochastic demand with an arrival rate
as a function of price over finite horizon. Bitran et al. [3] extended this work
by considering demand as a Poisson process with an arrival rate as a function
of general purchasing patterns. Feng et al. [10, 9] considered demand explicitly
as a multivariate function of price, freshness and displayed stocks to obtained
optimal price. Lu et al. [19] have maximized total profit to obtain the optimal
joint dynamic pricing and replenishment policy for perishable items by applying
pontryagins maximum principle. Duan et al. [7] proposed a dynamic pricing
model for perishable food with quantity and quality deteriorating simultaneously.
Their demand depends on the quality, the sales price and the reference price.
They formulated an optimal control model to maximize the total profit and
solved it by applying pontryagins maximum principle. Diaz et al. [1] studied
the relation between dynamic price strategy and relevant factors such as price
elasticity of demand, age-sensitivity of demand and age profile of initial inventory
for perishables. They proposed a deterministic mathematical model that studied
the influence of these factors on revenue and spoilage. Xiong et al. [27] studied
the dynamic pricing problem of selling fixed stock of perishable items over a
finite horizon, using fuzzy variables to model uncertain demand. They claim
the effectiveness and robustness of their algorithm using a real world example.
Robust optimization methods have been used to address dynamic pricing for
perishable products [17, 21, 2]. These are one step optimization methods that
result in myopic and static solutions, which focus only on maximizing immediate
revenue rather than for a long term.

Dynamic pricing problem have also been addressed by using Reinforcement
learning algorithms. Gosavi et al. [13] have used reinforcement learning
as stochastic optimization for dynamically pricing the airline tickets. They
formulated a semi-Markov Decision problem for their single leg problem over
an infinite time horizon by involving some of the important factors affecting the
pricing of tickets. Raju et al. [13] have developed dynamic pricing model for single
seller and two seller maket scenario. Customer segmentation is an important
aspect for their model. For single seller market, pricing decision is taken using
Q-learning algorithm while for 2 seller market, actor-critic algorithm is used to
decide the optimal price. Cheng [5] integrated real-time demand learning with
look up table based Q-learning algorithm to optimaly price the identical products
by a deadline. Rana et al. [22] used Q-learning and Q-leaning with eligibility
traces (Q(λ)) to establish a pricing policy for products having fixed inventory
and fixed time horizon. They defined state as remaining inventory, action as
set of price points and reward as revenue. Rana et al. [23] established a pricing
policy for inter-dependent perishable items or services. Inter-dependent products
are the ones whose demand and prices are affected by one another. Q(λ) is used
to obtain the optimal policy. The Markov Decision Process (MDP) formulation
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is done as: set of all possible amount of inventory available for each item is
considered as state, set of price points are actions and total revenue gathered
is considered as reward. Chen et al. [4] used Q-learning algorithm for dynamic
pricing of perishables in a competitive multi-agent retailer market. However, they
pointed out that their pricing strategy was not always optimal in every market.
There are also several papers that uses multi-agent reinforcement learning to
learn the optimal pricing strategy [16, 15].

3 MDP formulation for dynamic pricing of perishables

We consider the dynamic pricing problem of a single perishable product, with a
given initial inventory. The objective is to price the product dynamically so as
to maximize the total expected revenue over a finite selling horizon.

Fig. 1: DQN methodology

We formulate the dynamic pricing problem as a Markov Decision Process.
Since we do not know the environment dynamics, we use a model-free
reinforcement learning approach to solve the MDP. Specifically, we use DQN
value function approximator to solve the MDP and develop an efficient pricing
method.

A reinforcement learning task that satisfies the Markov property is called a
Markov Decision Process, or MDP [24]. The task is a finite MDP if the state and
action spaces are finite. A finite MDP is defined by set of states, set of actions
and the one-step environment dynamics. In our MDP, the agent (decision maker)
will choose a pricing action from the set A (action set) at each time step t.
Since the environments response at time t+ 1 depends only on the state-action
representation at time step t, the sequence of states st, with t= 1, 2, 3,...,m
satisfies the Markov property.

We are dealing with a finite horizon problem that is treated as an episodic
task in reinforcement learning. Each episode ends in a terminal state, which
occurs at the end of the product lifetime. After termination of an episode, the
state values are reset to the default initial value.
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Selling horizon is the period of time during which the product is sold. The
selling horizon is separated into m discrete decision times. Let t= 1, 2, 3,...,m
denote the index of decision time. A pricing decision is made at the beginning
of every decision time.

The elements of the MDP are described below:
1) State: The state is formulated as a vector of length two. The state at

any time step t, for a product, is given by st=(inventory left, time since product
launch). Here, the time since the product launch is considered as the age of the
product. The pricing action is selected based on the current state. The current
state is determined by the amount of inventory remaining and the age of the
product. This state formulation contains all information about the past agent-
environment interaction and thus, follows the Markov property.

2) Action: The agent transitions between different states by performing
actions. Actions represents the choices the agent makes based on the current
state. Here, the actions space includes all the discrete prices the product can be
assigned. The action space A is given byA= {a1, a2, .., an} for a product, where n
is the number of discrete actions the agent can execute. Selecting a pricing action
affects the future state of the environment and thus requires foresightedness.

3) Reward: The reward obtained at time t + 1 is determined by the state
st and action at at time step t. In our case, the reward is given as the revenue
generated by taking an action at at time step t. The reward, rt+1 = at∗demandt,
is the product of price and demand. Demand is the units sold. We aim to
maximize the expected return i.e., cummulative sum of rewards.

4 Methodology

Although classical reinforcement learning algorithms such as Q-learning and
SARSA have been applied successfully for various applications [25, 20] in the
past, these algorithms fail to scale up for real life problems involving large
state spaces. A classical RL algorithm makes use of lookup table for storing
the Q-values for every state-action combination it encounters. The size of this
lookup table grows in proportion to the size of state space. Also, the information
obtained from one state-action pair can not be propagated to other state-action
pairs. So, rather than remembering the solutions, we are finding a general
function to estimate the Q-value of a state-action pair. Neural networks, being
a good function approximator, have been used here. Recently, a neural network
based Deep Q-network or DQN technique proposed by Mnih et al. [26] was
shown to successfully learn control policies from large state spaces. They applied
DQN method to Atari games and demonstarted that it outperforms all previous
approaches. We have used a DQN with similar structure as presented in [26] for
dynamic pricing of perishables.

When reinforcement learning control algorithms are used with a non-linear
function approximator, like a neural network, they are liable to instability. To
improve the stability of the DQN, two neural networks of the same structure
are used [26], evaluate network and target network. Target network is used
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for generating the targets yj in the Q-learning updates. The target network’s
parameters, ŵ, remain fixed for r steps after which they are updated to the latest
values of the evaluate network parameters w. The evaluate network parameters,
w, are updated at every time step.

Experience replay is another key feature of the DQN, introduced by Mnih
et al. [26], that enhances its stability. The last N transitions of the form
(st, at, rt+1, st+1) are stored in memory. Here, st, at are the state, action at time
step t, and rt+1, st+1 is the reward and state at time step t + 1. From these
N transitions, we randomly sample a mini-batch of D transitions. By sampling
uniformly from a large memory, we can avoid the temporal correlations and make
the data nearly i.i.d.

The methodology used for training our DQN based dynamic pricing
algorithm is shown in Figure 1. We use an architecture where the input to
the neural network is the state representation. The output layer consist of a
separate neuron for each discrete action. Each output neuron represents the
predicted state action value function (Q(s, a)). The Q values for all the actions
for a given state are calculated in one forward pass of the neural network. A
linear activation is used for the output layer and rectified linear unit, (ReLU),
is used as activation function for the hidden layers.

The loss function used for Q-learning update is shown in equation 1. Adam
optimizer is used for updating the network weights.

L =
1

2n

n∑

i=1

[Q̂(st, a
i
t; ŵ)−Q(st, a

i
t;w)]2 (1)

where n is the total number of available control actions , Q is the action-value
function of the evaluate network, Q̂ is the action-value function of the target
network.

Learning: The learning of DQN is outlined in Algorithm 1. The training
of the DQN takes place offline. The algorithm starts by randomly initiaizing
the parameters w of the evaluate network and the target network’s parameters
ŵ. We then initialize a zero filled replay memory D of size (N , (length of state
vector*2)+2). The outer for loop controls the number of simulation episodes M .
We reset the state to its initial value after reaching the end of an episode. Each
episode lasts for a maximum of T time steps. Within each episode, we follow the
following procedure. At each time step, an action at is selected at random with a
probability ε. Otherwise, action is selected greedily. Next, the sale at a particular
pricing action is given by the demand function. The reward rt+1 is the revenue
generated by taking action at at state st. The inventory is now updated to
obtain the next state st+1.The state transition tuple (st, at, rt+1, st+1) is stored
in the replay memory D. Then a mini batch is randomly sampled from this
replay memory. The target vector is calculated as given in line 15 of Algorithm
1. The parameters w of evaluate neural network Q are updated by using the
Adam optimizer. The parameters ŵ of the target network remain fixed for r time
steps after which they are updated to most recent value of evaluate network’s
parameters w.
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Algorithm 1 DQN based pricing algorithm

1: Initialize replay memory D to size N
2: Initialize action-value function Q (evaluate network) with random weights w
3: Initialize target action-value function Q̂ (target network) with random weights
ŵ = w

4: for i= 1 to M do
5: Reset state to initial value

(st=1 = (initial inventory, 1))
6: for t= 1 to T do
7: With probability ε select a random action at
8: Otherwise, select at = argmaxa Q(st, a;w)
9: Execute action at

10: sale = min (inventory, demand( at,t))
11: reward: rt+1 = sale*at
12: inventory=inventory-sale
13: store transition (st, at, rt+1, st+1) in D.
14: randomly sample minibatch of transitions (sj , aj , rj+1, sj+1) from D
15:

Set yj =

{
rj+1, if episode terminates at step j + 1

rj+1 + γmaxa′ Q̂(sj+1, a
′; ŵ), otherwise

16: Perform a gradient descent step on [yj − Q(sj , aj ;w)]2 with respect to the
evaluate net parameter w.

17: every r steps, reset ŵ = w
18: end for
19: end for

5 Experimental Results

In this section, numerical results are provided to evaluate the performance of our
dynamic pricing method using DQN. We study the results of the DQN based
pricing model by simulating the demand function.

Scenario 1: In practice, the demand for perishables is a function of various
factors such as age of the product, its price, competitor price etc. Here, the
demand function is considered to depend upon the price and freshness of the
product. The demand of a perishable food item is, in general, observed to
decrease as its age increases. Also, the price elasticity of perishable food items
is mostly negative, i.e., as price increases the demand decreases. So, we have
modelled demand as an exponentially decreasing function of time and price.
Figure 2a shows the simulated demand function. We have introduced randomness
in the demand function to account for dynamic market behaviour.

We consider a real-life instance of a grocery retailer who needs to sell a
grocery product with a fixed initial inventory. The retailer has 580 units of a
product with no replenishment and with shelf life of 40 days. According to [6]
the prices of perishable food items are normally discounted by 20-50% during the
last few days of the product’s shelf-life. Therefore, we have selected the following
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(a) Demand for scenario 1 (b) Demand for scenario 2

Fig. 2: Demand function.

discrete price points - 20, 25, 30, 35, 40. Also, here the prices can be changed
daily.

We use DQN for learning the best pricing strategy for the simulated demand
function. The time-steps are given by t= 1, 2, 3,...,40. The action set is the set of
discrete prices, A = { 20, 25, 30, 35, 40 }. Since the state is defined by (inventory
left, age of product), we have 40 x 580 states in the state-space.

The DQN involves two similar networks-target network and evaluate network.
Both these networks have the same architecture. The layout of the network and
the hyper-parameters are listed in Table 1. We have trained the DQN for 200000
episodes with the simulated demand function. The DQN algorithm has been
implemented using Python and Tensorflow on a MACOS Catalina system with
64-bit i5 processor @1.60 GHz and 8GB DDR3 RAM. The average execution
time for training the DQN on 50000 episodes is 60 minutes and for training
the DQN on 200000 episodes is 3 hours 50 minutes. GPU can be employed to
significantly reduce this training time. After training the DQN, we evaluate the
pricing policy given by it.

We compare the performance of the dynamic pricing algorithm using DQN
with the performance of myopic (single-step) optimization algorithm. The single
step price optimization model is formulated here as a non-linear function of
sales and price elasticity that satisfies the price constraints and maximizes the
revenue. We run this single-step optimization on the simulated demand function.
The overall revenue is calculated as the sum of daily revenue. This is compared
to the DQN results. Figure 3a shows the comparative plot of the cummulative
revenue for RL algorithm and myopic optimization algorithm at different time
steps. We can observe that the net revenue generated at the end of the product
shelf-life is significantly higher for the RL based algorithm. We also observe that
the cummulative revenue gap increases as the time increases. This shows the
long term effectiveness of DQN in revenue maximization.

We also compare the performance of the DQN based pricing strategy with a
fixed pricing strategy, which is a typical scenario in real world. In a fixed pricing
strategy, the product price remains constant irrespective of the inventory left and
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Table 1: Hyper-parameters of the DQN network

S.No. Parameter name value

1 Number of input layer neurons 2
2 Number of output layer neurons 5
3 Number of hidden layer 3
4 Number of hidden layer neurons 35,20,10
5 Optimizer Adam
6 learning rate (α) 0.00001
7 Discount factor (γ) .9
8 ε 0.5
9 Mini-batch size 64
10 Memory size 3000
11 r 200

(a) Cummulative revenue comparision
for different pricing strategies, for
scenario 1

(b) Cummulative revenue comparision
for different pricing strategies, for
scenario 2

Fig. 3: Cummulative revenue comparision.

the freshness of the product. Results for the net revenue generated at different
conatant prices at the end of the shelf life, are tabulated in Table 2a. We observe
that the RL based pricing policy generates the maximum revenue at the end of
the product life cycle. A 7.8% increase in revenue is observed by using DQN
based pricing policy, when compared with one-step price optimization.

Figure 4a exbhits the pricing strategy suggested by the trained DQN model.
We observe that the DQN pricing strategy suggests different prices for different
time periods. The pricing policy gradually decreases with time as the demand
decreases. This seems rational as a perishable product near its expiry cannot
be sold at the maximum selling price. Moreover, according to Chung and Li [6],
88% of consumers will check expiry dates before buying a perishable product.
This also implies that the products cannot be sold at maximum price near their
expiry.

Scenario 2: We have also experimented with the DQN based dynamic
pricing algorithm for the case where the demand increases with time and
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(a) Pricing policy suggested by DQN
based dynamic pricing model, for
scenario 1

(b) Pricing policy suggested by DQN
based dynamic pricing model, for
scenario 2

Fig. 4: Pricing policy suggested by DQN.

Table 2: Revenue comparison

(a) Revenue comparison, for scenario 1

Pricing strategy Total Revenue

DQN 11635
1 step optimization 10792
constant price of 40 10283
constant price of 35 10137
constant price of 30 9940
constant price of 25 9552
constant price of 20 8901

(b) Revenue comparison, for scenario 2

Pricing strategy Total Revenue

DQN 12445
1 step optimization 11771
constant price of 40 11700
constant price of 35 11112
constant price of 30 10384
constant price of 25 9449
constant price of 20 8400

decreases with price. The simulated demand function is shown in Figure 2b.
This type of demand is frequently encountered in airline ticketing and hotel
room booking. The number of seats available in a flight and the number of
rooms available in a hotel can be considered analogous to inventory available for
a perishable product.

Here, we consider a scenario where the initial inventory level is 650 and the
distinct prices available are 20, 25, 30, 35, 40. Forty distinct time steps are
considered and the pricing decision can be taken at each time step. The DQN
architecture and hyper-parameter values are same as in scenario 1. The results
for total revenue generated at the end of the selling horizon, for different pricing
strategies are in Table. 2b.

In this scenario also, we observe that the DQN based pricing strategy
generates the highest revenue when compared with single-step and constant
pricing strategy. This can also be observed in Figure 3b . We observe a 5.7%
increase in revenue by using DQN based pricing policy, when compared with one-
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step price optimization. The pricing policy given by DQN is shown in Figure 4b.
We see that as the demand increases with time, the prices also increase. This is
typically observed in airline ticketing also, where the ticket prices increases as
the date of journey approaches.

6 Conclusion

In the near future, consumer spend is only expected to increase exponentially.
Social media impacts demand in continuous time and retailers need to respond
with near real-time optimal pricing to persuade consumers to spend. Hence,
dynamic pricing for perishables is a critical problem for retailers. In conclusion,
this paper presents a deep reinforcement learning based approach to implement
dynamic pricing for perishables. This approach is chiefly suitable for control
problems with large state space. We have formulated the dynamic pricing
problem as a Markov decision process and our results demonstrate that the DQN
based dynamic pricing algorithm generates higher revenue when compared with
constant pricing strategy and one-step price optimization. We are working to
scale this approach to price multiple products for a real world use-case.
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Abstract. Data encryption has become a vital mechanism for data protection. 

One of the main challenges and an important target for optimization is the en-

cryption/decryption speed. In this paper, we propose techniques for speeding up 

the software performance of several important cryptographic primitives based on 

the Residue Number System (RNS) and Finite Ring Neural Network (FRNN). 

RNS&FRNN reduces the computational complexity of operations with arbitrary-

length integers such as addition, subtraction, multiplication, division by constant, 

Euclid division, and sign detection. To validate practical significance, we com-

pare LLVM library implementations with state-of-the-art, high-performance, 

portable C++ NTL library implementations. The experimental analysis shows the 

superiority of the proposed optimization approach compared to the available ap-

proaches. For the NIST FIPS 186-5 digital signature algorithm, the proposed so-

lution is 85% faster, even though the sign detection has low efficiency. 

Keywords: Residue Number System, Finite Ring Neural Network, Encryption, 

High-Performance, Cryptographic Primitives 

1 Introduction 

Security becomes commonplace in all modern computing areas and affects many 

fields, including casual people communication, Internet of Things (IoT), analytics, self-

learning systems, cloud computing, etc. Advanced cryptographic algorithms provide 

key mechanisms for data confidentiality, integrity, authentication, non-repudiation, etc. 
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The cryptographic primitives are usually complex in terms of computational over-

head and memory usage. They are designed based on mathematical theory, elliptic 

curves, Neural Networks (NNs), etc. 

The high performance of cryptographic algorithms is important for numerous rea-

sons. The principal one is the computational cost in terms of execution time. They can 

be executed by conventional computers, accelerated computing servers, and specialized 

hardware devices. In many cases, they are implemented as software components. 

Many approaches are used to optimize encryption operations. Neuromorphic com-

puting is concerned with emulating the neural structure and operation of the human 

brain. The main goals are to create a device that can extract better features, learn, rec-

ognize, classify, acquire new information, and even make a logical inference. 

For instance, a single-chip prototype of the BrainScaleS 2, Intel Labs designed Loihi, 

and IBM’s TrueNorth neuromorphic systems provide a proof-of-concept of a spiking 

neural network application to learn neurons and synapses [13, 14]. They include a hun-

dred thousand neurons, each of which can communicate with thousands of others. 

A Residue Number System (RNS) can achieve both fast computation and low power 

consumption. It is parallel, adaptable, and fault-tolerant, meaning it can produce results 

after components are failed [9, 10]. These properties allow for the successful develop-

ment of cybersecurity systems [11-18]. 

RNS is a number system that represents integers by the remainders of division by 

several pairwise coprimes, called moduli. The arithmetic is called multi-modular arith-

metic. It is widely used for computation with arbitrary length integers, for instance, in 

cryptography. It provides faster computation than with the usual numeral systems, even 

when converting between numeral systems is taken into account. By decomposing a 

large integer into a set of smaller integers, a large calculation is performed as a series 

of smaller calculations that can be performed independently and in parallel. The number 

of parallel elementary processes equals the number of RNS moduli. 

In this paper, we propose a new optimization method RNS&FRNN of operations 

with arbitrary-length integers based on RNS and Finite Ring Neural Network (FRNN). 

This paper is organized as follows. Section 2 describes the main concept of modular 

arithmetical operations. Section 3 introduces modular logical operations. Section 4 pre-

sents the scaling of RNS numbers by RNS base extension and introduces RNS&FRNN 

optimization method. Section 5 focuses on the experimental analysis. The conclusions 

and future work are discussed in the last Section 6. 

2 Modular Arithmetical Operations 

2.1 Addition, Subtraction, Multiplication, and Division 

In the RNS, arithmetic operations are performed on each residue, according to the fol-

lowing general formula: 

𝑋 ∘ 𝑌
𝑅𝑁𝑆
→  (|𝑥1 ∘ 𝑦1|𝑝1 , |𝑥2 ∘ 𝑦2|𝑝2 , … , |𝑥𝑛 ∘ 𝑦𝑛|𝑝𝑛),    (1) 
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where {𝑝1, 𝑝2, … , 𝑝𝑛} is a moduli set of pairwise coprime numbers. "∘" denotes the op-

eration of addition, subtraction, or multiplication. 

Integer numbers 𝑋 and 𝑌 are defined in RNS as tuples (x1, 𝑥2, … , 𝑥𝑛) and 

(y1, 𝑦2, … , 𝑦n), where 𝑥i represents the remainder of the division of 𝑋 by 𝑝𝑖, defined by 

𝑥𝑖 = |𝑋|𝑝𝑖.  

However, an additional restriction is imposed on the multiplication operation, which 

follows from the Chinese Remainder Theorem (CRT): 𝑋 ∙ 𝑌 < 𝑃, where 𝑃 = ∏ 𝑝𝑖
𝑛
𝑖=1 . 

Integer division can be performed by various methods [2, 3, 4]. The most reliable 

algorithm is based on the scaling method. In this case, a dividend is an arbitrary number 

in the range [0, 𝑃), and a divisor is any factor of 𝑃 = 𝑝1 ∙ 𝑝2 ∙ … ∙ 𝑝𝑛. 

This division is similar to dividing by numbers belonging to a certain limited set, 

which is faster than dividing by an arbitrary divisor (2). 

𝑋 = ⌊
𝑋

𝑝1
⌋ ⋅ 𝑝1 + 𝑥1           (2) 

where 𝑋 is the dividend, and 𝑝1 is the divisor. 

The dividend is represented by the residues 𝑋
𝑅𝑁𝑆
→  (𝑥1, 𝑥2, … , 𝑥𝑛), and the divisor is 

one of the moduli 𝑝𝑖 . 𝑥𝑖 is the residue of the division. In the first step of scaling, it is 

necessary to subtract the residue from the dividend (3): 

𝑋′
𝑅𝑁𝑆
→  (𝑥1

′ , 𝑥2
′ , … , 𝑥𝑛

′ ) = (|𝑥1 − |𝑥𝑖|𝑝1|𝑝1
, |𝑥1 − |𝑥𝑖|𝑝2|𝑝2

, … , |𝑥𝑛 − |𝑥𝑖|𝑝𝑛|𝑝𝑛
). (3) 

In the second step, the division of 𝑋′ by 𝑝𝑖  is carried out directly by (4): 

⌊
𝑋

𝑝1
⌋
𝑅𝑁𝑆
→  (−, |𝑥1

′  |𝑝1
−1|𝑝2|𝑝2

, . . . , |𝑥𝑛
′ |𝑝1

−1|𝑝𝑛|𝑝𝑛
)    (4) 

where |𝑝1
−1|𝑝i is the multiplicative inversion of 𝑝𝑖 . 

At the end of the second stage, the residue 𝑥𝑖 modulo 𝑝𝑖  remains unknown, which 

can be found using the base extension (Section 4). 

2.2 Euclidean division 

Euclidean division is carried out using the approximate division method. The essence 

of the approximate method for calculating the positional characteristic to compare and 

restore the positional notation of the numbers in RNS. It is based on the relative values 

of the numbers to the full range determined by CRT. 

We have: 

𝑋 = |∑
𝑃

𝑝𝑖
|𝑃𝑖
−1|𝑝𝑖𝑥𝑖

𝑛
𝑖=1 |

𝑃
,          (5) 

where 𝑃 = ∏ 𝑝𝑖
𝑛
𝑖=1 , 𝑝𝑖  is the RNS moduli, |𝑃𝑖

−1|𝑝𝑖 is the multiplicative inversion of 𝑃𝑖  

relative to 𝑝𝑖 , 𝑃𝑖 =
𝑃

𝑝𝑖
. 

If we divide the left and right sides of (5) by the constant 𝑃 corresponding to the 

range of numbers, we obtain an approximate value 
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𝐹(𝑋) = |
𝑋

𝑃
|
1
= |∑ 𝑘𝑖𝑥𝑖

𝑛
𝑖=1 |1,         (6) 

where 𝑘𝑖 =
|𝑃𝑖
−1|

𝑝𝑖

𝑝𝑖
 and |𝑥|1 is fractional part real number 𝑥. 

The result is obtained after summing and discarding the integer part of the number 

while maintaining the sum fractional part. 

The fractional value 𝐹(𝑋) = |
𝑋

𝑃
|
1
∈ [0, 1) contains both information about the value 

of the number and its sign [1]. If |
𝑋

𝑃
|
1
∈ [0,

1

2
 ), then the number 𝑥 is positive, and 𝐹(𝑋) 

is equal to the value of 𝑥 divided by 𝑃. Otherwise, 𝑥 is a negative number, and 1– 𝐹(𝑋) 
shows the relative value of the number 𝑥 [5]. 

There are several methods of calculating 𝐹(𝑋) [6, 7, 8]. The method of integer divi-

sion 𝑋/𝑌 can be described by an iterative scheme, which is performed in two stages.  

In the first stage, the search for the highest degree of 2𝑖 is carried out when approx-

imating the quotient with a binary series. 

In the second stage, the approximation series is refined. To get a range larger than 

𝑃, you can choose the value 𝑃 = 𝑃′ · 𝑝𝑛+1, i.e., it is necessary to extend the RNS base 

by adding a redundant modulus. To avoid this base extension, a computationally com-

plex operation, it is necessary to compare the current results of iteration 𝑖 with previous 

values of iteration 𝑖 − 1, and not dividends with intermediate divisors. This will satisfy 

the condition 0 < 𝑌 < 𝑃 − 1. 

Known dividing algorithms determine the quotient based on the iteration 𝑋′ = 𝑋 −
𝑄1 ∙ 𝐷, where 𝑋 and 𝑋′ are the current and the next dividend respectively, 𝐷 is the 

divisor, 𝑄1 is the quotient that is generated at each iteration from the full range of the 

RNS, and is not selected from a small set of constants. 

In this method, the quotient is determined based on the iteration 𝑟𝑖 = 𝑋 − 𝐵2
𝑖, where 

𝑋 is some divisible, 𝐵 is the divisor, and 2𝑖 is a member of the approximating series of 

the quotient. A comparison of the algorithms shows that the dividend in all iterations 

does not change, and the divisor is multiplied by a constant, which significantly reduces 

computational complexity. 

The above method is easily modified in RNS using the approximate method of com-

paring modular numbers. In the iterative division process on a weighted number sys-

tem, to search for the highest degree of a series of approximations of a quotient and to 

refine the approximating series, the dividend is compared with doubled divisors or with 

the sum of the members of the series. 

The application of this idea for RNS can lead to an error in the division process. 

When the dynamic range is overflowed, the recovered number goes beyond the working 

range. For example, if the RNS moduli are 𝑝1 = 2, 𝑝2 = 3, 𝑝3 = 5, and 𝑝4 = 7, then 

the range is 𝑃 = 2 · 3 · 5 · 7 = 210. 

Suppose, during recovery, we got the number 𝑋 = 220. In RNS 𝑋 = 220 =
(0,1,0,3). The range 𝑃 is exceeded by the number 10, which in the RNS is (0,1,0,3). 
When using relative values, the number 𝑋 = 220 is expressed as 𝑋′ = 10, which is not 

true.  

To overcome this difficulty, it is necessary to compare the current iteration values 

with the previous ones in the RNS. It allows to correct determining a larger or smaller 
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number. The overflow of the dynamic range in the RNS can be used to make the deci-

sion “more – less”. 

In the first iteration, the dividend is compared with the divisor, and at the other iter-

ations, the doubled values of the divisors 𝑞𝑖Y < 𝑞𝑖+1𝑌 are compared. In each new iter-

ation, the current value is compared with the previous one.  

The number of iterations required depends on the divisible and divisor values. Suc-

cessive application of this operation leads to the formation of a sequence of integers 

𝑌𝑞1 < . . . < 𝑌𝑞𝑛 > 𝑌𝑞𝑛+ 1. 
Let the case 𝑌𝑞𝑛 > 𝑌𝑞𝑛+ 1 be fixed at 𝑛 + 1 iterations, which corresponds to an 

overflow of the RNS range, i.e., 𝑌𝑞𝑛+ 1 > 𝑃 and 𝑋 <  𝑌𝑞𝑛+ 1. This completes the pro-

cess of generating interpolation of the quotient by a binary series or by a set of constants 

in the RNS. 

The process of approximating the quotient can be carried out by comparing only 

doubled neighboring approximate divisors. An important issue when implementing the 

function 𝐹() is the accuracy of the coefficients.  

It should also be noted that the number of characters in the fractional part should be 

twice as much as the number of characters in the RNS range. The modular numbers' 

division based on the approximate method of comparing numbers consists of the fol-

lowing steps (see Algorithm 1). 

In this case, when the divisor has the minimum value and the dividend has the max-

imum, the threshold 𝛥𝑖 is more than zero. It reduces the number of iterations when 

dividing a large divisible and a small divisor. 

 

Algorithm 1. Euclidean division in RNS. 

Input: 𝑋
𝑅𝑁𝑆
→  (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑌

𝑅𝑁𝑆
→  (𝑦1 , 𝑦2, … , 𝑦𝑛), 𝐹(𝑋). 

Output: 𝜔 = ⌊
𝑋

𝑌
⌋, 𝛾 = |𝑋|𝑌. 

Step 1. We calculate the approximate values of the divisible 𝐹(𝑋) and the divisor 

𝐹(𝑌) and compare them. If 𝐹(𝑋) < 𝐹(𝑌), then the division process ends and the quo-

tient ⌊
𝑋

𝑌
⌋ = 0. If 𝐹(𝑋) = 𝐹(𝑌), then the division process ends, and the quotient is equal 

to unity. If 𝐹(𝑋) > 𝐹(𝑌), then a higher degree 2𝑘 is searched for by approximating the 

quotient with a binary code. 

Step 2. We select the constant 2𝑘 (the highest power of the series), multiply it by the 

divisor 𝐹1(𝑋) = 𝑋2
𝑘 and introduce it into the comparison scheme. The constants 

2𝑗mod 𝑝𝑖 , where 𝑖 = 1, 𝑛̅̅ ̅̅̅, 1 ≤ 𝑗 ≤ log2 𝑃 are previously stored in the memory. 

Step 3. We find 𝛥𝑖 = 𝐹(𝑋)—𝐹1(𝑌). If in the sign digit 𝛥𝑖 is “1”, then the corre-

sponding degree of the series is discarded, if it is “0”, then in the adder of the quotient 

we add the value of a member of the series with this degree, that is 2𝑘. 

Step 4. We find 𝐹1(𝑌), and check the term of the series with a degree 2𝑘–1.  

Step 5. We find 𝛥2 = 𝛥1—𝐹1(𝑌) and perform the actions in accordance with para-

graph 4. 

Step 6. Similarly, we check all the remaining members of the series of the pre-zero 

degree. The resulting residue 𝛥𝑖 = 𝛥𝑖−1 − 𝐹𝑖−1(𝑌) ≈ 0. 
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3 Modular Logical Operations 

The operations of determining the sign of a number and comparing numbers can be 

performed using the approximate method discussed in Section 2.2. 

The value obtained by (6) is a Positional Characteristic (PC). The determination of 

the sign detection is reduced to the PC, which consists of comparing the PC with the 

half value 𝑝𝑖 , where 𝑖 = 1, 𝑛̅̅ ̅̅̅. Thus, the sign of the number determines the following 

relation: if |
𝑋

𝑃
|
1
<

1

𝑝𝑖
, then the number is positive; if |

𝑋

𝑃
|
1
>

1

𝑝𝑖
, then the number is nega-

tive (Algorithm 2). 
 

Algorithm 2. Sign detection in RNS. 

Input:𝑋
𝑅𝑁𝑆
→  (𝑥1, 𝑥2, … , 𝑥𝑛), (𝑝1, 𝑝2, … , 𝑝𝑛), 𝑃, 𝑝𝑗 , (𝑃1, 𝑃2, … , 𝑃𝑛) 𝑗, for 𝑖 = 1, 𝑛̅̅ ̅̅̅. 

Output: 𝑠𝑖𝑔𝑛(𝑋) 
1. for 𝑖 to 𝑛 do: 𝑘𝑖 = |𝑃𝑖

−1|𝑝𝑖  

2. 𝐹 = 0 

3. for 𝑖 to 𝑛 do: 𝐹 += 𝑥𝑖 ∙ 𝑘𝑖 
4. 𝐹 = 𝐹 − (𝒊𝒏𝒕)𝐹 

5. if 𝐹 > 1/𝑝𝑗: return 1 

6. else: return 0 

 

The algorithm of sign detection in RNS is more complex in comparison with the 

algorithm of sign detection in the binary number system. 

The numbers comparison can be viewed as calculating the PC of both numbers (𝑋 

and 𝑌) and comparing them: 

if |
𝑋

𝑃
|
1
− |

𝑌

𝑃
|
1
= 0, then 𝑋 = 𝑌; if |

𝑋

𝑃
|
1
− |

𝑌

𝑃
|
1
> 0, then 𝑋 > 𝑌; if |

𝑋

𝑃
|
1
− |

𝑌

𝑃
|
1
< 0, 

then 𝑋 < 𝑌. The implementation of the number comparison can provide an output 𝑠 =
0 if 𝑋 = 𝑌, if 𝑋 > 𝑌 then 𝑠 = 1, and 𝑠 = −1 when 𝑋 < 𝑌. 

4 Scaling RNS Numbers by Base Extension 

Scaling an RNS number allows choosing a divisor that can simplify the division oper-

ation before dividing by 𝑝𝑖 . The scaling depends on the coefficient 𝐾. The general for-

mula for scaling the remainder is as follows: 

𝑥𝑖` = |𝑥𝑘𝑖̅̅ ̅̅ ∙ 𝐾𝑖|𝑝𝑖
            (7) 

Thus, it is required to define two variables: 𝑥𝑘 and 𝐾𝑖. 

𝑥𝑘𝑖̅̅ ̅̅ = |𝑥𝑖 − 𝑥𝑛+1|𝑝𝑖 ,           (8) 

where 𝑥𝑛+1 = 𝑟𝑋. 𝑟𝑋 is a rank of a number, and in the RNS, it is reduced to the following 

calculations: 
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𝑟𝑋 =
∑ 𝑥𝑖∙𝐵𝑖
𝑛−1
𝑖=1

𝑃
,            (9) 

where 𝐵𝑖 = |𝑃𝑖
−1|𝑝𝑖 is RNS modulo. Having defined 𝑥𝑘𝑖̅̅ ̅̅ , we need to calculate 𝐾𝑖, which 

is defined as 𝐾𝑖 = |𝐾𝑖
𝑝𝑖−2|

𝑝𝑖
. 

The base extension of the number in the RNS for neuromorphic computing can be 

effectively performed using the following procedure. The calculation of the new resi-

due is based on the rank of the number, which can be defined as: 

𝑟𝑋  = |∑ 𝑥𝑖𝐵𝑖
𝑛
𝑖=1 |𝑝𝑛           (10) 

where 𝐵𝑖 = 𝑃𝑖 ∙ |𝑃𝑖
−1|𝑝𝑖 is an orthogonal basis. Considering that, based on CRT and 

orthogonal basis, the number 𝑋 in the base system 𝑝1 , 𝑝2, … , 𝑝𝑛−1 can be written as 

𝑋 =  ∑ 𝑎𝑖𝐵𝑖 − 𝑥𝑗𝑃
𝑛
𝑖=1             (11) 

Substituting (10) in (11), we obtain the following: 

𝑋 = |∑ 𝑥𝑖|𝐵𝑖|𝑝𝑗 + 𝑥𝑗(𝑝𝑗 − |𝑃|𝑝𝑗)
𝑛−1
𝑖=1 |

𝑝𝑗
      (12) 

Based on the above, for the base extension, it is necessary to calculate the rank of 

the number 𝑥𝑗 in the base system 𝑝1, 𝑝2, … , 𝑝𝑛−1 according to the expression (11) and 

find the remainder 𝑥𝑗 by (12). 

The proposed optimization method for the base extension is characterized by calcu-

lations for small modulo 𝑝𝑛. However, when compared with the CRT method, it sim-

plifies the calculation with the large modulo 𝑃, and then the calculation with 𝑝𝑗. The 

residue of the number on the base extension is obtained by optimization method 

RNS&FRNN of RNS operations based on FRNN. 

The constants of the expressions (11) and (12) can be calculated in advance. They 

determine the network structure. FRNN presented in Fig. 1 works as follows. 

 

Fig. 1. FRNN architecture for the modular base ex-

tensions. 

 

Fig. 2. The architecture of FRNN recalcu-

lation of the base extension. 

The network input receives the modular values 𝑥1, … , 𝑥𝑛. In the first stage, a modular 

neural network modulo 𝑝n by weighted summation of the modular values of the number 

𝑥1 ÷ 𝑥𝑛 with coefficients 𝑔1 ÷ 𝑔n calculates the rank of the number 𝑟𝐴(). Then the 

 

 

 
𝑝𝑗  

𝑝𝑛  

𝑝𝑗  

𝑎1 

𝑎2 

𝑎𝑛−1 

𝑎𝑛  

𝑎𝑗  
𝑔1 

𝑔2 

𝑔𝑛−1 

𝑔𝑛  

|𝐵1|𝑝𝑗  

|𝐵2|𝑝𝑗  

|𝐵𝑛−1|𝑝𝑗  

𝑝𝑗 

𝑎1 ቤ
1

𝑝𝑗
ቤ
𝑝1

 
𝑃1
′ 𝐵1

′  

𝑝𝑗 
𝑎2 

ቤ
1

𝑝𝑗
ቤ
𝑝2

 
𝑃2
′ 𝐵2

′  

𝑝𝑗 
𝑎𝑛 

ቤ
1

𝑝𝑗
ቤ
𝑝𝑛

 
𝑃𝑛
′ 𝐵𝑛

′  

⋮ ⋮ ⋮ 
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modular network modulo 𝑝𝑗 calculates the value ∑ 𝑎𝑖|𝐵𝑖|𝑝𝑛+1
𝑛−1
𝑖=1 . In the second stage, 

𝑥𝑗 = |𝑋|𝑝𝑗 is calculated using the computational model (11). 

Each set of moduli of the modular code is characterized by an orthogonal basis, due 

to which, for the base extension, it is necessary to recalculate the basis 𝐵𝑖
′, 𝑖 = 1, 𝑛 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

To recalculate them, the input data are: orthogonal basis 𝐵𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅̅, the moduli 

𝑝1, 𝑝2, … , 𝑝𝑛 and the values of the extended modulo 𝑝𝑗. Since 𝑃𝑖
′ = 𝑃′/𝑝𝑖 and 𝑃𝑖  are 

coprime, we can calculate the orthogonal basis of the extended system as follows 

𝐵𝑖
′ ≡

𝑃′

𝑝𝑖
∙ |𝑃𝑖

′−1|𝑝𝑖            (13) 

To calculate it on a NN basis, it is necessary to calculate two constants: |
1

𝑝𝑗
|
𝑝𝑖

and 

𝑃𝑖
′ =

𝑃′

𝑝𝑖
. Thus, the NN architecture can be presented as following (Fig. 2). 

The proposed algorithm has lower computational complexity compared to the 

known methods. However, the method involves multiplying pre-calculated constants. 

These constants are usually known in advance. 

5 Experimental Results 

We perform experimental analysis on CPU 2.7 GHz Intel Core i5, RAM 8 GB 1867 

MHz DDR3, macOS High Sierra version 10.13.6 operating system. We use NTL, a 

high-performance, portable C ++ library version 11.4.3, and LLVM's OpenMP runtime 

library version 10.0.0. RNS moduli are generated as a sequence of decreasing consec-

utive coprime numbers starting from 𝑝1 = 32,749, …, 𝑝285 = 29,789, and 

𝐿 = ⌈log2 𝑃⌉. One million random values of 𝑋 and 𝑌 are generated using RandomBnd() 

function, an NTL routine for generating pseudo-random numbers. Execution time 𝑇 of 

arithmetic and logical operations are measured in microseconds (𝜇𝑠). The number of 

threads is four. The results are presented in Table 1. 

First, we measure the relative performance of each operation independently. The 

speedup of RNS&FRNN is between 9,954 and 25,888 for the addition, 12,348 and 

31,385 for the subtraction, 13,193.9 and 318,203 for multiplication, 15,353.5 and 

140,290 for division by constant, and 17,815.5 and 40,359.7 for Euclid division, vary-

ing 𝑛 and 𝐿. RNS sign detection performance is between 4.5 and 15 times lower. 

Now, let us compare the performance of NIST FIPS 186-5 digital signature algo-

rithm with two implementations. It is based on the operation of multiplying the point 

of an elliptic curve over 𝐺𝐹(𝑞) by a scalar, the most time-consuming operation, where 

𝑞 is a prime number.  

Different approaches for computing the elliptic scalar multiplication are introduced. 

Well-known Montgomery approach is based on the binary method, where scalar mul-

tiplication is defined to be the elliptic point resulting from adding value to itself several 

times. It performs addition and doubling in each iteration.  
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Table 1. Execution time of operations on NTL 11.4.3 (binary) and RNS&FRNN (RNS) (𝜇s). 

(a) Addition, Subtraction, and Multiplication 

n 𝑳 
Addition Subtraction Multiplication 

Binary RNS Binary/RNS Binary RNS Binary/RNS Binary RNS Binary/RNS 

15 225 99,548 10 9,954.8 105,076 8 13,134.5 118,745 9 13,193.9 

30 450 110,852 10 11,085.2 126,619 8 15,827.4 194,619 9 21,624.3 

45 675 103,665 8 12,958.1 111,137 8 13,892.1 198,589 10 19,858.9 

60 900 108,377 10 10,837.7 116,266 8 14,533.3 322,731 8 40,341.4 

75 1,124 113,044 8 14,130.5 115,830 9 12,870 392,779 10 39,277.9 

90 1,349 114,060 8 14,257.5 120,409 8 15,051.1 510,666 8 63,833.3 

105 1,573 116,498 9 12,944.2 123,482 10 12,348.2 604,474 9 67,163.8 

120 1,797 168,430 9 18,714.4 180,615 10 18,061.5 727,589 9 80,843.2 

135 2,021 167,513 8 20,939.1 179,552 8 22,444 827,077 8 103,384.6 

150 2,245 172,927 8 21,615.9 185,494 9 206,10.4 973,639 10 97,363.9 

165 2,469 172,716 9 19,190.7 218,787 8 27,348.4 1,140,607 9 126,734.1 

180 2,693 180,369 9 20,041.0 231,800 8 28,975 1,328,500 8 166,062.5 

195 2,917 186,132 9 20,681.3 199,568 10 19,956.8 1,397,494 9 155,277.1 

210 3,140 186,433 9 20,714.8 211,051 8 26,381.4 1,602,832 8 200,354.0 

225 3,364 187,804 9 20,867.1 209,095 9 23,232.8 1,757,143 9 195,238.1 

240 3,587 201,887 8 25,235.9 221,684 9 24,631.6 1,936,657 8 242,082.1 

255 3,810 201,556 8 25,194.5 243,480 10 24,348 2,117,587 8 264,698.4 

270 4,033 233,000 9 25,888.9 241,572 8 30,196.5 2,208,706 9 245,411.8 

285 4,256 215,689 10 21,568.9 282,472 9 31,385.8 2,545,628 8 318,203.5 

(b) Division by constant, Euclid division, and Sign detection 

𝑛 𝑳 
Division by constant Euclid division Sign detection 

Binary RNS Binary/RNS Binary RNS Binary/RNS Binary RNS Binary/RNS 

15 225 122,828 8 15,353.5 171,928 8 21,491.0 1 9 0.11 

30 450 168,685 9 18,742.8 182,879 9 20,319.9 1 8 0.13 

45 675 145,610 9 16,178.9 178,155 10 17,815.5 1 9 0.11 

60 900 174,282 8 21,785.3 201,592 10 20,159.2 1 9 0.11 

75 1,124 198,819 8 24,852.4 183,151 9 20,350.1 1 9 0.11 

90 1,349 220,280 9 24,475.6 191,398 8 23,924.8 1 9 0.11 

105 1,573 244,787 9 27,198.6 194,943 8 24,367.9 1 9 0.11 

120 1,797 319,813 8 39,976.6 251,513 8 31,439.1 1 8 0.13 

135 2,021 334,435 9 37,159.4 252,916 9 28,101.8 1 15 0.07 

150 2,245 362,685 8 45,335.6 266,925 9 29,658.3 1 10 0.10 

165 2,469 407,955 9 45,328.3 262,714 8 32,839.3 1 9 0.11 

180 2,693 439,295 10 43,929.5 282,383 8 35,297.9 1 9 0.11 

195 2,917 451,525 9 50,169.4 287,426 8 35,928.3 1 9 0.11 

210 3,140 461,168 9 51,240.9 283,955 9 31,550.6 2 10 0.20 

225 3,364 486,675 10 48,667.5 285,086 8 35,635.8 1 8 0.13 

240 3,587 504,493 9 56,054.8 332,445 10 33,244.5 1 9 0.11 

255 3,810 537,938 10 53,793.8 331,538 9 36,837.6 1 10 0.10 

270 4,033 1,262,615 9 140,290.6 363,237 9 40,359.7 1 10 0.10 

285 4,256 553,609 9 61,512.1 355,031 10 35,503.1 2 9 0.22 

 

Let us evaluate the mathematical expectation of the number of additions and dou-

bling. 

Doubling can be expressed as: 

 
1

2⌈log2 𝑞⌉
∑ 𝑖 ⋅ 2𝑖 =

(⌈log2 𝑞⌉−2)2
⌈log2 𝑞⌉+2

2⌈log2 𝑞⌉
⌈log2 𝑞⌉−1
𝑖 ≈ ⌈log2 𝑞⌉ − 2 (14) 
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Addition can be expressed as: 

 
1

2⌈log2 𝑞⌉
∑ 𝑖 ⋅ 𝐶⌈log2 𝑞⌉

𝑖⌈log2 𝑞⌉
𝑖=0 =

⌈log2 𝑞⌉

2⌈log2 𝑞⌉
⋅ 2⌈log2 𝑞⌉−1 =

⌈log2 𝑞⌉

2
, (15) 

where 𝐶𝑏
𝑎 =

𝑏!

(𝑏−𝑎)!⋅𝑎!
. 

Using the projective Jacobian coordinates for the case when 𝑍 ≠ 1 and 𝑎 = −3, it 

takes 16 multiplications to add points, and 8 multiplications to double a point. 

Statistical analysis of the algirithm demonstrates that the mathematical expectation 

of number of modular multiplications is about 

 
⌈log2 𝑞⌉

2
⋅ 16 + (⌈log2 𝑞⌉ − 2) ⋅ 8 = 16⌈log2 𝑞⌉ − 16 (16) 

The execution time of the modular multiplication can be estimated as a sum of one 

multiplication and one addition; hence, 𝑇𝐵𝑖𝑛 = (16⌈log2 𝑞⌉ − 16)(𝑀𝐵𝑖𝑛 + 𝐴𝐵𝑖𝑛), 
where 𝑀𝐵𝑖𝑛 is the execution time of the multiplications and 𝐴𝐵𝑖𝑛 is the execution time 

of the addition. 

To assess the RNS implementation of the algorithm, first, we consider the RNS to 

binary 𝑇𝐶  and binary to RNS 𝑇𝐸  conversion times (Table 2). 

Table 2. Time of Binary to RNS (𝑇𝐶) and RNS to Binary (𝑇𝐸) conversion (𝜇s). 

n 𝑳 𝑻𝑪 𝑻𝑬 

15 225 43,685,000 58,829,340 

30 450 109,762,100 152,454,240 

45 675 192,411,600 290,528,220 

60 900 309,272,700 464,671,140 

75 1,124 384,687,100 685,935,110 

90 1,349 484,623,300 952,097,660 

105 1,573 595,553,500 1,251,265,520 

120 1,797 713,753,000 1,604,888,270 

135 2,021 815,894,900 1,995,859,970 

150 2,245 944,469,700 2,440,457,340 

165 2,469 1,085,540,400 2,962,540,610 

180 2,693 1,264,208,500 3,524,798,450 

195 2,917 1,424,684,400 4,180,765,530 

210 3,140 1,648,081,600 4,692,365,130 

225 3,364 1,713,357,600 5,268,070,980 

240 3,587 1,882,562,600 6,117,228,220 

255 3,810 2,049,367,600 6,824,793,510 

270 4,033 2,242,481,300 7,592,480,470 

285 4,256 2,469,894,800 8,680,054,900 

 

The modular multiplication of an elliptic curve point by a scalar in RNS requires one 

multiplication, one addition, 𝑛(𝑛 − 1)/4 divisions by a constant, and one operation for 

determining the sign of a number, where 𝑛 is the number of moduli. 

The execution time of the RNS implementation can be estimated as 

𝑇𝑅𝑁𝑆 = (16⌈log2 𝑞⌉ − 16)(𝑀𝑅𝑁𝑆 + 𝐴𝑅𝑁𝑆 +
𝑛(𝑛 − 1)

4
𝐷𝐶𝑅𝑁𝑆 + 𝑆𝑅𝑁𝑆) + 2(𝑇𝐶 + 𝑇𝐸), 

309



11 

where 𝑀𝑅𝑁𝑆 is the execution time of multiplication of two numbers in RNS, 𝐴𝑅𝑁𝑆 is the 

execution time of addition in RNS, 𝐷𝐶𝑅𝑁𝑆 is the execution time of the division by con-

stant in RNS, 𝑆𝑅𝑁𝑆 is the execution time of the sign detection, 𝑇𝐶  is the time of binary 

to RNS conversion, and 𝑇𝐸  is the time of RNS to binary conversion. 

Thus, for 𝑞 = 2511 − 1, 𝑛 = 75, 𝑇𝐵𝑖𝑛  and 𝑇𝑅𝑁𝑆 are estimated, in the worst case, as 

𝑇𝐵𝑖𝑛 = (16 ⋅ 511 − 16) ⋅ (392,779 + 113,044) = 4,127,515,680, 𝑇𝑅𝑁𝑆 = (16 ⋅
511 − 16) ⋅ (10 + 8 + 75 ⋅ (75 − 1)/4 ⋅ 8 + 9) + 2 ⋅ (384,687,100 +
685,935,110) = 2,232,040,738. Therefore, 𝑇𝐵𝑖𝑛/𝑇𝑅𝑁𝑆 ≈ 1.85 times. 

6 Conclusion 

We propose an optimization of six encryption operations: addition, subtraction, multi-

plication, division by constant, Euclid division, and sign detection with integers of ar-

bitrary length based on modular arithmetic and finite ring neural networks. 

We show that they provide significant advantages in comparison with long arithme-

tic implemented in NTL. The higher benefits of RNS&FRNN are derived for the mul-

tiplication of large numbers. RNS shares them into smaller numbers that can be per-

formed independently and in parallel without carries between them. We demonstrate 

that the proposed solution is 85% faster than NIST FIPS 186-5 digital signature algo-

rithm, even, calculation of the sign detection operation is inefficient. 

The structure of the non-positional operations of RNS, fault tolerance, and parallel-

ism can be well suited for neuromorphic systems. However, the proposed approach 

does not provide an efficient implementation of logical operations, such as comparison, 

number sign determination, etc., which we will study in future work. 
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Abstract. To date, research on warehouse order-batching has been limited by 

reliance on rigid assumptions regarding rack layouts. Although efficient optimi-

zation algorithms have been provided for conventional warehouse layouts with 

Manhattan style blocks of racks, they are limited in that they fail to generalize to 

unconventional layouts. This paper builds on a generalized procedure for digiti-

zation of warehouses where racks and other obstacles are defined using two-di-

mensional polygons. We extend on this digitization procedure to introduce a lay-

out agnostic minisum formulation for the Order Batching Problem (OBP), to-

gether with a sub-problem for the OBP for a single vehicle, the single batch OBP. 

An algorithm which optimizes the single batch OBP iteratively until an approxi-

mate solution to the OBP can be obtained, is discussed. The formulations will 

serve as the fundament for further work on layout-agnostic OBP optimization 

and generation of benchmark datasets. Experimental results for the digitization 

process involving various settings are presented.  

Keywords: Order Batching Problem, vehicle routing, warehouse digitization.  

1 Introduction 

Order-picking is “the process of retrieving products from storage areas in response to 

a specific customer request” where “customer request” denotes a shipment order con-

sisting of one or several products [1]. Order-picking is accountable for as much as 55% 

of all operating expenses in a warehouse and is considered an important process to 

optimize [2]. Order-batching is a common method with which to conduct order-pick-

ing. It means that each picker (vehicle) is set to pick a so-called batch of one or more 

orders [3]. As an optimization problem order-batching is known as the Order Batching 

Problem (OBP) [4] or the Joint Order Batching and Picker Routing Problem (JOBPRP) 

[5]. The Picker Routing Problem is a sub-problem of the OBP for one vehicle and is 

here treated as equivalent to the Traveling Salesman Problem (TSP) [6]. This paper 
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(WASP) funded by the Knut and Alice Wallenberg Foundation. 
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follows the convention that an “OBP” can include TSP optimization without having to 

include TSP optimization in the name of the problem (such as the JOBPRP) [4]. The 

Picker Routing Problem is henceforth referred to as TSP and the Order Batching Prob-

lem, which includes TSP optimization, as OBP. In the literature the OBP is usually 

formulated as a specific form of the more well-known Vehicle Routing Problem (VRP) 

[7], with two key amendments: 

 
1. Order-integrity: In the OBP products in one order cannot be picked by more than 

one vehicle [8] whereas in the VRP this constraint is not used (there is no notion 
of a warehouse shipment “order” in the VRP) [7].  

2. Obstacle-layout: We can observe two types of obstacle layouts (see Fig 1): In the 
conventional layout, racks are laid out in a Manhattan style blocks. In the uncon-
ventional layout, racks or other obstacles can be freely placed (see Fig 2. for ex-
amples). The unconventional layout includes the case when there are no racks or 
obstacles at all. All previous work on the OBP seems to require explicitly a con-
ventional layout [5], [8]–[10], while the VRP does not have this requirement. 

 

 

Fig. 1. Example of a conventional layout (left) with 30 racks, 16 aisles and 3 cross-aisles. Add-

ing a single or a few irregular racks or other obstacles to the conventional layout renders it un-

conventional. 
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Fig. 2. Eight examples of unconventional warehouse layouts. a) and b) show cases where the 

layout has been built to fit within a non-rectangular outer wall. e) is the so called “fishbone” 

layout. 

 

The aim of this paper is to formulate an OBP where orders and order-integrity are pre-

served, but where the layout is generalized towards any layout with or without polygo-

nal obstacles. This is in line with a future research recommendation by Masae et al. 

[11]: “there is a strong need for developing […] algorithms for […] non-conventional 

warehouses”. Below are some reasons for why this is important: 
• It allows warehouses with unconventional layouts to formulate and optimize 

OBP’s. This includes warehouses divided into zones where each zone has a con-
ventional layout.  

• It allows OBP optimization to be used as a tool with which to optimize warehouse 

layouts beyond conventional layouts.  
• Problems in non-warehouse domains, such as agriculture, mining, road and aerial 

logistics to be explored as OBP’s. The OBP is fundamentally similar to batch 
processing [12] where each process consists of constrained sub-processes (similar 
to order-integrity), and the Key Performance Indicator (KPI) depends on how well 
the sub-processes operate when they are combined. These types of broadened per-
spectives on the OBP can only be pursued if it is generalized beyond conventional 
layouts. 

 

The paper continues with a literature review (Section 2), followed by the OBP formu-

lation (Section 3). The formulation builds on a digitization process which generates the 

distances and shortest paths between all defined locations for a given warehouse [13]. 

The feasibility of the digitization process is examined in experiments involving various 

warehouse configurations (Section 4). 
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2 Literature Review 

The OBP is a specific form of the Vehicle Routing Problem (VRP) [7] and a specific 

VRP-variant known as the Steiner-VRP [14]. A key feature of the Steiner-VRP is that 

multiple visits to same location (representing a vertex in a graph) are allowed [5], [8], 

[10], [14]. OBP’s and VRP’s are known to be NP-hard [15], [16]. OBP’s have been 

formulated using integer programming (e.g. [14]) or set-partitioning (e.g. [4]), with a 

heavy reliance on heuristics for a conventional warehouse layout. The conventional 

layout is modeled such that obstacles (racks) are arranged with parallel “aisles” (be-

tween racks) and parallel “cross-aisles” (between sections of racks) [9], [14]. Using 

such restrictive definitions for aisles and cross-aisles makes it possible to formulate 

heuristics that reduce the solution space of an OBP. Briant et al. [9], for example, use 

cutting planes and various relaxation heuristics to formulate an OBP which they then 

propose optimality bounds for. They use a conventional layout with 8 aisles and 3 cross-

aisles, which corresponds to the size of the warehouse shown in Fig. 1 d).  

 

 

Fig. 3. A Steiner-VRP (left) plotted against the proposed layout-agnostic OBP in a setting with-

out any obstacles. The dots denote products and the colors orders which the products belong to. 

The outlined green and red products in the middle share the same location. The difference be-

tween the Steiner-VRP and the OBP seen here is solely due to the order-integrity constraint. 

The vehicle distances may be longer in the OBP but the products which they are assigned to 

carry are more associated (by order color in this example). Order-integrity is used to e.g. reduce 

a later time-consuming sorting effort or to reduce pick-error i.e. the risk of the wrong product 

going into the wrong order.  

 

The conventional layout appears in formulations as “number of aisles” [8], “the cross-

distance between two consecutive aisles” [4], “number of vertices in the subaisle” [14] 

or “intra-aisle distance” [17]. They are used as required inputs for OBP optimization. 
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Some authors have called for formulations involving more layouts than the conven-

tional layout [11], [18]–[21]. Without the conventional layout, however, it is a chal-

lenging task to effectively constrain an OBP solution space. This can for instance be 

exemplified in the scenario when there are no obstacles, and each order contains a sin-

gle product. In that case the OBP is equivalent to a Steiner-VRP, and this problem has 

no yet proposed optimal solution [14]. Proposed OBP optimization algorithms for the 

conventional layout include dynamic programming [9], datamining [22], clustering 

[10] and meta-heuristics such as Tabu Search [23], Ant Colony Optimization [15] and 

Genetic Algorithms [24]. In the VRP research domain problem formulations are gen-

erally not concerned with obstacle layouts [25]. Instead the only requirement in a VRP 

is usually a cost matrix, providing the travel distance or time between all pairs of loca-

tions [7], [26]. In a VRP it is generally assumed that this cost matrix already exists, or 

that it is produced in a prior data collection process. In research on the OBP, on the 

other hand, plenty of attention is usually given to how to produce the cost matrix and 

how to define shortest paths or TSP’s in an environment with obstacles. This can also 

be seen in some papers on VRP’s that include obstacles (e.g. [27] and [28]). Concerning 

where vehicles begin and end their trips, most OBP papers assume that the origin and 

destination location is the same (usually this location is named depot). If this is not the 

case, the OBP is denoted multi-depot or a Dial-A-Ride-Problem  (DARP) [21]. An ex-

ample of this is when vehicles have one location where they drop off their picked or-

ders, and where there are one or several locations where they can start their rides.  

3 Problem Formulation 

3.1 Preliminaries 

The proposed OBP formulation is based on an undirected, symmetric and weighted 

graph. Without obstacles (racks or other) no graph is needed since distances between 

all pairs of locations in that case can be assumed to be Euclidean. Also, in the obstacle 

free case, the shortest path between any two locations can be assumed to be a single 

edge. With obstacles, however, shortest distances must be calculated based on the short-

est paths that circumvent obstacles, and this is achieved here using the Floyd-Warshall 

graph algorithm [13], [29]. Concerning number of depots the below formulation as-

sumes both an origin and a destination location for vehicles is formulated (but they can 

share the same coordinates).  

First a set of locations is defined as ℒ ⊂ ℝ+ × ℝ+. This set consists of different 

types of locations: 𝑙𝑠 ∈ ℒ is the starting (origin) location for all vehicles. 𝑙𝑑 ∈ ℒ is the 

destination location for all vehicles. ℒ𝒫 ⊂ ℒ is the set of product locations. ℒ𝒰 ⊂ ℒ is 

a union of sets of obstacles: ℒ𝒰 = ∪𝑖 𝑢𝑖 , 𝑖 ∈ ℕ+ where each 𝑢𝑖 is a polygonal obstacle 

with a set of corner locations 𝑢𝑖 = {𝑙𝑖
1, 𝑙𝑖

2, . . . , 𝑙𝑖
𝑘} ⊆ ℒ𝒰, 𝑘 ∈ ℕ+. All of the locations 

can thus be summarized as a union: ℒ = {𝑙𝑠} ∪ {𝑙𝑑} ∪ ℒ𝒫 ∪ ℒ𝒰. The products which 

are to be collected are defined as a set 𝒫 = {𝑝1, 𝑝2, … , 𝑝𝑛}, 𝑛 ∈ ℕ+. Each product 𝑝 ∈
𝒫 has a location 𝑙𝑜𝑐𝑝: 𝒫 → ℒ𝒫 , weight 𝑤𝑝: 𝒫 → ℝ+ and volume 𝑣𝑜𝑙𝑝: 𝒫 → ℝ+. The 

unassigned orders which are to be batched are defined as a subset of all possible com-

binations of products 𝒪 ⊂ 2𝒫 . The locations of the products in an order 𝑜 ∈ 𝒪  are 

316



6 

defined as a function 𝑙𝑜𝑐𝑜: 𝒪 → 2ℒ𝒫  . Order weight and volume quantities are defined 

as 𝑤𝑜:  𝒪 → ℝ+ and 𝑣𝑜𝑙𝑜:  𝒪 → ℝ+ . 𝑤(𝑜) = ∑ 𝑤(𝑝)𝑝∈𝑜 , 𝑣𝑜𝑙(𝑜)  =  ∑ 𝑣𝑜𝑙(𝑝)𝑝∈𝑜 . 

Vehicles are defined as ℳ = {(𝑤, 𝑣𝑜𝑙, 𝑘, 𝑖𝑑)| 𝑤, 𝑣𝑜𝑙, 𝑖𝑑 ∈ ℝ+, 𝑘 ∈ ℕ+} where 𝑤  de-

notes weight capacity, 𝑣𝑜𝑙 denotes volume capacity, 𝑘 denotes the maximum number 

of orders the vehicle can carry and 𝑖𝑑 a unique identifier of a vehicle. The capacities of 

a single vehicle 𝑚 ∈ ℳ  are provided using functions 𝑤𝑚:  ℳ → ℝ+, 𝑣𝑜𝑙𝑚:  ℳ →
ℝ+ and 𝑘𝑚: ℳ → ℕ+.  

The digital model of the warehouse is represented as a graph with a set of vertices 

𝒱 = {𝑣1, 𝑣2, … , 𝑣𝑛}, 𝑛 =  |ℒ|. 𝒱 consists of different types of vertices denoted as fol-

lows: 𝑣𝑠 ∈ 𝒱 is a starting (origin) vertex for vehicles, 𝑣𝑑 ∈ 𝒱 is a destination vertex for 

vehicles, 𝒱ℒ𝒫
⊂ 𝒱 is a set of product location vertices and  𝒱𝒰 ⊂ 𝒱 is a set of obstacle 

corner vertices. The union of all vertices, 𝒱 = {𝑣𝑠} ∪  {𝑣𝑑} ∪ 𝒱ℒ𝒫
∪ 𝒱𝒰, are defined simi-

larly to the locations apart from one important difference: There may be several prod-

ucts in one location and there is one vertex per product location, not one vertex per 

product (this is to limit the size of the graph). To get a set of locations from a corre-

sponding set of vertices the function 𝑙𝑜𝑐𝒱: 𝒱 → ℒ is used. To get a set of vertices from 

a set of locations is similarly provided by the function 𝑣ℒ: ℒ → 𝒱.  

The set of possible batches is defined as ℬ ⊂  2𝒪 , 𝑏 ∈ ℬ, 𝑏 ∈ 2𝒪 , 𝑏 ≠ ∅. The loca-

tions of the products in the batch can be obtained using function 𝑙𝑜𝑐𝑏: ℬ →
2ℒ𝒫 . 𝑙𝑜𝑐(𝑏) =∪𝑜∈𝑏 𝑙𝑜𝑐(𝑜) . Similarly, the vertices in the batch are 𝑣𝑏: ℬ →

2 𝒱ℒ𝒫 . 𝑣(𝑏) =∪𝑜∈𝑏 𝑣(𝑙𝑜𝑐(𝑜)) . Batch weight and volume quantities are defined as 

𝑤𝑏: ℬ → ℝ+ and 𝑣𝑜𝑙𝑏: ℬ → ℝ+. The number of orders in a batch is defined as 𝑘𝑏: ℬ →
ℕ+ or |𝑏|.  

The set of edges E is defined such that each edge is an ordered pair 𝑒 ∈ 𝐸 =
{(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝒱, i ≠ 𝑗} where 𝑖 is an origin and 𝑗 a destination vertex. 𝐸 excludes any 

edge which passes through the hull of any polygon in 𝒰 (for details on how this can be 

achieved see [13]). Edges between adjacent corners in any polygon 𝑢 ∈ 𝒰 are not ex-

cluded in 𝐸. The edges and vertices are then used to construct the symmetric undirected 

weighted graph 𝐺 = (𝒱, 𝐸).  

A shortest paths distance matrix 𝐷: 𝒱 × 𝒱 → ℝ+ provides the minimum sum of 

edge distances between any two vertices in 𝒱 without crossing any hull in ℒ𝒰.  Each 

edge cost 𝑑𝑙𝑜𝑐(𝑖),𝑙𝑜𝑐(𝑗) ∈ 𝐷 (henceforth 𝑑𝑖𝑗) is between two vertices, 𝑖, 𝑗 ∈ 𝒱, 𝑖 ≠ 𝑗.  If 

there exists an unobstructed path between 𝑙𝑜𝑐(𝑖) and 𝑙𝑜𝑐(𝑗)  (which does not go 

through any obstacle hull) the distance is Euclidean ‖𝑙𝑜𝑐(𝑖) − 𝑙𝑜𝑐(𝑗)‖. If obstacles 

must be bypassed to go from 𝑙𝑜𝑐(𝑖) to 𝑙𝑜𝑐(𝑗), however, the distance is a sum of Eu-

clidean distances following the shortest path between them (without crossing obsta-

cles). The Floyd-Marshall graph algorithm is used to compute these shortest paths and 

distances exactly [13].  

The set of vertices, including origin and destination vertex, that have to be visited 

to pick a batch is defined as 𝒱𝑏 = {𝑣𝑠} ∪ 𝑣(𝑏) ∪ {𝑣𝑑}, 𝑏 ∈ ℬ. A function can then be 

built which provides the sequence of vertex visits in a batch TSP solution (tour): 

 

𝑇𝑏: 𝒱𝑏 → {𝑣𝑖}𝑖=1
𝑛 , 𝑛 = |𝒱𝑏|, (1) 
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𝑇(𝑏)𝑖 = {

𝑣𝑠 𝑖 = 1
𝑣𝑘 1 < 𝑖 < 𝑛 
𝑣𝑑 𝑖 = 𝑛

 

(2) 

where 𝑣𝑘 ∈ 𝑣(𝑏) and 𝑖 gives the sequence of visits. The distance of a batch TSP solu-

tion (tour) is similarly provided in a function: 

 

𝐷𝑏: 𝑇(𝑏)𝑖  →  ℝ+, 𝑖 ∈ ℕ+, 𝑖 ≤ |𝑇(𝑏)|.   (3) 

𝐷(𝑏) = ∑ 𝑑𝑇(𝑏)𝑖𝑇(𝑏)𝑗
, 𝑖, 𝑗 ∈ ℕ+, 𝑗 = 𝑖 + 1, 𝑖 < |𝑇(𝑏)| 

(4) 

Note 𝐷𝑏could be renamed 𝐷𝑇𝑏
 to clarify that the distance of a batch is computed over 

a certain tour to visit all the products in the batch. 𝒱, 𝐸, 𝐺 and 𝐷 are assumed to be pro-

duced in a digitization preprocessing step and the computational effort at this stage is 

assumed to not be included in subsequent OBP optimization. Out of  𝒱, 𝐸, 𝐺 and 𝐷 only 

𝐷 is needed as input for OBP optimization assuming vehicles are capable of finding the 

shortest path between any two locations on their own. 𝒱, 𝐸, 𝐺 are also needed for direc-

tions on how to follow the shortest path, and if visualizations of edges are sought, both 

of which are arguably important in an industrial OBP optimization service. One exam-

ple of a visualization of 𝐺 and a small OBP optimization instance can be seen in Fig. 4 

below:  

 

 

Fig. 4. Visualization of the digital graph (𝐺) of a warehouse, and an example OBP with two 

orders, two vehicles and vehicle capacity of one order. Each blue line is an edge 𝑒 ∈ 𝐸 that con-

nects two vertices (𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝒱. The white hulls are racks (obstacles) laid out in an “unconven-

tional” way and no edges pass through them. The orange vertices show a subset of 𝒱𝒰 and the 

green and yellow vertices along the racks are the sought products in  𝒱ℒ𝒫
 (where color indicates 

which order it belongs to). Note one of the products is visited by both vehicles. At the bottom the 

origin and destination, 𝑣𝑆 and 𝑣𝑑  can be seen (blue and red respectively). The OBP solution is 

here shown as the red and lime edges following the shortest paths between 𝑣𝑆, the yellow or green 

vertices and 𝑣𝑑 (the two tours are obtained using 𝑇𝑏 above).  
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3.2 General OBP formulation 

A set-partitioning formulation with an exponential number of binary variables is used 

to formulate the layout-agnostic general OBP. The binary decision variable 𝑥𝑚𝑏  is used 

to indicate whether batch 𝑏 ∈ ℬ is assigned to vehicle 𝑚 ∈ ℳ (𝑥𝑚𝑏 = 1, if 𝑚 is as-

signed to 𝑏, 𝑥𝑚𝑏  = 0 otherwise). The binary decision variable 𝑥𝑚𝑜 is used to indicate 

whether order 𝑜 ∈ 𝒪  is assigned to vehicle 𝑚 ∈ ℳ  ( 𝑥𝑚𝑜 =
1 if 𝑚 is assigned 𝑜, 𝑥𝑚𝑜 =  0 otherwise). The binary decision variable 𝑥𝑚𝑙  is used to 

indicate whether vehicle 𝑚  visits location 𝑙 ∈ ℒ𝒫  ( 𝑥𝑚𝑙 = 1 if 𝑚 visits 𝑙, 𝑥𝑚𝑙 =
0 otherwise).  
 

𝑚𝑖𝑛 ∑ 𝐷(𝑏)𝑥𝑚𝑏 ,

𝑏∈ℬ 

𝑚 ∈ ℳ 

s.t. 

 

s.t. 

(5) 
 
 

∑ 𝑥𝑚𝑜

𝑚 ∈ ℳ

= 1, ∀𝑜 ∈ 𝒪 

 

(6) 
 

∑ 𝑥𝑚𝑙

𝑙∈𝑙𝑜𝑐(𝑜)

≥ 𝑥𝑚𝑜 , ∀𝑜 ∈ 𝒪, 𝑚 ∈ ℳ 

(7) 

𝑞(𝑏) ≤ 𝑞(𝑚)𝑥𝑚𝑏 , 𝑏 ∈ ℬ, 𝑞 ∈ {𝑤, 𝑣𝑜𝑙, 𝑘}, 𝑚 ∈ ℳ 

 

(8) 

The optimization aim of the OBP (5) is to assign one batches to vehicles such that the 

sum of the distances of all batches is minimized. (6) ensures that each unassigned order 

is assigned to exactly one vehicle (order-integrity). (7) ensures that every product lo-

cation in every order assigned to a vehicle is visited at least once. This inequality is 

what renders the OBP a general Steiner-VRP. (8) ensures capacity of vehicles is never 

exceeded. 

3.3 Single batch OBP formulation 

The general OBP formulation is problematic to work with due to the large number of 

possible combinations of vehicles and batches. Below is a proposal for a more tractable 

problem where the aim is to find a batch for an already selected vehicle. After vehicle 

m has been selected the aim is to assign as many orders as possible to it while keeping 

batch distance at a minimum:  

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑏∈ℬ

𝐷(𝑏) (9) 

 

 

 

 

 

 

 

 

∃𝑞(𝑞(𝑏) + 𝑞(𝑜)  ≥  𝑞(𝑚)), ∀𝑜 ∈ 𝒪, 𝑜 ∉ 𝑏, 𝑞 ∈ {𝑤, 𝑣𝑜𝑙, 𝑘} (10) 
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where 𝑘(𝑜) (i.e. the number of orders in an order) is 1. The aim in the single batch OBP 

(9) is to, for a given vehicle 𝑚, find a single batch 𝑏 with the minimal batch distance. 

Constraints (6), (7), and (8) from the general OBP still apply (for the given vehicle). 

Constraint (10) is further added to ensure that the number of orders in the batch is as 

large as possible (for all unassigned orders there exists a weight, volume or number of 

orders quantity which will exceed vehicle capacity if the order is added to the batch). 

Without this maximization of number of orders an optimization algorithm would al-

ways create a batch with just a single order because this would produce the minimal 

batch distance. The single batch OBP formulation is a specific version of the so called 

minimum cost maximal knapsack packing problem (MCMKP) if distance is treated as 

“profit” and number of orders as knapsack “weight” (according to the definition by 

[30]).  Note in the formulation here batch “weight” and “volume” are not included in 

the maximization since this would impose decision making over the importance of the 

different quantities (which one is most important to maximize while not exceeding ve-

hicle capacity). The intention of the single batch OBP formulation is to provide the 

means with which to build an efficient single batch OBP optimization algorithm. This 

algorithm can then be used to produce one batch at a time within an algorithm which 

optimizes the general OBP, as proposed in Algorithm 1 below: 

 

 
 

Algorithm 1 runs with the assumption that there are always enough vehicles to choose 

from, and it creates single batches until there are no more unassigned orders left. The 

total cost is expressed in the TSP tour distances of the batches 𝐷(𝑏). After a batch has 

been created its orders are removed from 𝒪.  

4 Experimental results 

This section evaluates the computational effort and memory requirement needed to gen-

erate the datastructures used by the formulation in Section 3. The only datastructure 

needed for OBP optimization is the distance matrix 𝐷, but graph 𝐺, including shortest 

paths between all locations are also included. 
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Table 1. Experimental results for the digitization of distances and shortest paths. 

 

Computational time and memory requirement grows fast with number of locations in 

the digitization procedure. The largest instance included 6491 defined locations and 

required 18 hours of CPU-time. Please note the computation only has to be run once 

(and re-run if the obstacle layout is changed in the warehouse). Once the graph has been 

generated, distances and shortest paths can be queried quickly by pre-allocating them 

in Random Access Memory (RAM), which is why RAM usage is also a relevant pa-

rameter. “Number of locations”, denoted as |ℒ| in Section 3, and the number of prod-

ucts in each defined location, varies depending on precision sought in the digitization 

process. For example, the warehouse denoted c9543_ARA, holds around 40000 prod-

ucts, but there are only 4037 defined locations. Each location in that case represents the 

products within an area of around 3 𝑚2 on the horizontal axis and 5 shelf levels on the 

vertical axis, with a total of around 10 products represented by every defined location. 

Clearly, a faster digitization process would be achieved if more products were mapped 

to the same locations, but then the digital model would be less precise. The tradeoff 

between memory and CPU-time on the one hand, and digitization precision on the 

other, is an interesting topic left for future work.  

 

5 Conclusion 

This paper set out to formulate an Order Batching Problem (OBP) that does not depend 

on the way in which racks or other obstacles are laid out in the warehouse. A digitiza-

tion procedure to generate necessary datastructures was first described. A minisum set-

partitioning formulation with an exponential number of binary variables was introduced 

for the layout-agnostic OBP. A more tractable version of the OBP, the single batch 

OBP, was additionally formulated where the aim is to find a single batch for an already 

specified vehicle. Experiments evaluating CPU-times and memory footprints for gen-

erating necessary datastructures was presented. In ensuing work new layout agnostic 

OBP optimization algorithms and benchmark instances will be introduced.   
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Abstract

In this paper we present a new problem called the Multi-Objective Team Set Orienteering Prob-
lem (MOTSOP). This problem can be used to model real-world problems like Tourist Trip Design
Problems. MOTSOP is the generalization of the Team orienteering problem (TOP) [4] and the Set
Orienteering Problem (SOP) [1]. Given a graph, we define clusters of nodes and associate a profit to
each cluster. We also associate a visiting time to each node of the graph. We maintain the same logic
as in SOP regarding the profit collection, where the profit is always linked to the cluster. That is, the
profit is collected only if at least one node of a cluster is visited by one vehicle. This article presents
opposing objectives which are minimizing the number of vehicles and maximizing profit. Our model
seeks to find the best solution which can balance these two contradictory objectives. The difference
between TSOP and SOP is that there is not only one single vehicle to collect the profit, instead the
Team Set Orienteering Problem provides a fleet of vehicles to visit the nodes. We present a mixed
integer linear programming formulation MILP for MOTSOP and we propose to solve the problem
using new Genetic Iterated Neighborhood Algorithm (GINA). We show how the Multi-Objective
Team Set Orienteering Problem can be used to solve the Tourist Trip Design Problem (TTDP).

Keywords— Set Orienteering Problem, Multi-Objective Optimization Problem, Team Set Orienteering
Problem, Iterated local search, Genetic algorithm, Tourist Trip Design Problem

1 Introduction

According to the Tunisian federation of travel agencies FTAV, 98% of Tunsian travel agencies are threatened with
bankruptcy and 28% of travel agency staff have been made redundant [2]. These figures show that the travel
agency profession must be automated to reduce costs and ensure the services continuity. The main activity of
travel agencies is to create a trip composed of a set or sequence of points-of-interests (POIs). This task is called
Tourist trip design problem (TTDP) [5].

Typically, TOP [4] is a lightweight version of TTDP because it lacks the notion of Tourist different objectives
and POIs categories. Adding new objectives and grouping POIs in clusters (categories), we can transform TTDP
into MOTSOP. MOTSOP includes more realistic assumptions for the TTDP and, thus, is more beneficial on the
scientific and operational side.

2 Multi-Objective Team Set Orienteering Problem (MOTSOP)

The extension of the SOP to multiple routes is defined as the team set orienteering problem (TSOP) with the
objective of maximizing the collected profit across multiple routes. The extension of the TSOP to multiple
objectives is defined as the Multi-Objective Team Set Orienteering Problem MOTSOP where the considered
objectives are maximizing the profit obtained and minimizing the number of routes.

Each cluster has a profit that is obtained when one node in the cluster is visited. On the other hand, there
is a maximum time budget for each route, what means that not all nodes can be visited in one route. Thus,
maximizing profit usually implies increasing the number of routes, and the two objectives are in conflict.

MOTSOP is NP-hard because SOP reduces to MOTSOP and it has been proven in previous works that SOP
is NP-hard. Therefore, no polynomial time algorithm is known to solve the MOTSOP to optimality.

2.1 Formulation

We have a directed graph G(V,E) where V is the set of nodes and E ⊆ V × V is the set of edges. We label
the nodes with non-negative integers and we distinguish the depot with number 0. The set V/{0} is partitioned
into pairwise disjoint sets called clusters and denoted with Dl where l = 1, 2, . . . , C. Each cluster has a profit pl
associated. This profit is obtained if a node of the cluster is visited by one vehicle. A vehicle requires time tij to
traverse edge (i, j) ∈ E. When a vehicle stops in node i, it stays there for si time, which is called the visit time of

324



node i. A route cannot last more than Tmax time in total, including the visit time of the nodes. The bi-objective
Team Set Orienteering Problem consists in maximizing the profit obtained and minimizing the number of routes.
A mixed integer linear programming formulation follows.

max
C∑

l=1

plzl, (1)

min
∑

(0,i)∈E

x0i, (2)

subject to:

∑

(j,i)∈E

xji = yi ∀i ∈ V/{0}, (3)

∑

(i,j)∈E

xij = yi ∀i ∈ V/{0}, (4)

zl ≤
∑

i∈Dl

yi ∀1 ≤ l ≤ C, (5)

uj − ui ≥ (tij + sj)xij + (xij − 1)Tmax ∀(i, j) ∈ E, (6)

u0 = 0, (7)

uj + cj0xj0 ≤ Tmax ∀j ∈ V/{0}, (8)

uj ≥ 0 ∀j ∈ V/{0}, (9)

xij ∈ {0, 1} ∀(i, j) ∈ E, (10)

yi ∈ {0, 1} ∀i ∈ V/{0}, (11)

where xij represents if edge (i, j) is traversed by any vehicle, yi represents if node i is visited by any vehicle and
zl represents if any node of cluster Dl is visited by a vehicle. Equations (3) and (4) together ensure that at most
one vehicle visits each node and leaves from it, providing also the correct value for yi. Equation (5) ensures that
a cluster is visited if at least one node in the cluster is visited. Equation (6) and (7) defines uj as an upper
bound of the leaving time at node j. Equation (8) ensures that no route will take more than Tmax time. Finally,
Equations (9) to (11) define the domain of the decision variables.

2.2 Adapt the TTDP into the MOTSOP

When tourists want to visit a city, they cannot visit every point of interest (POI), as they are constrained in time
and budget. At the same time, travelers select POIs based on categories, since they does not have a clear idea
about POIs. Most real-world touristic travels are multi-objective, since all travelers want to get the most out of
their trip in fewer days. For this reason, we need to add the concept of categories and the multi-objective model
to TSOP.

We can cluster POIs in some categories and assign a score to each category, where the score can represent
the profit of each category. This profit is obtained only if at least one destination from this category is visited
in one day at most. Another constraint is the visiting time, where at each point we consider the visiting time or
the service time at each POI. In real life problem, the first goal is to plan the journey in minimum number of
days and the second one is to enjoy and maximize leisure. There is a similarity between TTDP and MOTSOP if
we model one day in the TTDP with one route in the MOTSOP and we relate maximizing leisure in TTDP to
maximizing profit in MOTSOP.

Figure 1 could explains how to transform the TTDP into the MOTSOP. Imagine that a travel agent want to
design a tailor-made trip. The goal is to minimize the number of night stays in a hotel to make the trip cheaper
and at the same time increase the number of POIs categories.
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Figure 1: Example of solution containing two days trip. It illustrates how we adapt the TTDP into the
MOTSOP.

3 Hybrid approach

In this work, we propose the Genetic Iterated Neighborhood Algorithm, GINA, which is a hybridization of a
genetic algorithm and Iterated Neighborhood Algorithm (INA)[3] to jointly solve the MOTSOP. We incorporate
INA into the GA to complement the genetic search by the advantages of INA features. The algorithm first
generates a population of n feasible solution. Then, it applies binary tournament selection to select two solutions
to apply a crossover operator. The solution resulting from the crossover is mutated and a local search is aplied,
using the swap neighborhood [3]. Finally, an elitist replacement operator compares the new solution with the
worst in the population and the best of these two is included in the population, removing the worst. One iteration
of the algorithm is graphically illustrated in Figure 2.

Figure 2: Algorithm Steps.

4 Conclusion

This abstract contains several contributions: the definition of a new problem with applications in tourism, a
MILP formulation of the problem, and the proposal of a hybrid algorithm to solve it. In future work, we will
introduce new elements to the problem to make it more realistic, like adding must-visit POIs, and time windows
for each visit. These constraints can make the problem more real and we can apply it in the tourism industry
to generate efficient app for travelers. We also plan to investigate the performance of several algorithms for
solving the problem. In particular, we need to compare our proposed hybrid algorithm with ILP solvers using the
proposed MILP formulation. Since no instances exist for this problem, we will take SOP instances and transform
them to generate MOTSOP instances.
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Abstract. On March 2020, the World Health Organization (WHO) announced 

the COIVD-19 as global pandemic that caused thousands of deaths and brought 

the world to a standstill with huge economic burden (World Health Organization, 

2020). Health is an essential factor for sustaining a better life in a better world. 

Today, for different reasons, several districts in our countries would be deprived 

from the needed health support and thus, in such cases, we need to deliver health 

care to those regions. Despite of its considerable cost, mobile clinic remains one 

of the good solutions to deliver health care to critical areas in our countries. A 

recognized problem in this domain is minimizing the cost of mobile clinics route 

in a way that the number of served patients is maximized. This problem is known 

as the mobile clinics routing problem (MCRP). The purpose of this paper is to 

present a novel approach that, within the given limited resources, it minimizes 

the cost and the traveling distance of mobile clinics while maximizing the number 

of patients served as per priorities assigned according to the patients’ medical 

status. This paper implements and tests an intelligent variable neighbourhood 

search algorithm for MCRP. 

Keywords: pandemic management, Hyperheuristic, Machine Learning. 

1 Introduction 

Today, several reasons prevent governments in different countries from providing 

suitable health care to its citizens. Some of these reasons are related to pandemics, 

natural disasters, or even to terrorist acts that hit health care centers, which might take 

a long time for governments to recover. Other reasons could be the distributions of 

population in different geographic areas that lead to establishing health care centers in 

these areas become expensive and unfeasible projects. All this lead governments to 
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think about delivering health care to citizens instead of having them cross long distance 

to acquire it. Mobile clinics were one of the feasible solutions to be considered. 

Mobile clinic is defined as “a typical clinic with all needed machines and equipment 

which can move from one place to another to provide better service. It is a way of 

having all the equipment built into a moving vehicle to be ready for usage at any time 

and to reach long distances where there are no fixed clinics” (Segen, 2012). Today, the 

need for mobile clinics is demanding to resolve the dilemma of an enormous number 

of people deprived from health care services. This fact is revealed in World Health 

Organization and the Word Bank’s (2015) report which reported that 400 million 

people do not have access to essential health services due to the increase in natural 

disasters, epidemics, food shortage, refugee aid and military conflicts. The basic 

problem reported is the lack of or destroyed infrastructure, which hinders the 

performance or the reconstruction of clinics. The report further “recommend that 

countries pursuing universal health coverage should aim to achieve a minimum of 80% 

population coverage of essential health services”, and that everyone everywhere should 

be protected from catastrophic and impoverishing health services. The demand for 

universal health coverage is further asserted by the World Health Organization (2020), 

which requires the “health policies and programs focus on providing quality health 

services for the poorest people, women and children, people living in rural areas and 

those from minority groups". Further, in its (2015) report on health care services, the 

Rural Health Services Review Committee of Alberta found that “some fixed clinics are 

closing in the rural area because of the declining population, economic recession, 

shortages of physicians and other health care professionals, a disproportionate number 

of elderly, poor, and underinsured residents, and high rates of chronic illness”.  

Participants in the report claimed that it is difficult for them to find out a professional 

doctor or a trusted health care center in rural areas. Among most of citizens in the rural 

areas believed that the government should provide clinics in the rural areas other than 

sending people to the other places and clinics.  

At present, mobile clinics offer a feasible solution to the above dilemma. In addition to 

being equipped to respond to the COVID 19 outbreak, mobile clinics provide many 

programs and centers including the da Vinci® Surgical system, cancer services, 

diabetes, digestive health, emergency services, and many other health care services. In 

fact, such a variety of services offered by mobile clinics provides efficient health care, 

flexibility, accessibility to patients; still a major problem faces mobile clinics operators. 

The problem is to optimize the mobile clinics trip in a way that it minimizes the cost 

and the traveling distance of the mobile clinics routes while maximizing the number of 

patients served as per priorities assigned according to the patients’ medical status. Such 

a problem is very critical and hard since it incorporates a vehicle routing and scheduling 

problems. This makes the mobile clinic routing problem (MCRP) a nondeterministic 

polynomial time (NP)-complete problem. Such problems may be too computationally-

intensive to find their exact solution. In such cases, heuristic techniques can be 
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effective. In fact, due to their random nature, heuristic techniques are not guaranteed to 

find an optimal solution for any problem, but they will find a good solution if one exists. 

In this work, we propose a novel variable neighbourhood search (VNS) metaheuristic 

for solving MCRP. The selection of the VNS metaheuristic was motivated by Hansen 

and Mladenovic (2001)  perception which states that “it aims at solving very rapidly, 

very large instances, and increasing precision and reducing solution time for 

combinatorial optimization problems; further VNS uses strategies for search 

diversification and intensification that have proved effective in a variety of optimization 

problems”. This paper presents and tests the VNS algorithm with randomly generated 

input that simulates actual data in MCRP with instances of 200 patients and 12 mobile 

clinics. The test cases results clearly show a significant improvement in the cost of the 

objective function and the execution time.     

The rest of this paper is organized as follows. The next section is devoted for the 

literature review. Section 3 presents the mathematical formulation. The Variable 

Neighbourhood Search metaheuristic is discussed in Section 4. Section 5 presents the 

empirical results. Finally, the conclusion is presented in Section 6. 

2 Literature Review 

Several researchers addressed the mobile clinics routing problem (MCRP). A num-

ber of researchers considered reducing the mobile clinics routes as the most important 

factor to optimize since the distance may sometimes hinder the usage of a medical ser-

vice (Morrill, R. L. and Earickson, R., 1968; Shannon, G. et al., 1969; Muller, I., et al., 

1998; Ruggiero, C.P. and Gloyd, S., 1995; Verter, V. and Lapierre, S.D., 2002). Liter-

ature also shows that many governments equip clinics with mobile healthcare facilities 

instead of building fixed healthcare centers (Ruggiero, C.P. et al.,1995; Fox-Rushby, 

J.A., 1995; Gilson, L., 1995; Dyer, J.J., 1996; Hodgson, M.J.,et al. 1998; Mackle, G.A. 

and Giles, M., 1995; Ruggiero, C.P. and Gloyd, S., 1995). Furthermore, other research-

ers studied the idea of building fixed healthcare centers that could be reached within a 

given walking distance instead, and thus aimed at finding the best location a healthcare 

center is suited, and how they should be staffed (Rahman, S. and Smith, D.K., 2000; 

Oppong, J.R., 1996; Mehrez, A. et al.,1996; Hindle, T. and Ngwube, C., 1990; Gold-

stein, S.M., et al., 2002; Galvao, R.D., et al., 2002; Doherty, J., et al. 1996; Chu, S. and 

Chu, L., 2000; Berghmans, L., et al., 1984; Hachicha et al. 2000). In fact, most of the 

previous works dealt with the problem as either a tour planning distance reduction prob-

lem or as a fixed healthcare allocation problem. In addition to that, only few articles 

addressed this problem in the past five years, at a time international healthcare organi-

zations urge the need of further research in this area. All this motivated us to present 

our novel algorithm to solve this problem. To the best of our knowledge, none of the 

previously proposed solutions used VNS algorithm to solve the MCRP. Unlike other 

evolutionary methods, VNS uses strategies for diversification and intensification that 
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have proved effective in a variety of optimization problems (Hansen, P. and Mladeno-

vic, N., 2001). In fact, our proposed solution was able to find very good results tested 

on large-sized problems with 200 patients and 12 mobile clinics within an acceptable 

running time. 

3 Problem Statement 

Disasters, such as pandemics, natural disasters, wars, etc., are intractable problems 

for humanity which lead to human loses that are not easy to recover. Routing of mobile 

clinics to cure victims in such environments is an important problem. The objective is 

to minimize the mobile clinic route time while taking into consideration other important 

parameters such as patients’ priorities, road conditions, and clinics’ capacities. In order 

to solve this problem we propose a mathematical model and a hyper-heuristic solution 

method that comprises several low-level heuristics guided by a reinforcement learning 

heuristic. 

4 Mobile Clinic Routing Problem 

In mobile clinic routing problem, mobile clinics are required to serve many patients 

living in a given spatial area. These patients are assigned priorities according to their 

medical status. Given a limited number of resources, a mobile clinic is required to serve 

the maximum possible number of patients, taking into consideration the patients prior-

ities. In this problem, it is assumed that there exists an overall time limiting the whole 

process, and that each mobile clinic can handle one operation at a time, where each 

operation is processed within an uninterrupted period. It is worth noting that failing to 

find a feasible assignment of mobile clinic to patients would be very expensive in terms 

of wasting exceptional healthcare resources processed in unexpected time frames that 

would further lead to threatening patients’ lives in some cases. The effect of such as-

signment is illustrated in the following example. This example shows two different per-

mutations to assign one mobile clinic to eight patients taking into consideration the 

operation time, traveling time and patient priorities. The first permutation is illustrated 

in Figure 1.  In this permutation, the mobile clinic is assigned to the corresponding eight 

patients consecutively 1, 2, 3, 4, 5, 6, 7, 8. 

 

 

 

 

 

 

 

 

 

 

 

P

1 

P P

3 

P

4 

P

5 P

6 

P

7 

P

8 

7 

9 

5 

5 

5 

4 

4 

3 

Fig. 1. Mobile clinic assignment – First permutation 
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Figure 1 clearly shows the path traversed by the mobile clinic to serve the eight patients. 

The numbers on the arrows represents the time taken to travel from one patient to an-

other. For example, the time needed to reach patient 1 is 7, and to reach patient 2 from 

patient 1 we need 9 units of time. The cost of such a permutation would be calculated 

as follows (this formula will be verified in the following section): ∑(ti + tij ) * PRi, = 

(5+7)*1+ (5+9)*2+ (7+6)*1+ (5+5)*1+ (8+5)*1+ (5+4)*1+ (5+4)*1+ (7+3)*1 = 104, 

where ti is the operation time at patient i, and tij is the time from patient i to patient j, 

and  PRi is the priority of patient i. 

 

 

 

 

 

 

 

 

 
 

 

 

Obviously, the combination of the time and priority between patients has a tremen-

dous effect on the total cost. Therefore, it is rational to assume that if we assigned the 

mobile clinic to patients with lower travelling time, we would get an optimized solution. 

To explain this concept further, consider Figure 2, which represents a different permu-

tation from that given in Figure 1 where the mobile clinic is assigned to patients in a 

different sequence. The cost of such a permutation would be calculated as follows (this 

formula will be verified again in the following section): ∑(ti + tij ) * PRi, = (8+1)*1+ 

(5+4)*1+ (5+2)*1+ (5+1)*1+ (5+1)*1+ (7+2)*2+ (5+2)*1+ (7+5)*1 = 72, where ti is 

the operation time at patient i, and tij is the time from patient i to patient j, and  PRi is 

the priority of patient i. This clearly proves that reaching patients in different sequences 

may affect the total cost.  

 

5 Mathematical Formulation 

Assignment problems can be represented by graphs (Wood, 1968). Let G (VG, EG) 

number of patients to be assigned to mobile clinics. Vertex weight PRi represents the 

priority that patient vi holds; further it also holds the time ti taken by each operation at 

P

1 

P P

3 

P

4 

P

5 P

6 

P

7 

P

8 

1 

2 

5 

2 

1 

4 

2 

1 

Fig. 2. Mobile clinic assignment – Second permutation 
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between patient vi and patient vj; the weight of edge e, tij, represents the travel time 

between the two patients vi and vj. 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 ∑ (𝒕𝒊 +  𝒕𝒋𝒊). 𝑷𝑹𝒊
𝑨
𝒊,𝒋≠𝒊            (1) 

Given a fixed number of patients and mobile clinics distributed in the whole country. 

Distances between all mobile clinics and patients, in addition to distances between pa-

tients themselves is given as well. Each patient must be served exactly by one mobile 

clinic. Each mobile clinic can serve exactly one patient at a given time. Each mobile 

clinic takes an operation time at each patient. 

6 Variable Neighborhood Search (VNS) 

Variable neighborhood search (VNS), proposed by Mladenovi´c and Hansen (1997), is 

another kind of metaheuristics to solve combinatorial optimization problems.  It ex-

plores neighborhoods found in one solution space, and moves from there to a new one 

randomly or intelligently if and only if an improvement was made. VNS includes two 

main phases: 1) the shaking phase and 2) the local search phase. The first one aims to 

diversify the search space in order to escape from local optima, while the objective of 

the second phase is to intensify the search around the current solution in order to im-

prove it. VNS phases avoid local optimum and helps to explore and exploit the search 

space in order to achieve a near optimal solution.  Each phase of the VNS applies more 

than one heuristic; further description on the heuristics selection method is found in the 

below subsections. 

In fact VNS is used by several researchers to solve scheduling problems. In their work, 

Remde et al.(2007) proposed a VNS in order to solve workforce scheduling problem 

where it proved to be a powerful tool compared with the solution quality resulted by a 

genetic algorithm. Further, Hsiao (2012) propose a VSN based hyperheuristic method 

to solve more than one problem such as job shop scheduling, and bin packing problems.  

 

In this work, the proposed VNS constructs a feasible solution as an initial step before 

moving to the shaking and the local search phases. In the shaking phase, the tabu search 

method is used. It selects a low level heuristic from the set of perturbation heuristic. In 

the local search phase, a random cycle of the existing predefined improvement heuris-

tics is formed. It applies improvement heuristic while it is still improving the solution 

and switches to the next one in the cycle in case it stops improving the solution. This 

process keeps repeating until n consecutive non-improving solutions are reached. The 

proposed low level-heuristic are classified as constructive, improvement, and perturba-

tion. 

In our study, the constructive algorithm is applied only once at the beginning of the 

assignment problem in order to build the initial solution. In fact constructive heuristics 

build a solution from scratch based on several predefined rules. Thus, taking into con-

sideration the overall (task length) time allocated to each mobile clinic, the proposed 
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constructive method of this study, CS1, schedules for each mobile clinic the corre-

sponding adequate patients. 

On the other hand, Improvement heuristics start from a complete solution and apply 

some moves in order to improve the objective function value. In our study, diff erent 

improvement heuristics are proposed: 

1. Better-sequence-on-the-same-mobile-clinic: for a given mobile clinic, we reorder 

(one task per time) the sequence of allocated patients to be served by this mobile clinic 

and among the improving solution found, we move to the best found feasible solution 

in a greedy manner. The pseudocode for local search (LS1) is described in Algorithm 

1 in Figure 4. We note that Q(Hs) represents patients assigned to mobile clinic s. 

2. Inset/drop-between-two-diff erent-mobile-clinic: aiming at making a balanced utili-

zation and fair distribution of tasks among mobile clinics, for two randomly chosen 

mobile clinics ri,rj(i ≠ j), we consider the following moves: 1) move one tasks from 

mobile clinic ri to mobile clinic rj (i≠j) such that the diff erence between the objective 

functions of mobile clinic ri and mobile clinic rj, ∆ = (OF(ri)−OF(rj)), is minimized. 2) 

removing a patient from the list of patients being served by a given mobile clinic and 

insert it in a proper place within the sequence of patients being served by the mobile 

clinic with the least objective function. 

 

Algorithm 1 LS1  

procedure LS1(S) .   INPUT: Clinics Queues  
2:  for s = 1,...,m do  ∀s = 1,...,m, (m = |H|)  

Queue temp;  
4: for i = 1,...,n do  ∀i = 1,...,n, (n = |Q(Hs)|  

MinimumOF;  
6:  CurrentPatient; 

 if then MinimumOF > OF(Pi,Hs)  
8:  MinimumOF = ← OF(Pi,Hs); 
 CurrentPatient ← Pi;  
10:  end if  
 tabu ← Pi;  
12:  Hs ← Pi;  
 end for  
14:  end for  
 return H;  
16: end procedure 

Fig. 4. Local Search algorithm 

Perturbation heuristics start with a complete solution and do some changes in order to 

inject some diversification. It consist of exploring the search space step in order to es-

cape from a local optima. In this study, we implement two perturbation heuristics as 

follows: 

1. Re-Construct: consists of destroy a part of the current solution and rebuild it 

using the proposed constructive heuristic. 

2. SW1: consists of swapping two patients between two clinics if they can offer 

these patients their needed medical services. 
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3. Crossover: consists of swapping of ’genetic material’ is made with the mobile 

clinic (part of the chromosome), while in the mutation operator is made with 

two mobile clinics, one in each chromosome. 

4. Remove/Insert: removes a patient from a clinic queue and re-insert it to an-

other one. 

The pseudocode for SW1 is described in Algorithm 2 in Figure 4. 

 

Algorithm 2 SW1  

1:  procedure SW1(S) .   INPUT: Clinics Queues  
2:  Random R1 ∈ 1,...,m  (m = |H|)  
3:  Random R2 ∈ 1,...,m−R1  (m = |H|)  
4:  RandomPosition1 P1 ∈ 1,...,l  (l = |Q(HR1)|)  
5:  RandomPosition1 P2 ∈ 1,...,k  (k = |Q(HR2)|)  
6:  Swap(HR1(P1), HR2(P2))  
7:  return S;  
8:  end procedure 

Fig. 4. Algorithm for swapping patients in perturbation heuristic 

7 Experimental Results 

In this section, the results of VNS algorithm are presented. This algorithm is tested on 

a set of 33 test cases; each of these test cases has a different number of patients and 

mobile clinics with different timing to reach neighbor patients. Since real data are not 

available to evaluate the performance of the proposed algorithms, we generated syn-

thetic data. The test cases are illustrated in TABLE I. This table shows several param-

eters: the test case number, the number of patients, the number of used mobile clinics. 

In these 33 test cases we wanted to test how the performance is affected for different 

combinations of patients assigned to mobile clinics. Thus, in some test cases, (eg.TC1-

TC3), we varied the number of patients and kept the number of mobile clinics fixed; in 

other test cases, the number of patients is fixed and the number mobile clinics is varied. 

Further, different test cases scaled up in size to test our algorithm on small, medium, 

and large sized-problems.  

Table 1. Initial, Best solution and execution time results 

TestCase 

# 

Number 

of Pa-

tients 

Number 

of MH 

 TestCase # Number 

of Pa-

tients 

Number 

of MH 

TC1 8 1  TC18 50 10 

TC2 10 3  TC19 75 7 

TC3 15 3  TC20 75 9 

TC4 15 5  TC21 75 10 

TC5 20 5  TC22 100 7 

TC6 25 3  TC23 100 9 

TC7 25 5  TC24 100 10 
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TC8 25 7  TC25 100 12 

TC9 30 3  TC26 150 7 

TC10 30 5  TC27 150 9 

TC11 30 7  TC28 150 10 

TC12 35 3  TC29 150 12 

TC13 35 5  TC30 200 7 

TC14 35 7  TC31 200 9 

TC15 50 5  TC32 200 10 

TC16 50 7  TC33 200 12 

TC17 50 9  

8 Results and Discussion 

Table 2 summarizes the best results of the VNS algorithms applied on the 33 test cases 

TC1-TC33. The VNS algorithm is implemented using Java language. Furthermore, the 

tests were carried out on a Pentium(R), dual-core CPU T4300- 2.10 GHz, and 2 GB 

RAM with Windows Vista SP1. 

Table 2. Initial, Best solution and execution time results 

Instance 

# 

Number 

of Pa-

tients 

Num-

ber of 

MH 

Initial Objec-

tive Function 

(OF) 

Best Objec-

tive Func-

tion 

Execution 

Time 

TC1 8 1 104 72 2.001 

TC2 10 3 472 440 4.001 

TC3 15 3 868 799 4.024 

TC4 15 5 547 513 3.119 

TC5 20 5 942 705 6.014 

TC6 25 3 2375 2198 5.030 

TC7 25 5 1475 1409 3.441 

TC8 25 7 1093 1083 5.887 

TC9 30 3 3413 3204 7.303 

TC10 30 5 2089 1955 5.414 

TC11 30 7 1586 1475 7.011 

TC12 35 3 4340 4049 8.007 

TC13 35 5 2665 2498 6.800 

TC14 35 7 1980 1780 7.100 

TC15 50 5 5772 5299 6.004 

TC16 50 7 4116 3822 5.009 

TC17 50 9 3312 3112 6.474 

TC18 50 10 3002 2825 6.506 

TC19 75 7 9556 8680 6.714 

TC20 75 9 7502 6866 7.303 

TC21 75 10 6752 6233 6.410 

TC22 100 7 18557 17541 5.004 

TC23 100 9 17373 16185 6.074 
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TC24 100 10 14245 13148 6.095 

TC25 100 12 12216 11170 6.147 

TC26 150 7 49165 45330 5.542 

TC27 150 9 49056 46121 4.685 

TC28 150 10 38394 35708 7.420 

TC29 150 12 33388 30773 8.146 

TC30 200 7 83511 76447 7.305 

TC31 200 9 76780 68330 7.415 

TC32 200 10 64016 57008 6.001 

TC33 200 12 57662 52003 6.099 

In Table 2, for each instance several parameters are shown such as the total time the 

initial objective function value, the best value of the objective function found by the 

VNS, and the execution time taken to run the proposed algorithm. The results in Table 

2 are further illustrated in figure 7. Figure 7 shows the percentage of objective functions 

improvement using the VNS algorithm. It is worth noting the VNS algorithm was able 

to improve the solution in at least 5% in less than 10 seconds. As for the significant 

improvement in TC1 and TC5 and the minor improvement in TC8, it is mainly affected 

by the traversal time from one patient to another and the priority assigned to every 

patient. This is clarified in the example shown in Tables 3-a and Table 3-b.  

 

Fig. 7. Percentage of objective function improvemnet by VNS algorithm 

 

Table 3 shows details related only to TC1. The parameters shown in the Table are the 

patient number, operation time taken at every patient location ti, the traversal time from 

patient i to patient j tij, the priority assigned to every patient PRi and the objective func-

tion OF. 
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Table 3. Priorities and traversal time between patients in TC1. 

Pa-
tient# ti tij PRi OF 

 1 5 7 1 12 

2 5 9 2 28 

3 7 6 1 13 

4 5 5 1 10 

5 8 5 1 13 

6 5 4 1 9 

7 5 4 1 9 

8 7 3 1 10 

Objective Function 104 

(a)                   (b) 

In Table 3-a, the mobile clinic path to serve all patients was sequential from 1 till 8 with 

almost all patients had low priorities with initial objective function equals to 104. The 

value of the objective function is improved to 72 as shown in Table 3-b by simply 

changing the order of reaching patients. It should be clear from this example that as 

patients don’t have competing priorities and there exist a chance to find neighbor pa-

tients living close to each other, there is a chance of a significant improvement in the 

objective function.  

9 Conclusion 

In this paper, we presented our vision to solve the mobile clinic routing problem. 

The problem entails the assignment of a maximum number of patients with priorities 

to mobile clinics in such a way to reduce the total mobile clinics traversal time. We 

presented a variable neighborhood search (VNS) algorithm for the MCRP. VNS is a 

metaheuristic that we were the first to utilize to solve the assignment problem in mobile 

clinic routing problem. In fact the methods of the VNS have been enhanced to solve 

this problem. One contribution of this work is proposing and testing a unique algorithm 

(VNS) that has not been used before for solving the MCRP problem. The results indi-

cate that our VNS algorithm was able to improve the solution in at least 5% in less than 

10 seconds. This is due to the VNS nature that focus the Diversification and then inten-

sification methods. A unique constructive method has been used to boost the quality of 

the initial population. Clearly, this process affected the final results as it aided in yield-

ing the best known solution at earlier stages of the iterations giving an edge when com-

pared to other related work and research that did not focus on generating such enhanced 

solutions. Additionally, the improvement and heuristic improvement methods have 

been also reinforced to give better results. 

Pa-
tient# ti tij PRi OF 

5 8 1 1 9 

6 5 4 1 9 

4 5 1 1 6 

7 5 1 1 6 

1 5 1 1 6 

8 7 2 2 18 

2 5 1 1 6 

3 7 5 1 12 

Best Objective Function 72 
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Abstract. The three-dimensional Open Dimension Packing problem (3D-ODPP) is a real-
world driven optimization problem that aims at the minimization of package volume in
right-size packaging systems. The problem can be found in many industrial scenarios, such
as e-commerce secondary packaging. The objective of the 3D-ODPP is to find out the length,
width, and height of the cardboard box that can be used to pack a given set of or products
so that the volume of the box is minimal. Many literature researches have focused on exact
methods to deal with the 3D-ODPP. Despite the fact that the exact methods are capable
of finding the global solution, their applications are very limited in terms of problem size
and computational time because the 3D-ODPP is NP-hard in the strong sense. In addition,
constructive and meta-heuristic methods for solving the 3D-ODPP have not been discussed
frequently in the literature and remain a gap in the state-of-the-art.
This paper proposes a genetic algorithm that deals with the 3D-ODPP. The genetic process
is to find out the packing sequence and the orientation of products. To construct the solution,
a new greedy-search product placement algorithm is developed. This placement algorithm is
used to determine the position where each product is placed and to calculate the volume of
the package. Literature instances are tested and the obtained solutions are compared with
that given by existing exact methods. The experiments show that the proposed algorithm has
the capacity of solving the 3D-ODPP in a reasonable time and gives competitive solutions
compared with the benchmark methods, especially for problems with many products.

1 Introduction

The three-dimensional Open Dimension Packing problem (3D-ODPP), one of the Cutting and
Packing problems according to the typology of [5], is a real-world driven optimization problem
that aims at the minimization of package volume in right-size packaging systems. The problem can
be found in many industrial scenarios, such as e-commerce secondary packaging. The objective of
the 3D-ODPP is to find out the length, width, and height of the cardboard box that can be used
to pack a given set of small items (or products) so that the volume of the box is minimal.
Many literature researches, such as [2–4], have focused on exact methods to deal with the 3D-
ODPP. Despite the fact that the exact methods like that in [2–4] are capable of finding the global
solution, their applications are very limited in terms of problem size and computational time be-
cause the 3D-ODPP is NP-hard in the strong sense. In addition, constructive and meta-heuristic
methods for solving the 3D-ODPP have not been discussed frequently in the literature. Therefore,
solving large-sized 3D-ODPP is still a gap in the state-of-the-art.
This paper proposes a genetic algorithm called “GA-ODP” that deals with the 3D-ODPP. The
proposed method is inspired by the random-key biased genetic algorithm for solving 2D and 3D
Bin Packing problem presented in [1]. The algorithm of [1] aims at minimizing the number of bins
(container objects with fixed measurements) needed to pack a set of items. In order to construct a
solution, three main decisions to be made are: the packing sequence indicating the order in which
the items are packed; the orientation of each item; and the positions where the items are placed. [1]
use a genetic algorithm to determine the orientation and the packing sequence of the items, then
a constructive algorithm is applied to determine items’ positions. The GA-ODP in this paper uses
the same chromosome representation as that in [1]. However, the algorithm of [1] only deals with
Bin Packing problems where bins’ size is fixed, and the solutions are constructed based on the
empty spaces rested inside the bins while for the 3D-ODPP, all box measurements are variable,
therefore, the encoding of item orientation, the placement strategy, and the fitness function of [1]
cannot be used. This study proposes a new placement algorithm to construct the packing solutions.
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The new placement algorithm is based on a greedy search algorithm that finds the local optimum
for each item placement in a packing sequence. This placement algorithm allows constructing a
solution for any packing order and item orientation given by the genetic algorithm. No chromosome
repairing is needed in the evolutionary process.
Literature test instances with different problem sizes are tested and the obtained results are com-
pared with that given by existing method [4]. The experiments show that the proposed algorithm
has the capacity of solving the 3D-ODPP and gives competitive solutions compared with state-of-
the-art exact methods while the computational time is much shorter and therefore, the proposed
method has the capacity of dealing with larger problems.

2 Problem formulation

The 3D-ODPP addressed in this study is a problem arises in an e-commerce secondary packaging
system where a set of cuboid-shaped items is to be packed into a single cardboard box before being
shipped to client. Given n items of cuboid-shaped with their fixed length (p), width (q), and height
(r). Every item can be rotated in six possible orthogonal orientations inside the box. Knowing that
the capacity of the system is much higher than the items volume, which means any set of items can
be packed by the packaging system. As all the measurements of the box are variable, the purpose
is to determine the length (Lb), width (Wb), and height (Hb) of the minimal volume packing box.
The mathematical model for solving the 3D-ODPP is presented in [2]:
Parameters:

– n: number of items to be packed.
– p, q, r: the vectors indicating items’ length, width and height, respectively.

– M : big number used in the model. M = (
∑n
i=1 pi)

3

Variables:

– xi, yi, zi (i ∈ {1...n}): Continuous variables indicating the coordinate of products.
– Lb,Wb, Hb: Continuous variables for length, width, height of the box, respectively.
– oi,j (i ∈ {1...n}; j ∈ {1...6}): Binary variables indicating weather the product i has orientation
j. The orientations are defined as shown in Table 1.

– ai,j , bi,j , ci,j (i, j ∈ {1...n}): Binary variables indicating the “left-right”, “front-behind”, and
“above-under” relative positions of products i and j. For example, if product i is on the left
side of product j then a2,3 = 1, otherwise, a2,3 = 0. If there is at least one relative position
between two product, then they are called “non-intersected”.

Objective function:
Minimize Lb ×Wb ×Hb (1)

Subject to:
6∑

j=1

oi,j = 1 ∀i ∈ {1...n} (2)

ai,j + aj,i + bi,j + bj,i + ci,j + cj,i ≥ 1 ∀i, j ∈ {1...n}; i 6= j (3)

xi + pi(oi,1 + oi,2) + qi(oi,3 + oi,4) + ri(oi,5 + oi,6) ≤ xj +M(1− ai,j) ∀i, j ∈ {1...n}; i 6= j (4)

yi + pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4) ≤ yj +M(1− bi,j) ∀i, j ∈ {1...n}; i 6= j (5)

zi + pi(oi,4 + oi,6) + qi(oi,2 + oi,5) + ri(oi,1 + oi,3) ≤ zj +M(1− ci,j) ∀i, j ∈ {1...n}; i 6= j (6)

Lb ≥ xi + pi(oi,1 + oi,2) + qi(oi,3 + oi,4) + ri(oi,5 + oi,6) ∀i ∈ {1...n} (7)

Wb ≥ yi + pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4) ∀i ∈ {1...n} (8)

Hb ≥ zi + pi(oi,4 + oi,6) + qi(oi,2 + oi,5) + ri(oi,1 + oi,3) ∀i ∈ {1...n} (9)

max
i∈{1...n}

ri ≤ φ ≤
n∑

i=1

pi ∀φ ∈ {Lb,Wb, Hb} (10)
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n∑

i=1

(pi × qi × ri) ≤ Lb ×Wb ×Hb ≤
n∑

i=1

pi ×
(

max
i∈{1...n}

qi

)
×
(

max
i∈{1...n}

ri

)
(11)

The constraint (2) assures that an item can only have at most one orientation. The constraints
(3) to (6) define the relative positions of items. The constraints (7) to (9) make sure all products
are entirely placed inside the box. Finally, the constraints (10) to (11) show the upper and lower
bounds of box length, width, height, and volume.

[2–4] use the logarithm transformation and piecewise linearization technique to solve the model
with a liner solver, e.g. CPLEX.

3 Genetic algorithm

As mentioned in section 1, the exact methods proposed by [2–4] are very limited by the problem
size and require great computational power. Therefore, an heuristic approach would be necessary
in many practical cases. This section describes how the genetic algorithm GA-ODP is applied to
solve the 3D-ODPP.

3.1 Solution encoding and decoding

In this genetic algorithm, an encoded solution (also known as a “chromosome”) is an array made
of 2n genes that contain the genetic information about items’ packing sequence and orientation.
The first n genes indicate the order in which the items are loaded into the box. Every genes of this
part is a real number whose value is between 0 and 1. The second part of the chromosome includes
n genes whose value is an entire number between 1 and 6 indicating the orientation of the items.
The actual dimensions (l, w, h) of items among x, y, and z-axis corresponding to item orientations
are as shown in Table 1.
Before constructing any solution, the chromosome must be decoded into the actual packing se-
quence and item orientation so that the constructing algorithm can turn them into item loading
position and the box dimensions can be calculated. The decoded genes are represented as two
following vectors:

– The Vector of Loading Sequence (VLS): a vector of size (1×n) that is made of n elements
whose value is an entire number between 1 and n, without repeating, indicating the order in
which the items are loaded into the box. The VLS is obtained by sorting the first n genes in
the ascending order. In other words, the corresponding item of the gene with smaller value
among the first n genes will be packed earlier.

– The Vector of Item Orientation (VIO): a vector of size (1×n) whose elements are entire
numbers within {1, 2, . . . , 6}. It indicates the exact orientation of n corresponding items. As
mentioned in section 2, each item can have one out of the six possible orientations. This vector
can be obtained by copying the second part of the encoded chromosome:
V IOi = Cn+i ∀i = 1...n.

These vectors will be used as input arguments of the placement algorithm presented in section 3.2.

3.2 Solution construction

This section describes how to construct a solution from the decoded chromosomes and calculate the
fitness of each solution. To construct a solution including items’ orientation and loading position
as well as the dimensions of the bounding box, the decoded chromosome of the solution will be
used by a placement algorithm.

Placement algorithm: The placement algorithm is based on the greedy search algorithm. It
places the items one after the other by the specific order defined by the VLS, until there is no item
left. All the possible position, including x, y, and z-coordinates, where the items can be placed
are precalculated and stored in three lists: Px, Py, and Pz, respectively. At the beginning, every
list has only one element, which equals to 0. This means the first item will always be placed at
the origin of the coordinate system. Every time a new item is placed, at most one coordinate will
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be added into the each list. The new coordinates allow the following items can be placed next to
the item that has just been placed. The placement algorithm will check all the combinations of x,
y, and z-coordinates and find out the position for each item so that the increase of box volume
caused by it’s placement is minimal. Once all items are loaded, the dimensions of the bounding box
will be calculated. This placement algorithm assures the feasibility of all solutions. The placement
algorithm is shown in Algorithm 1.

Fitness function: The quality of a solution is considered as the volume of the bounding box
given by the placement algorithm. As the box’s length, width, and height are Lb, Wb, and Hb, the
fitness function is:

f = Lb ×Wb ×Hb (12)

3.3 Evolutionary process

A population is a set of individuals (chromosomes) created by a generator or by the evolutionary
process. At the beginning, a set of np chromosomes are randomly generated to made up the initial
population. The GA-ODP evolves the initial population through ng generations to improve the
solution and find out the best packing sequence as well as items’ orientation for the given items.
For each generation, the fitness value of every individual is computed, then the individuals are
classified into two groups: the first group contains ne elite individuals with highest fitness. The
second group contains nr “regular” individuals, which are the rest of the population. It is clear
that ne + nr = np. To create the population of the next generation, new individuals are generated
by the following operators:

– Copying: the chromosome of all the elite individuals are copied directly to the offspring’s
chromosome of the next generation without modification in the genes.

– Crossover: two individuals are selected from the population of the current generation. Their
genes are mixed up by a specific operator to create the chromosome of a new offspring indi-
vidual. Then the new individual is added to the population of the next generation.

– Mutation: Some individuals from the current population are selected to copy to the next
generation but their genes will contain some random modifications created by the mutation
operator.

Let nc be the number of individuals created by the crossover operator, and nm be the number
of mutants, then, nr = nc + nm. In other words, for any new generation, the population always
has ne individuals copied from the previous generation and nr new individuals generated by the
crossover and mutation operator. During both operators, there is a small possibility that some
mutations appear on some genes and make the offspring’s chromosome a little bit different before
it is added to the population. Figure 3 illustrates the operations of generating a new population.
The crossover and mutation operators are described as follows:

Copying: From the current population, the chromosome of all individuals with highest fitness will
be copied to the offspring’s chromosome of the population of the next generation. In other words,
all elites of the current population will be copied to the next generation without modification.

Crossover: The GA-ODP uses a random-key crossover operator to generate new individuals.
For each pair of parent individuals, a crossover vector of 2n random real numbers within [0, 1] is
generated. A given probability of crossover Pc is also used for this operator. For each number in
the crossover vector, if the number is greater than Pc then the gene at the corresponding position
of the first parent is copied to the offspring’s chromosome. Otherwise, the gene from the second
parent is copied to the offspring’s chromosome. Figure 2 shows an example of crossover operator.

As mentioned in section 3.2, the placement algorithm guarantees that any chromosome can be
decoded into a solution with no item intersection, therefore, no reparation process is needed for
new individuals.
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Mutation: The mutation operator is necessary to increase the diversity of the genetic pool and
avoid premature convergence of the population. Let Pm be the probability of mutation, a mutation
vector is created in the same way at the crossover vector above. If there is at least one element
of the mutation vector is less than Pm, then there will be a mutation occurred on the gene at
the corresponding position of the chromosome. Then the gene will be replaced by a new random
gene whose value is between [0, 1] if it is a packing sequence gene, and in {1, . . . , 6} if it is an item
orientation gene.

Algorithm 1: Placement algorithm

Input: p, q, r,VLS,VIO
Output: Lb,Wb, Hb, x, y, z
Result: Items placement position and box dimensions
n = length of (p)
Calculate (l, w, h) corresponding to items’ orientation VIO
Sort the items by order of VLS
Px = Py = Pz = {0}
Initialize the set of placed items: B = {}
for i ∈ {1...n} do

Vmin = M
for x∗ ∈ Px do

for y∗ ∈ Py do
for z∗ ∈ Pz do

Calculate V ∗ when item i is placed at (x∗, y∗, z∗)
if (V ∗ ≤ Vmin) & (No intersection between item i and any item in B) then

Vmin = V ∗

xi = x∗

yi = y∗

zi = z∗

Add item i to B
if (xi + li) /∈ Px then

Add (xi + li) to Px

if (yi + wi) /∈ Py then
Add (yi + wi) to Py

if (zi + hi) /∈ Pz then
Add (zi + hi) to Pz

Calculate Lb, Wb, and Hb

4 Computational experiments

To see the efficiency of the proposed algorithm, test instances derived from [4] are tested. The
benchmark method is the mathematical model proposed in [4] resolved with CPLEX. The algo-
rithms are programmed in C++ and the experiments are executed on an Intel Core i7-6820HQ
CPU @2.70 GHz, Windows 7 PC with 32 GB of RAM.

For the GA-ODP, different combinations of parameters are tested to find out the optimal
configuration for the genetic algorithm and reduce the computational time. ng is selected from
{50, 100, 200, 300}, ne ∈ {0.1np, 0.2np, 0.3np}, nm ∈ {0.1np, 0.2np, 0.3np}. As shown in [1], the
population size np can significantly affect the calculation, and good results are obtained by indexing
the population size into the problem size (or number of items). Therefore, in these experiments,
the population size is also a function of problem size, the following values are tested to choose
the best parameter: np ∈ {20n, 30n, 50n, 100n}. By testing all the combinations created by the
parameters, the following configuration is chosen to be constant parameters for solving the test
instances: ng = 200, np = 20n, ne = 0.3np, nm = 0.1np, Pc = 0.5, and Pm = 0.1.

Table 2 shows the test results and the computational time for ten test instances derived from [4].
The row with header “Solver” shows the solutions given by the benchmark method, while the row
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with header “GA-ODP” shows the experimental results given by the proposed method. It can be
seen that the solutions given by the GA-ODP is competitive with that given by the exact method.
There are six out of ten test instances where the difference of box volume of both method are the
same. For the other instances, the difference is not enormous, which is from about 1.2% to 3.8%.
In terms of computational time, for the small problem (1, 2, 7, and 8) where number of items is
not greater than 5, the solver finds the solution faster than the GA-ODP (the Gapt is negative).
However, when there are more items, the solver needs much more time to find out the solution,
and the computational time increases quickly among the number of items. In the other hand, the
computational time of the GA-ODP does not increase in the same function as that of the solver.
In that way, the GA-ODP can solve the problems with more items in a reasonable time.

The improvement of the GA-ODP over the benchmark method is calculated as follows:

GAPV = (V2 − V1)/V1 (13)

GAPt = (t1 − t2)/t2 (14)

Where V1 and t1 are box volume and computational time of the benchmark method [4], while V2,
t2 are these values given by the proposed method.

The test results in Table 2 show that the proposed algorithm has the capacity of giving com-
petitive solutions compared with exact method in the literature. In the other hand, the proposed
algorithm can deal with larger problem while its computational time is not exploding among with
the problem size.

The computational experiments also show that for most of the case, minimizing the adjusted
box volume can lead to the minimal actual box volume. In terms of computational times, the
proposed algorithm is not exploding while number of items increases.

5 Conclusion

This paper has proposed a new genetic algorithm to deal with the 3D-ODPP. The proposed al-
gorithm has shown the capability of solving the 3D-ODPP in a reasonable computational time
while the given solutions are competitive with those given by exact methods in the literature. The
proposed method has significant advantage in terms of computational time when solving problems
with more items to be packed. However, this work has not consider many practical constraints that
often arise in real-world scenarios, such as item supporting, package balancing, weight distribution,
etc. Therefore, solving the 3D-ODPP by a genetic algorithm with the consideration of practical
constraints will be an interesting subject for future researches.

Fig. 1: Genetic algorithm
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Fig. 2: Crossover operator

Fig. 3: Evolutionary process

Table 1: Item orientations.

Orientation 1 2 3 4 5 6

Among x-axis (l) p p q q r r
Among y-axis (w) q r p r p q
Among z-axis (h) r q r p q p

347



8 Truong et al.

Table 2: Computational results

Problem 1 2 3 4 5 6 7 8 9 10

# items 4 5 6 7 8 9 4 5 6 7

Solver

L 28 30 35 43 9 10 127 102 92 101
W 26 28 28 28 8 8 57 95 81 89
H 6 6 6 6 5 6 30 30 50 51
V 4368 5040 5880 7224 360 480 217170 290700 372600 458439
t(s) 0.5 1.9 4.2 32.1 1.6 3.4 0.3 2.2 22.1 215.2

GA-
ODP

L 28 30 31 25 9 10 127 102 90 106
W 26 28 16 24 8 8 57 95 85 88
H 6 6 12 12 5 6 30 30 50 50
V 4368 5040 5952 7200 360 480 217170 290700 382500 466400
t(s) 1.84 2.8 2.88 4.08 0.8 1.6 1.68 2.56 3.12 3.76

GapV 0 0 0.012 0.023 0 0 0 0 0.027 0.038
Gapt -0.73 -0.32 0.46 6.87 1.0 1.13 -0.82 -0.14 6.08 56.23
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Abstract. Neighborhood enumeration is a fundamental concept in the
design of local search-based metaheuristics. It is often the only princi-
ple of intensification present in a metaheuristic and serves as the basis
for various metaheuristics. Given its importance, it is surprising that
academic reporting on enumeration strategies lacks the necessary infor-
mation to enable reproducible algorithms. One aspect of neighborhood
enumeration in particular has been under the radar of researchers: the
order in which neighbors are enumerated. In this paper, we introduce a
versatile formalism for neighborhoods which makes explicit enumeration
order and we analyse the impact of enumeration order on the outcome
of search procedures with a small set of benchmark problems.

Keywords: Enumeration Order · Local Search · Neighborhoods · Meta-
heuristics

1 Introduction

Metaheuristics have gained a somewhat ambiguous reputation over the years. On
the one hand they are lauded for their useful characteristics in practical applica-
tions: metaheuristics are problem-independent, general optimization algorithms.
They are not only capable of being reused over a wide variety of problems, but
many are also anytime algorithms which maintain a valid solution throughout
the entire search process. Furthermore, they can be implemented in a highly con-
figurable fashion, enabling automated algorithm design and parameter tuning.
This results in algorithm templates that can be instantiated and automatically
tailored to solve specific problems or instances. On the other hand, metaheuris-
tics research has not yet reached the scientific rigor found in other fields, with
many researchers tending to focus on algorithmic efficiency – or worse, novelty
– rather than algorithmic understanding. This has led to a large variety of al-
gorithms which differ only slightly from one another or are identical except for
the terminology used [6].

While big steps have been made – especially during the last two decades –
to transform the field into a more academic one with rigorous scientific disci-
pline built on formalized concepts, many publications continue to operate in the
sphere of problem-solving rather than algorithmic understanding. This resulted
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in many metaheuristics, but few insights. Nevertheless, efforts are underway to
mature the discipline. Notable examples of this are (i) the endorsement by the
Journal of Heuristics of the view that nature should no longer serve as an explicit
inspiration for “novel” metaheuristics, (ii) the recognition of the need for white-
box algorithm implementations, preferably described in a purely functional style
[8], (iii) the call for rigorous evaluation and testing practices, and (iv) the active
promotion of a view of what metaheuristics research ought to be [7].

In this paper we zoom in on one specific component of metaheuristics: the
concept of local search neighborhoods. We argue that a gap exists between com-
mon theoretical neighborhood definitions and how they are implemented in prac-
tice. In other words: we argue that neighborhoods are not implemented according
to the white-box principle, preventing algorithm reproducibility and standard-
ized evaluation.

si s
N

N(s)
select

s′

s′ = s

no

yes sf

Fig. 1: Iterative improvement consists of repeatedly applying an improving op-
eration to the solution.

Many optimization techniques can be considered instantiations of the itera-
tive improvement-scheme (II-scheme), the distinction between which results from
the interaction between their instantiating components. The II-scheme itself is
straightforward: starting from an incumbent solution the search process consists
of a series of iterations, where in each iteration a selection function selects an
alternative solution of better quality than the incumbent solution. If a better
solution is found, it replaces the incumbent solution. This process is repeated
until no improving solution can be found.

In local search metaheuristics, a set of alternative solutions – called the neigh-
borhood of the incumbent solution – is constructed by making a set of small
modifications to the incumbent solution. Most, if not all, metaheuristics can
be mapped to the II-scheme shown in Fig. 1. The difference between various
metaheuristics yet again results from the differing interactions between their
constituent components. Which components to consider and how to combine
them is the responsibility of the (human) algorithm designer. Design choices
which require some thought include how to generate a neighborhood of the in-
cumbent solution, which solution to select from the neighborhood and how to
compare solutions. Good neighborhood design is important when it comes to
the efficiency of a local search (meta)heuristic. Choosing an appropriate selec-
tion criterion is equally important, as it strongly determines the behavior of the
search and can have a dramatic impact on runtime.
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Given the importance of these two design questions, it is fair to assume
that reporting on metaheuristic algorithms should include complete information
concerning which choices were made and, ideally, why. However, at present the
opposite situation is the case: many publications concerning metaheuristics do
not report neighborhood specifications to the level of detail required to facil-
itate reproducibility. Most obvious is the lack of information concerning how
operators in a neighborhood are enumerated. This information is crucial if an
order-dependent selection criterion is used and, indeed, virtually all deterministic
selection criteria are order-dependent. A second, more subtle issue is the lack of
information concerning which operators are a priori included in a neighborhood.

Our contributions in this paper are threefold. First, we introduce a formal-
ism for the concept of a local search neighborhood, which makes explicit the
enumeration order. Second, we analyze the effect of enumeration order on the
outcome of a search procedure through a series of computational experiments.
Third and finally, we provide several examples of the expressiveness of the pro-
posed formalism.

The remainder of this paper is structured as follows. Beginning with the
concept of iterative improvement, Section 2 introduces neighborhoods and selec-
tion methods and provides a brief overview of how neighborhood enumeration
is commonly reported in metaheuristics research. In Section 3 we introduce a
formalism for neighborhood enumeration. Section 4 then analyzes the effect of
enumeration order on the outcome of a search procedure on a set of benchmark
instances. Several examples demonstrating the flexibility of the formalism are
given in Section 5. Section 6 then concludes the paper.

2 Iterative improvement, neighborhoods & selection

In this section we review the relationship between iterative improvement, neigh-
borhoods and selection criteria. In doing so we identify a gap between the com-
monly used definitions for the aforementioned concepts and the components
required to implement the II-scheme, resulting in an incomplete algorithm spec-
ification. The section ends with a brief analysis of how neighborhood enumeration
is currently reported on in the academic literature.

To approach local search metaheuristics as instantiations of iterative improve-
ment, strict definitions are required for the instantiating components. Consider
the II-scheme shown in Fig. 1. It is clear that an instantiation of the scheme
is determined by three factors, namely: a neighborhood generation function N ,
a neighbor selection function select and a condition to test whether or not the
search has ended. Since we are only interested in improvement methods, the
ending condition can be excluded from the analysis and thus the behavior of a
deterministic II-procedure is dependent on only two functions: the neighborhood
function N : S → P(S) and the selection function select : P(S)→ S. As is clear
from its type, the neighborhood-function must map the incumbent solution to a
set of alternative solutions, resulting in the common introductory definition of a
neighborhood [2,9]:
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Definition 1. A neighborhood function is a mapping N : S → P(S) which
assigns to each solution s ∈ S a set of solutions N(s) ⊆ S. The members of
N(s) are called neighbors of s.

In the context of local search however, a different definition is sometimes used
to more adequately capture the notion of operators and locality. A neighborhood
is defined in terms of a relation – the local search operator – on S:

Definition 2. The R-neighborhood NR(s) of solution s ∈ S is the neighborhood
defined by the relation R on S, NR(s) = {s′ ∈ S : sRs′}.

The second component of the II-scheme is a selection function, which returns
a single neighbor from the neighborhood it receives as input. We refrain from
giving a general definition of selection criteria, but note that any selection cri-
terion must be a function of type select : P(S) → S and we shall examine how
well two of the most popular selection criteria adhere to this definition.

The first criterion we will consider is the argmin selection criterion (Eq. 1),
which selects the best solution from the neighborhood. Next is the firstmin
selection criterion (Eq. 2), which selects the first improving solution from the
neighborhood. More formal definitions of both criteria are as follows:

argmin
s′∈N(s)

c(s′) := {s′ | ∀s′′ ∈ N(s) : c(s′) ≤ c(s′′)} (1)

firstmin
si∈N(s)

c(si) := {si ∈ N↓(s) | ∀sj ∈ N↓(s) : i ≤ j} (2)

where N↓(s) := {s′ ∈ N(s) | c(s′) ≤ c(s)}

Note that this definition of argmin denotes a set of solutions instead of a
single solution: if multiple solutions have the best objective value, all of these
solutions will be returned. As such the definition specifies a function of type
P(S)→ P(S) and a modification, a tie-breaker, is needed to acquire the required
type. Common tie-breakers are to select the first, the last or a random solution
from the set of most improving solutions. Only the first two of these tie-breakers
are deterministic and both of these are order-dependent.

For firstmin, the impact of order is obvious. To be able to return the first
improving neighbor an order must be imposed on neighborhood N . In the worst
case all solutions in the neighborhood are improving and thus each possible
ordering of N will return a different solution. It follows that the neighborhood
enumeration order must be known to achieve a full specification of a single
iteration in the II-scheme. While the effect of enumeration order on the outcome
of a single iteration is generally fairly limited, this is less so when considering the
entire II-scheme. Since every iteration starts from the outcome of the previous
iteration, the effect of an enumeration order compounds throughout the whole
search.

Given the effect of enumeration order on the outcome of a search procedure,
it is somewhat surprising that most publications do not contain any information
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about it. Many publications only describe neighborhoods in terms of their local
search operator. A notable exception is [5], which does not only mention the use
of a random enumeration order, but also publishes the complete source code of
its implementation.

Finally, let us examine some open-source implementations of metaheuris-
tics and see how they implement neighborhood enumeration. The following two
implementations serve as an example: the Java Metaheuristics Search Frame-
work(JAMES) [4] and the suite of metaheuristic frameworks PARADISEO [3].
In JAMES it is possible for users to implement custom neighborhoods through
a neighborhood- and operator-interface, but imposing orders on neighborhood
sets through an interface is not possible and must be programmed from scratch
by the user. When querying the full neighborhood, an eagerly constructed list
of operators is returned. In PARADISEO, users can implement custom neigh-
borhoods in a similar fashion, though here order is made explicit by means of
an iterator-interface. Querying the full neighborhood returns a lazy iterator over
the neighborhood. Furthermore, neighborhoods can be linked together into new
neighborhoods.

Before continuing with the next section, we end this section with an example
of issues arising when neighborhood definitions are incomplete. We will illustrate
these issues by considering the TwoOpt-operator for the Traveling Salesperson
Problem (TSP). Let C = {c1, . . . , cn} be a set of points on the Euclidean plane
representing cities and let d : C × C → N be the distance between two cities.
Then, the goal of the TSP is to find the shortest tour which visits each city
once. Let permutation π ∈ Π represent a tour through all cities in C and let
Iπ = {1, . . . , n} be the index set of π. Element πi ∈ π, where i ∈ Iπ, represents
the ith visited city in the tour. The objective value c(π) is computed with (Eq.
3).

c(π) =
∑

i∈Iπ\{n}
d(πi, πi+1) + d(πn, π1) (3)

Applying the TwoOpt-operator to a solution for the TSP equals swapping
two edges in the tour, or equivalently, inverting a subsequence of the solution
representation π. The operator takes as input the current tour and two indices
i, j ∈ Iπ. To implement a function to generate the TwoOpt neighborhood, a
double for loop is typically used. A naive implementation would generate neigh-
bors for all possible pairs (i, j) ∈ I2π. This is however redundant: TwoOpt is a
symmetric operator, thus a more efficient implementation would only generate
neighbors for the pairs (i, j) for which i < j, as these are sufficient to cover
the whole neighborhood. Aside from redundancy, which is unwanted but not
problematic, if it is unclear which moves are included in the neighborhood and
which are not, any order-dependent selection function can cause diverging search
outcomes for two neighborhoods that “look” the same.

353



6 M. Van Lancker et al.

3 Neighborhood Enumeration

The previous section provided an introduction to how common definitions of
neighborhoods, selection criteria and local optima are not sufficiently exact from
an implementation perspective and how this in turn results in an incomplete al-
gorithm specification. As suggested by the TwoOpt-example, there are two pieces
of information missing from Definition 2: how many (i.e. which) solutions be-
long to a neighborhood and the order in which these solutions are visited. In this
section we present an alternative definition of a neighborhood function, which
makes the aforementioned information concrete. The purpose of the definition
being introduced is to capture the structure of a local search neighborhood in
such a way that the required implementation steps become clear.

Consider the neighborhood NM (s) ⊆ S. For all sφ ∈ NM (s) we know that we
can move from s to sφ. Let mφ : s 7→ sφ be the function representing the move
from s to si. There are |NM (s)| such functions, one for each sφ ∈ NM (s). Thus
we can define the neighborhood as NM (s) = {mi(s)}i∈Φ, where Φ is an index
over NM (s). Note that if we provide a constructor function M : Φ → (S → S),
we can construct function mφ : S → S by evaluating M(φ). Given an iterator T
over Φ, the first neighbor in the neighborhood can be generated as follows: take
the first element φ from the iterator, call constructor M to construct move mφ,
and apply mφ(s). To generate subsequent neighbors, take the next element from
T and repeat the process until all elements from T have been consumed. The
neighborhood can then be defined as:

Definition 3. A neighborhood NM (s, T ) is the set of solutions constructed by
applying each function mφ : S → S for each φ ∈ T to s, where T is an iterator
over (a subset of) ΦM , the parameter space of operator M : ΦM → (S → S).
As T is ordered, a neighborhood enumeration is uniquely defined by the triple
(s,M, T ).

This definition results in several extra design questions concerning the pa-
rameter space used in a neighborhood. While neighborhood design typically only
considers the choice of operator, now two more design choices must be made:
which operator parameters should be included in a neighborhood and in what or-
der they should be generated. In the next two sections we take a more detailed
look at what options are available regarding these choices.

3.1 Parameter spaces

When considering operators, we make three observations: First, the parameter
space ΦM of operator M is dependent on the solution representation. Second, it
is dependent on functional properties of its operator. Third, any subset of the
parameter space can be used to generate a neighborhood.

Consider the TSP and three operators defined in Table 1. All three operators
are quadratic and, since solution representation π is unconstrained, each operator
can take any (i, j) ∈ I2π as input, where I2π is the Cartesian product of Iπ.
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However, depending on the operator, we can eliminate some elements from I2π.
For example, we know that the Swap- and TwoOpt-operators are symmetric
operators and thus parameter combinations (i, j) and (j, i) will construct the
same moves. Furthermore, for all three operators it is the case that no matter
the state of the incumbent solution, parameter (i, i) will construct the identity
move.

Operator Parameter space Neighbor Relation

Swap (i, j) ∈ I2π : i < j π′i = πj ∧ π′j = πi
TwoOpt (i, j) ∈ I2π : i < j ∀k ∈ [0, j − i] : π′i+k = πj−k

Shift (i, j) ∈ I2π : i 6= j π′j = πi

π′k =

{
∀k ∈ [i+ 1, j] : πk−1, if i < j

∀k ∈ [j, i− 1] : πk+1 otherwise

Table 1: Definitions of the Swap, 2opt and Shift operators and their respective
parameter spaces.

1

2

3

1 2 3 4 5

6 7

8 9 10

(a) Single-level indexing

1

2

3

1 2 3 4 5

1 2

1 2 3

(b) Multi-level indexing

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

(c) Parameter space

Fig. 2: The interpretation of operators and their respective parameter spaces is
dependent on the indexing system used.

The importance of the chosen solution representation and index set becomes
obvious when we consider more complex solution representations. Instead of per-
mutation π, consider an ordered set of permutations ρ. To implement a neigh-
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8 M. Van Lancker et al.

borhood for this structure, we require an index set to base our parameter space
on. Looking at Fig. 2 it is clear that multiple options are available. We can
use a single-level, linear index – like we did for permutation π – where every
position in the representation is represented by a single integer: its position in
the overall element order. Alternatively, a multi-level index can be used, where
every position in the representation is represented by two integers: the position
of the permutation in the set and the position within the permutation. Fig. 2c
illustrates the correspondence between the parameter spaces of a symmetric op-
erator using single-level and multi-level indexing. In light grey is the parameter
space based on the single-level index. In dark grey are parameters corresponding
to moves that operate inside a permutation of the set of permutations, using
the multi-level index. Similarly, in white are the parameters corresponding to
inter-permutation moves when using the multi-level index.

3.2 Enumeration order

The final step is to impose an order on the defined parameters. Given a set
of parameters of size n, there are n! ways to impose an order. However, some
of these orders are more interesting than others. Of special interest are those
that follow particular patterns, which can usually be efficiently implemented
as an iterator which generates the parameter sequence lazily. Some of these
patterned sequences can be interpreted as prioritizing certain moves: consider
the TwoOpt operator for the TSP and assume that we are using the firstmin
selection function. If TwoOpt moves are enumerated according to the scheme
(1, 2), (1, 3), (1, 4), . . . , the beginning position of the subsequence is considered
more important than that of the end. Similarly scheme (2, 1), (3, 1), (4, 1), ...
deems the end position more important. Finally, scheme (1, 2), (2, 3), (3, 4), . . .
prioritizes moves corresponding to shorter subsequence inversions. Such semantic
distinctions can help algorithm designers gain insights into the behavior and
performance of their algorithms.

1
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3

3

4

4

5

5

(a) I2π

1
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3

4

4

5

5

(b) I2π : i 6= j

1
1

2

2

3

3

4

4

5

5

(c) I2π : i < j

1
1

2

2

3

3

4

4

5

5

(d) I2π : i < j

Fig. 3: Various iterators over I2π.

Four iterators for quadratic operators are shown in Fig. 3 which differ in
terms of their parameters included, order and direction. Fig. 3a illustrates an
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iterator over the full parameter space – the Cartesian product I2π – ordered
along the rows. Fig. 3b is ordered along the columns and eliminates parameters
(i, i) ∈ I2π. Figures 3c and 3d are both ordered along the diagonals and eliminate
parameters (i, j) ∈ I2π for which i ≥ j, but they differ in the direction they take.

4 Experimental Evaluation

To evaluate the influence of enumeration order on search procedures we consider
a search procedure to be a program of type solve : S → S. This program takes
an initial solution si and returns a local optimum as final solution sf . We refer
to the change induced on si by solve as ∆s = |C| − |ec| − 1, where |C| is the
number of cities and |ec| is the number of edges si and sf have in common. In a
similar fashion, we refer to the difference between the objective value of si and
sf as ∆v = c(sf )− c(si) and its runtime as ∆t.

Constructive Select Operator Order Direction

random argmin Swap Column Forward
greedy firstmin TwoOpt Row Reverse

rolling Shift Diagonal

Table 2: The set of algorithm design parameters considered when experimentally
evaluating enumeration order.

To study the impact of enumeration order on the search we compare ∆s,
∆v and ∆t for solve procedures instantiated with different design parameters.
Table 2 lists these design parameters. As the first three columns do no influence
enumeration order, they can be considered design parameters resulting in dif-
ferent “contexts” in which the effect of enumeration order is evaluated. These
parameters serve to broaden the scope of our analysis. All of the included design
parameters have been defined in earlier sections of this paper, except for the selec-
tion function rolling. This selection function is an adapted version of firstmin.
Whereas firstmin begins from scratch in the next iteration after selecting the
first improving neighbor si = mi(s), rolling will continue enumerating from its
current position. The last two columns determine enumeration order. Three dif-
ferent iterators are used as parameter Order, each of which can be used in two
Directions, resulting in six enumeration order. Every configuration is tested
on 42 TSP instances from TSPLIB. All algorithms and experiments are imple-
mented in the Julia programming language for technical computing [1] and run
in a single-core-per-run configuration on an Intel(R) Xeon(R) CPU E5-2650 v2
@ 2.60GHz machine with 16 cores. A complete description of the experimental
setup and data is available online1.

1 github.com/Michiel-VL/Neighborhood_Enumeration_Data
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(a) Greedy (b) Random

Fig. 4: The relative difference between the final solutions should be zero if order
had no influence.

First, we examine the effect of enumeration order on the solution state. If
no such effect were to exist, then the final solutions of the six runs for a given
context and instance should be identical, independent of the enumeration or-
der parameters. To measure if there is an effect of enumeration order on the
solution state, we compute the mean relative pairwise distance ∆sr between the
set of final solutions of a given context and instance. Fig. 4 is given for each of
the 18 contexts. It is clear that the enumeration order does have an influence
on the search outcome. Even for argmin selection, which is just barely order-
dependent, ∆sr is fairly large, suggesting that the effect compounds quickly over
the iterations of a search procedure.

(a) Greedy, Shift (b) Greedy, Swap (c) Greedy, TwoOpt

(d) Random, Shift (e) Random, Swap (f) Random, TwoOpt

Fig. 5: The numbers of wins for different orders and operators.
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Fig. 5 shows the relative number of wins per enumeration order for different
constructive heuristics and local search operators. While enumeration order does
seem to affect the winrate, the results are inconclusive as to which order should
be preferred for a given operator or constructive heuristic.

5 Discussion

Modeling a local search neighborhood as the combination of an operator with
its own parameter space and an iterator over this parameter space has sev-
eral advantages. First, it renders explicit the enumeration order to explore the
neighborhood, which we have shown has an impact on the search outcome. Fur-
thermore it is modular, as operator, set of parameters and order are completely
separable implementation-wise. This not only enables easy reuse of code but it is
also expressive, offering a range of neighborhood structures at virtually no cost.

It is also possible to encode structural properties of the problem in the neigh-
borhood. As shown in Section 3, parameter spaces based on structured index sets
can be used to distinguish between different parts of a solution representation.
By opening up a neighborhood’s structure through its parameter space, it is pos-
sible to use a wide variety of known algorithms to construct parameter spaces
and reuse these over various neighborhoods.

Given a set of neighborhood definitions, new neighborhoods can be con-
structed in an algorithmic manner. Using function composition, operators can
be composed into new operators and through the Cartesian product and disjoint
union, various enumeration structures are available. Furthermore, given that in
many programming languages iterators are denoted by a data structure that is
composable in various ways – like filtering, linking or zipping – the definition as a
whole is very expressive and enables concise descriptions of algorithms like Vari-
able Neighborhood Descent and concepts such as path relinking or higher-order
neighborhoods.

Note that defining a neighborhood as a triple (s,M, T (ΦM )) replaces the
nested for-loops in many neighborhood implementations with a single foreach-
loop. This triple separates three different neighborhood-design concerns that are
typically entangled in code: local-search operators, neighborhood size and enu-
meration order. This enables algorithm designers not only to reuse operator,
parameter space and enumeration order implementations for multiple neighbor-
hoods, but it also leads to a more descriptive way of handling neighborhoods,
enabling swift development and automated algorithm configuration.

6 Conclusion

In this paper we introduced a novel definition for neighborhoods aimed at for-
malizing their implementation. Defining local search neighborhoods in terms of
a parametrized local search operator and an iterator over the parameter space of
the operator leads to an expressive, composable definition which can be readily
used during implementation. The iterator makes explicit two algorithm design
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12 M. Van Lancker et al.

considerations that are typically overlooked: in what order should neighbors be
generated and which neighbors should be included in a neighborhood. Further-
more, by basing the operator parameter spaces on the indexing mechanism of a
solution representation, significant parts of neighborhood design can be automat-
ically derived from a solution representation. Finally, many enumeration orders
can be efficiently implemented as a lazy sequence and therefore neighborhoods
can be generated lazily.

While we only considered unconstrained problem representations, it would be
interesting to look at constrained problems to examine how particular types of
constraints affect the use of the definition, as complex constraints could prevent
efficient iterator implementations. Though interesting, this primarily concerns
implementation efficiency rather than formalization and thus lay outside the
scope of this paper.
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Abstract. Pulp and Paper Industries (PPI) manufactures a wide range of papers 

based on three different GSM (Grams/ sq. meter). i.e., lower GSM, middle GSM 

and higher GSM. In order to maximize the profit, the PPI must efficiently utilize 

its available resources thereby producing optimal units of three different GSMs. 

Such problems lie under the category of product mix problems and forms an im-

portant part of production planning for every paper mill.  In the present study, 

this problem is represented as a Fuzzy Linear Programming (FLP) model, to in-

clude the inherent vagueness and uncertainties. The solutions obtained through 

FLP are further refined with the help of AHP (Analytical Hierarchical Process) 

to determine the most profitable solution. Results indicate that ranking results 

obtained by integrating AHP into FLP may help in providing a better guidance 

to the Decision Maker (DM) for determining an optimal product mix. 

Keywords: Indian Pulp and Paper Industry (IPPI), product mix optimization, 

fuzzy linear programming (FLP), multi-criteria decision making (MCDM). 

1 Introduction  

The Pulp and Paper Industry (PPI) plays an important role in Indian economy due to 

several reasons [1]. Different types of paper produced by a paper mill can be broadly 

classified into Cultural and Industrial papers [2]. The major production of mills deals 

with the cultural paper involving all types of writing and printing papers with three 

different levels of GSM (Grams/ sq. meter). i.e., lower GSM, medium GSM, and higher 

GSM. The wrapping, packing, photographic and other functional papers are called in-

dustrial papers. The various stages of pulping and papermaking process are presented 

in Fig. 1.  

 

Production planning is an important decision making for any production industry in-

cluding PPI, where the main objective is to maintain a tradeoff between production and 

consumption.   

 

The focus of the present study is to suggest an optimal production plan for Indian 

Pulp and Paper Industries (IPPI) producing a variety of papers. The objective here is to 

maximize the profit by suggesting an optimal product mix on the basis of different 

levels of GSM. The problem is formulated as a Fuzzy Linear Programming (FLP) 

model due to the inherent uncertainties in the model parameters.  Further, sensitivity 
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analysis of the proposed model is done by examining the effect of alpha-cuts on profit. 

Finally, Analytical Hierarchical Process (AHP) is introduced into the model for evalu-

ating the feasible solutions as alternatives.   

 

 
Fig. 1. Process flow diagram of PPI. 

 

Rest of the paper is organized as follows. In section 2, literature review on FLP for 

production planning is given. In section 3, brief description of the methodology is pro-

vided. Section 4 and 5, presents a hypothetical but realistic case study illustrating the 

applicability of the proposed approach through a mathematical model. Sections 6 pro-

vide the results and discussion of the model and the decision making process respec-

tively. Finally, the paper concludes with section 7, summarizing the present study and 

providing future research directions. 

2 LITERATURE REVIEW 

Linear Programming (LP) has gained its reputation as one of the best decision making 

tools for maximizing the goal achievements or minimizing the costs while satisfying 

all the constraints and restrictions. Literature is full of instances advocating the effec-

tiveness of LP  in different areas [3] and [4].  

 

Introduction of fuzzy logic in LP was suggested long back in 1970’s after the concept 

of fuzzy theory was established by Zadeh in 1965 [5]. In [6-8], the authors suggested 

that fuzzy set theory can be integrated with other mathematical programming ap-

proaches like non-linear programming, quadratic programing, dynamic programming 

and goal programming for a more realistic representation of the problem. The fuzzy 

theory is used to optimize the solutions for which constraints have fuzzy coefficients, 

fuzzy inequalities or fuzzy variables.  

Several instance are available in literature where the researchers have successfully 

implemented FLP by substituting the crisp coefficient with fuzzy numbers in an LP 

problem [3, 4, 9, 10]. Researchers have also shown that most of real life problems with 

intensive decision making like product mix, manpower allocation, flow shop schedul-

ing, transportation, production planning [9]–[13] can be dealt efficiently through an 
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FLP approach. However, there are work in the area of production planning activities 

[14-16] but the authors were not able to find any relevant literature relating to produc-

tion planning in a fuzzy environment for an IPPI.  

The proposed methodology integrates AHP, a well-known Multi-Criteria Decision 

Making (MCDM) technique with FLP to select the most profitable solution from the 

set of solutions achieved in the optimization process. 

3 METHODOLOGY  

An integrated FLP-AHP model is proposed for determining the optimal product mix 

for an Indian Pulp and Paper Industry (IPPI). It is a two phase methodology, as illus-

trated in Fig. 2.  

 

In Phase I, fuzzification of the problem is done, while in Phase 2, AHP is invoked to 

select the best possible alternative, out of the solutions obtained in Phase I. These 

phases are further divided into a number of steps as described below and as illustrated 

in Figure 2. 

 
Fig. 2. Schematic presentation of FLP-AHP model 

Phase I 

Step 1. Formulation of LPP: develop the LPP model with the help of the available crisp 

data. 

Step 2. Fuzzification of data: the available crisp data is changed into fuzzy triangular 

numbers (FTN).  

Step 3. Formulation of FLP model: using the data generated in Step 2, the LPP devel-

oped in Step 1 is converted into an FLP model. 

Step 4. Splitting: the model developed in Step 3, is split into a number of sub problems. 

Step 5. Solution: Obtain the solution through different values of aspirants. 

 

Phase II.  

Phase I

• Formulation of LPP for Product Mix 
Problem

• Fuzzification of data into Fuzzy Triangular 
Numbers

• Formulation of FLP model

• Splitting FLP model into 8 Sub-problems

• Obtaining the optimal solutions for 8 sub-
problems

• Performing Sensitivity analysis

Phase II

• Pairwise Comparing the 
obtained optimal solutions

• Ranking the optimal solution 
through AHP

• Choosing the best optimal 
solution for IPPI
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Step 1. Decision Making through AHP: the solutions obtained for different sub prob-

lems are treated as alternatives and the best solution is ranked through AHP.  

4 CASE STUDY 

4.1 Background 

A hypothetical but realistic PPI in India is considered, that produces three types of writ-

ing/ printing paper based on three different levels of GSM: lower GSM (58 to 64 GSM), 

medium GSM (68 to 80 GSM) and higher GSM (90 to 120 GSM) papers. Each kind of 

GSM papers are produced by a combination of raw material fibers such as eucalyptus 

and poplar with fillers such as china clay, GCC, PCC etc. The range of percentage 

composition of the raw material fibers with the fillers are presented in Table 1.  

Table 1. The % of raw material used in each grade of paper. 

Raw material Lower GSM Medium GSM Higher GSM 

Pulp 90% 86% 85% 

Filler 10% 14% 15% 

The data and details for the case study were constructed following a series of discus-

sions with the experts from management and R&D department of an Indian paper mill. 

During the papermaking process, the raw material goes through different processes in-

cluding pulping, bleaching, stock preparation, papermaking, converting and finishing. 

During each process, the yield of pulp is lost to some extent due to the processing of a 

particular grade of paper while the remaining amount undergoes the next process.  

Table 2. Processing of paper with net losses at each department.   

Departments Lower GSM Medium GSM Higher GSM 

 Input Losses Output Input Losses Output Input Losses Output 

Input 1.000 - - 1.000 - - 1.000 -    - 

Pulping Process 1.000 0.01 0.990 1.000 0.02 0.983 1.000 0.02 0.981 

Bleaching Process 0.990 0.09 0.901 0.983 0.14 0.845 0.981 0.19 0.795 

Stock Preparation 

 Process 
0.901 - 0.901 0.845 - 0.845 0.795 - 0.795 

Papermaking Process 0.901 0.05 0.856 0.845 0.07 0.786 0.795 0.08 0.734 

Converting & Finish-

ing Process 
0.856 0.07 0.796 0.786 0.07 0.738 0.735 0.08 0.676 

Output - - 0.796 - - 0.738 - - 0.676 

The expected average losses from one ton of input for each grade of paper; average 

capacity of plant at each unit and the maximum output of the three kinds of papers 

produced in a day is summarized in Table 2. A blank entry represents “no loss” imply-

ing that the same amount is carried on to the next process. 
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The profit of each GSM for a ton is evaluated after estimating the selling price and other 

expenses of each GSM as per the current market trend and as per the opinion of experts. 

The profit for the three GSM with the amount is given in Table 3. 

Table 3. Details of plant capacity. 

Papermaking process Tons/ day 
Max production of each 

grade 
Tons/ day 

Profit of each grade of paper 

produced 
Rs./ Ton 

Pulping process 230 Lower GSM 34 Lower GSM 5600 

Bleaching process 120 Medium GSM 158 Medium GSM 5000 

Stock preparation Process 220 Higher GSM 34 Higher GSM 5100 

Converting & 

Finishing Process 
220 

    

5 Mathematical Model  

The above-mentioned data for the papermaking processes and objective function was 

analyzed to obtain estimates for LP problem model parameters. The decision variables 

of the model are notated as 𝑥1, 𝑥1 and 𝑥3 representing the amount of: lower GSM, me-

dium GSM and higher GSM to be produced. The objective function Z is to maximize 

the profit per ton for the three kinds of papers.  

 

The LPP model of the problem can be formulated as below, by using the given data in 

Table 1-3:  

 
𝑀𝑎𝑥 𝑍 = 5600𝑥1 + 5000𝑥2 + 4200𝑥3 

𝑠. 𝑡. 

0.90𝑥1 + 0.86𝑥2 + 0.85𝑥3 ≤ 230    (Raw Material Constraint)                

0.12𝑥1 + 0.16𝑥2 + 0.17𝑥3 ≤ 22.7    (Filler Constraint)   

𝑥1 + 𝑥2 + 𝑥3 ≤ 230         (Pulping process constraint)     

0.9𝑥1 + 0.983𝑥2 + 0.988𝑥3 ≤ 120     (Bleaching process constraint)       

0.901𝑥1 + 0.891𝑥2 + 0.869𝑥3 ≤ 220    (Stock preparation process constraint)     

0.869𝑥1 + 0.860𝑥2 + 0.835𝑥3 ≤ 220   (Converting &Finishing Process ) 

0.15𝑥1 + 0.7𝑥2 + 0.14𝑥3 ≤ 24     (Time constraint) 

𝑥1 ≤ 34             (Input constraint for Lower GSM) 

𝑥2 ≤ 158            (Input constraint for Medium GSM) 

𝑥3 ≤ 34             (Input constraint for Higher GSM)   

                            (1) 

However, there are several factors that affect the preciseness of data like: non-availa-

bility of raw materials or fillers, improper management of resources, inadequate power 

supply, and underutilization of capacity etc.  

 

Presence of uncertainty in data justifies the application of fuzzy set theory for modeling 

such problems [11-13]. In this study, FLP is implemented to maximize the value of Z 
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obtained through LP by using fuzzy triangular numbers. Fuzzy numbers generated for 

each coefficient are given in Table 4.  

 
Table 4. Fuzzy numbers of each coefficient. 

 Lower GSM Medium GSM Higher GSM 

Process Lower Crisp Higher Lower Crisp Higher Lower Crisp Higher 

Pulp 0.88 0.90 0.90 0.84 0.86 0.86 0.83 0.85 0.85 

Filler 0.10 0.12 0.12 0.14 0.16 0.16 0.15 0.17 0.17 

Bleaching process 0.989 0.990 0.990 0.983 0.985 0.985 0.980 0.981 0.981 

Stock preparation Process 0.890 0.901 0.901 0.837 0.845 0.845 0.790 0.795 0.795 

Converting & Finishing 

Process 
0.846 0.856 0.856 0.783 0.786 0.786 0.731 0.735 0.735 

Time 0.14 0.15 0.15 0.696 0.7 0.7 0.14 0.15 0.15 

Max production 34 34 35 158 158 161 34 34 35 

5.1 Formulation of FLP 

STEP 1. The crisp data mentioned in the Table 1-3 is utilized to calculate the fuzzy 

numbers for each coefficient as presented in Table 4.  

 

STEP 2. Using the fuzzy data in Table 4, the Fuzzy Linear Programming model for the 

case company is formulated as (2): 

 

𝑀𝑎𝑥 𝑍 = (5600,5600,6500)𝑥1 + (5000,5000,6200)𝑥2 + (4200,4200,5800)𝑥3 

𝑠. 𝑡. 

(0.88,0.90,0.90)𝑥1 + (0.84,0.86,0.86)𝑥2 + (0.83,0.85,0.85)𝑥3 ≤ (230,280,280) 

(0.10,0.12,0.12)𝑥1 + (0.14,0.16,0.16)𝑥2 + (0.15,0.17,0.17)𝑥3 ≤ (22.7,34.1,34.1) 

(0.989,0.990,0.990)𝑥1 + (0.983,0.985,0.985)𝑥2 + (0.980,0.981,0.981)𝑥3 ≤ (120,120,120) 

(0.890,0.901,0.901)𝑥1 + (0.837,0.845,0.845)𝑥2 + (0.790,0.795,0.795)𝑥3 ≤ (220,220,220) 

(0.846,0.856,0.856)𝑥1 + (0.783,0786,0.786)𝑥2 + (0.731,0.735,0.735)𝑥3 ≤ (220,220,220) 

(0.14,0.15,0.15)𝑥1 + (0.696,0.7,0.7)𝑥2 + (0.14,0.15,0.15)𝑥3 ≤ (24,24,24) 

𝑥1, 𝑥3 ≤ (34,34,35) 

𝑥2 ≤ (158,158,161)                        

(2) 

STEP 3. To obtain the better optimization result from the fuzzy numbers, the FLP has 

been split into eight sub-problems of linear crisp programming, as seen in Table 5, by 

taking in account, the total number of possible combinations of objective values with 

all the constraints values.  

 

STEP 4. The optimal solutions of each sub-problem (3) to (9) are obtained through 

Lingo 18.0 software and are presented in Table 6. 
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Table 5. The sub-problems of FLP. 

Sub-problem 1

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 3

2

5600 5000 4200

. .

0.90 0.86 0.85 280

0.10 0.14 0.15 34.1

0.990 0.983 0.981 120

0.901 0.845 0.795 220

0.856 0.786 0.735 220

0.15 0.7 0.14 24

, 34

158

Max x x x

s t

x x x

x x x

x x x

x x x

x x x

x x x

x x

x

  

  

  

  

  

  

  




                                                      

(3) 

Sub-problem 2

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 3

2

6500 6200 5800

. .

0.90 0.86 0.85 280

0.10 0.14 0.15 34.1

0.990 0.983 0.981 120

0.901 0.845 0.795 220

0.869 0.786 0.735 220

0.15 0.7 0.14 24

, 34

158

Max x x x

s t

x x x

x x x

x x x

x x x

x x x

x x x

x x

x

  

  

  

  

  

  

  




  

                                 (4) 

Sub-problem 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 3

2

5600 5000 4200

. .

0.90 0.86 0.85 230

0.10 0.14 0.15 22.7

0.990 0.983 0.981 120

0.901 0.845 0.795 220

0.856 0.786 0.735 220

0.15 0.7 0.14 24

, 35

161

Max x x x

s t

x x x

x x x

x x x

x x x

x x x

x x x

x x

x

  

  

  

  

  

  

  




 

                                 (5) 

Sub-problem 4 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 3

2

6500 6200 5800

. .

0.90 0.86 0.85 230

0.10 0.14 0.15 22.7

0.990 0.983 0.981 120

0.901 0.845 0.795 220

0.869 0.786 0.735 220

0.15 0.7 0.14 24

, 35

161

Max x x x

s t

x x x

x x x

x x x

x x x

x x x

x x x

x x

x

  

  

  

  

  

  

  




 

                               (6) 

Sub-problem 5 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 3

2

5600 5000 4200

. .

0.88 0.84 0.83 280

0.12 0.16 0.17 34.1

0.989 0.983 0.980 120

0.890 0.837 0.790 220

0.846 0.783 0.731 220

0.15 0.696 0.15 24

, 34

158

Max x x x

s t

x x x

x x x

x x x

x x x

x x x

x x x

x x

x

  

  

  

  

  

  

  




 

                         (7) 

Sub-problem 6 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 3

2

6500 6200 5800

. .

0.88 0.84 0.83 280

0.12 0.16 0.17 34.1

0.989 0.983 0.980 120

0.890 0.837 0.790 220

0.846 0.783 0.731 220

0.15 0.696 0.15 24

, 34

158

Max x x x

s t

x x x

x x x

x x x

x x x

x x x

x x x

x x

x

  

  

  

  

  

  

  





                           (8) 

Sub-problem 7

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 3

2

5600 5000 4200

. .

0.88 0.84 0.83 230

0.12 0.16 0.17 22.7

0.989 0.983 0.980 120

0.890 0.837 0.790 220

0.846 0.783 0.731 220

0.15 0.696 0.15 24

, 35

161

Max x x x

s t

x x x

x x x

x x x

x x x

x x x

x x x

x x

x

  

  

  

  

  

  

  




 

                              (9) 

Sub-problem 8

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 3

2

6500 6200 5800

. .

0.88 0.84 0.83 230

0.12 0.16 0.17 22.7

0.989 0.983 0.980 120

0.890 0.837 0.790 220

0.846 0.783 0.731 220

0.15 0.696 0.15 24

, 35

161

Max x x x

s t

x x x

x x x

x x x

x x x

x x x

x x x

x x

x

  

  

  

  

  

  

  




  

                         (10) 
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Table 6. Optimal solutions of eight sub-problems. 

 1x  2x  3x  Z  

11X  34 19.71 34 431771.4 Lower bound 

12X  34 19.71 34 540428.6  

13X  35 19.29 35 439428.6  

14X  35 19.29 35 550071.4  

15X  34 20.80 34 437223.0  

16X  34 19.71 34 540428.6  

17X  35 19.29 35 439428.6  

18X  35 19.28 35 550071.4 Upper bound 

STEP 5. The crisp fuzzy linear model for maximizing the value of aspiration (𝜆) is 

written as below: 

𝑀𝑎𝑥 𝑍 =  𝜆 

𝑠. 𝑡. 

118300.0𝜆 − 6500𝑥1 − 6200𝑥2 − 5800𝑥3 + 550071.4 ≤ 0 

(0.90 − 0.02𝜆)𝑥1 + (0.86 − 0.02𝜆)𝑥2 + (0.85 − 0.02𝜆)𝑥3 − 50𝜆 − 280 ≤ 0 

(0.12 − 0.02𝜆)𝑥1 + (0.16 − 0.02𝜆)𝑥2 + (0.17 − 0.02𝜆)𝑥3 − 11.4𝜆 − 34.1 ≤ 0 

(0.990 − 0.001𝜆)𝑥1 + (0.985 − 0.002𝜆)𝑥2 + (0.981 − 0.001𝜆)𝑥3 − 120 ≤ 0 

(0.901 − 0.011𝜆)𝑥1 + (0.845 − 0.008𝜆)𝑥2 + (0.795 − 0.005𝜆)𝑥3 − 220 ≤ 0 

(0.856 − 0.010𝜆)𝑥1 + (0.786 − 0.003𝜆)𝑥2 + (0.735 − 0.004𝜆)𝑥3 − 220 ≤ 0 

(0.15 − 0.01𝜆)𝑥1 + (0.7 − 0.004𝜆)𝑥2 + (0.15 − 0.001𝜆)𝑥3 − 24 ≤ 0 

𝑥1 − 𝜆 − 34 ≤ 0 

𝑥2 − (3.0𝜆) − 158 ≤ 0  

𝑥3 − 𝜆 − 34 ≤ 0 

0 ≤ 𝜆 ≤ 0 

𝑥1, 𝑥2, 𝑥3 ≥ 0                       (10) 

 

STEP 6. The solutions in Table 7 are obtained by varying the value of 𝜆 in Lingo 18.0 

software. It is observed that the maximum profits of the case company varies depending 

on the value of 𝜆 and variables of product mix. Also, only 3 solutions are found to be 

feasible (highlighted in grey) while 4 solutions are infeasible.  

Table 7. Senstivity analysis of value of aspirations. 

𝜆 1x  2x  3x  Z Solution Type 

0 34.5 20.603 34.5 ₹ 5,52,091.39 Feasible 

0.3 34.62 26.150 34.62 ₹ 4,70,027.35 Feasible 

0.5 34.7 29.848 34.7 ₹ 4,89,300.75 Non-Feasible 

0.7 34.78 33.546 34.78 ₹ 5,08,574.15 Non-Feasible 

0.9 34.86 37.244 34.86 ₹ 5,27,847.55 Non-Feasible 

1 34.9 39.093 34.9 ₹ 5,37,484.25 Non-Feasible 

0.3309 34.63237 26.722 34.63237 ₹ 4,73,006.38 Feasible 
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5.2 AHP 

In order to select the best optimal solution from the Table 6, Analytical Hierarchy Pro-

cess (AHP) is employed [17] as discussed in the next section. 

The hierarchy structure in Fig. 3 presents the three feasible solutions (S1, S2, S3) for 

selection of the best solution. The priority conditions and alternatives were decided in 

the interview of three decision-makers (DMs), such as (DM 1, DM 2, DM 3). In order 

to prevent biases in their judgement, the DMs advocated for the equal. The same 

weights were therefore assigned to them as (1/3, 1/3, 1/3). Implementation of AHP 

consisted of the following steps: 

 

1. Different comparison matrices were formed for the alternatives with respect to each 

criterion individually for DMs.  

2. The final comparison matrix is aggregated as geometric mean of individual DMs 

matrix.  

 

Fig. 3. A hierarchy structure of the problem. 

6 Results and Discussions 

6.1 Sensitivity Analysis: Membership of aspiration values contributed 

towards managing the profit of the mill is discussed in this section. The 

trends of profits and the trend of decision variables against the value of 

𝝀 are presented in Fig. 4(a) & Fig. 4(b). The following observations were 

made: 

1. The profit of product mix decreased in tandem with the decrease in the value of 

aspiration level. The maximum and minimum profits were obtained for 𝜆 =1 and 𝜆 

=0.3 respectively. This is shown graphically in Fig 4(a). 
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2. Decision variables 𝑥1 and 𝑥2 have the same values and the gap between them with 

𝑥2 is smaller as the value of  𝜆  increases. At 𝜆 = 0.9 or 1, the production amount of 

𝑥2 is greater than the 𝑥1 & 𝑥3. This trend can be visualized through Fig. 4(b). 

 

  
Fig. 4 (a). Trends of Profit against the value of aspirations. 

3. Through the trends mentioned in (a) and (b), it can be said that the profit (in Rupees) 

in a closed interval of [470027.35, 552091.39] can be obtained if the lower GSM, 

medium GSM and higher GSM were produced (in Tons) in the interval of [34.5, 

34.62], [20.6, 26.15] and [34.5, 34.62], respectively.  

 

Fig.4 (b). Decision variables vs. aspiration level.   

4. The optimal feasible solutions were obtained by λ value in the range of [0, 0.330].  

 

5. The crisp profit earned through LPP was Rs 434200.0, which improved up to 

21.35%. i.e., Rs 117891.40 by the use of FLP.  
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6.2 Decision making through AHP 

1. After determining the local priorities and checking the consistency at 10%. The 

global final priority is evaluated and is depicted in Fig. 5.  

2. It can be clearly seen that the S1 is the most profitable solution among all the three 

optimum solutions, due to its overall weight (0.599). It’s the best combination for 

the product mix of the case company with the production of 89.60 tons/ day in which 

34.5 tons/ day is for lower GSM, 20.60 tons/ day for medium GSM and 34.5 for 

higher GSM. 

 

 

Fig. 5. AHP overall weights for the three optimal solutions. 

7 Conclusion 

The product mix optimization for maximizing the profit has attracted a lot of attention 

in recent years. This paper presented an integrated FLP-AHP approach for determining 

the optimal product mix for an IPPI. The research tends to be a valuable method for 

improving production planning for three high grades of writing/ printing paper with 

minimal resources. Some conclusions that can be drawn from the research: 

  

 Implementation of fuzzy theory helped in enhancing the profit by 21.35%, which is 

a significant improvement for a real life situation. 

 Integrating AHP into FLP will help managers make better decisions by assisting in 

identifying the most profitable solution among the available solutions.  

 In this study, the authors have considered an example of an IPPI. However, due to 

the generic nature of FLP-AHP, it can be applied to other manufacturing sectors as 

well to determine product mix.  

Further study can be undertaken by including more variables and constraints that take 

place during production planning activities, constructing a multi-objective model or 

considering other fuzzy membership functions like trapezoidal, logistics, S-curve etc. 

Sustainability factors may also be included to make the model more realistic. 
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Abstract. This article addresses the robustness issue of adversarial im-
ages against filters. Given an image A, that a convolutional neural net-
work and a human both classify as belonging to a category cA, one
considers an adversarial image D that the neural network classifies in
a category ct 6= cA, although a human would not notice any difference
between D and A. Would the application of a filter F (such as the Gaus-
sian blur filter) to D still lead to an adversarial image F (D) that fools
the neural network? To address this issue, we perform a study on VGG-
16 trained on CIFAR-10, with adversarial images obtained thanks to
an evolutionary algorithm run on a specific image A taken in one cat-
egory of CIFAR-10. Exposed to 4 individual filters, we show that the
outputted filtered adversarial images essentially do remain adversarial
in some sense. We also show that combining filters may render our EA
attack less effective. We therefore design a new evolutionary algorithm,
whose aim is to create adversarial images that do pass the filter test, do
fool VGG-16 and do remain close enough to A that a human would not
notice any difference. We show that this is indeed the case by running
this new algorithm on the same image A.

1 Introduction

During the last decade, Neural Networks, and particularly Convolutional Neural
Networks (CNNs), have established themselves as the leading way to recognise
objects in images. From there, they can be applied to automated image classi-
fication, image segmentation, video feed monitoring, etc. However, they are not
absolutely foolproof. Trompe-l’œil can fool a human into seeing something that
is not really there. In the same way, a CNN can be wrong from time to time,
misclassifying an object in a picture as something else. Adversarial images are
specially crafted to this purpose.
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Significant work has been performed on adversarial attacks which are designed
to fool CNNs trained for object recognition. Among the different types of suc-
cessful adversarial attacks are those based on Evolutionary Algorithms (EAs).
Although EA-based attacks produce adversarial images that are misclassified by
CNNs, these images often contain noise-like artefacts. This can pose an issue
for the similarity between the original, unmodified and the adversarial images,
which is a requirement for adversarial attacks [2]. Moreover, noise-removing fil-
ters are a staple of image processing. It raises questions regarding the robustness
of noisy adversarial images: Would it be enough to add a filter in front of a CNN
to protect it against such existing attacks? Or from the attacker’s point of view,
given an adversarial image fooling a CNN, is it robust? Does the filtered adver-
sarial image remain adversarial? If it does not, then is it possible to modify an
EA-based attack to fool the combination Filter + CNN? This article addresses
these questions in a specific context, and in elaborated scenarios.

The considered CNN, briefly described in section 2, is VGG-16 [8, 12] trained
on the CIFAR-10 [9] dataset to classify images according to 10 categories. The
adversarial images are obtained by the evolutionary algorithm EAtarget

L2
intro-

duced in [5, 4] for the target scenario. In a nutshell, this scenario considers two
different categories ct and cA, and an image A classified by a trained CNN in
cA. An EA then aims at evolving A into an adversarial image D, that the CNN
classifies as belonging to ct, while remaining close to A for a human eye. Sec-
tion 3 summarizes the main features of EAtarget

L2
in the context of the target

scenario instantiated on VGG-16 trained on CIFAR-10. Section 4 first explicits
the implementation aspects and the parameters of EAtarget

L2
. Then, one example

is detailed. This section displays both the ancestor image in the category dog,
and the adversarial descendent image in each of the 9 distinct remaining target
categories of CIFAR-10, obtained by explicitly running EAtarget

L2
on the chosen

ancestor with these parameters. To address the questions at the origin of this
paper, a series of filters are compared in section 5, and then applied in section 6
to the images of section 4.

A first outcome is that the adversarial images created by EAtarget
L2

and the an-
cestor essentially have the same pattern once exposed to individual filters. De-
pending on the filter, filtered adversarial images remain adversarial, either for
the target scenario or for the untargeted scenario, for which one only requires
the adversarial image to be classified in a different category than the original
one. However, using composition of different filters render the EAtarget

L2
attack

less effective, not only for the target but also for the untargeted scenario. This
outcome leads to the construction in section 7 of the variant EAtarget,F

L2
of the

EA, whose fitness function natively includes the robustness against the filter
F for the target scenario. Section 7 shows the adversarial images obtained by
running EAtarget,F

L2
for a specific composition of filters on the same dog ancestor

image, and the behavior of these new adversarial images towards filters. Section
8 summarizes the conclusions of this case study, some characteristics of the new
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black-box, targeted, non-parametric creation process EAtarget,F
L2

of adversarial
images robust against filters, and provides a series of research directions.

This article, formalizing some aspects of the bachelor student project of the
second author, is an additional contribution to the research program announced
in [2].

2 VGG-16 trained on CIFAR-10

Although applicable to any CNN trained at image classification on some dataset,
we instantiate our approach on a concrete case: VGG-16 trained on CIFAR-10.
On the one hand, the dataset CIFAR-10 [9] encompasses 50, 000 training im-
ages, and 10, 000 test images of size 32 × 32 × 3, meaning that each image has
a width and height of 32 pixels, each pixel having a color resulting from the 3
RGB values. The images are sorted according to ` = 10 categories (see Table 1).

Table 1. CIFAR-10.– For 1 ≤ i ≤ 10, the 2nd row specifies the category ci of CIFAR-
10. In our experiment, we shall use the picture n◦16 in the dog category from the test
set of CIFAR-10 as ancestor.

i 1 2 3 4 5 6 7 8 9 10

ci plane car bird cat deer dog frog horse ship truck

On the other hand, an input image I given to VGG-16 [12] is processed through
16 layers to produce a classification output vector oI of size ` = 10 in the
case considered, namely oI = (oI [1], · · · ,oI [10]), where 0 ≤ oI [i] ≤ 1, and∑10
i=1 oI [i] = 1. Each value oI [i] measures the probability that the image I

belongs to the category ci. As a consequence, an image I is classified as belonging
to the category ck if k = arg max1≤i≤10(oI [i]).

3 Target and untargeted scenarios, and design of EAtarget
L2

The target scenario consists in first choosing two different categories ct 6= cA
among the 10 categories of CIFAR-10. Then one is given an ancestor image A
labelled by VGG-16 as belonging to cA. Finally one constructs a new image
D, classified by VGG-16 as belonging to ct, although D remains so close to A
that a human would likely classify D as belonging to cA or even be unable to
distinguish D from A. The classification threshold value is set at 0.95, meaning
that such a D has achieved its purpose if oD[t] ≥ 0.95. We shall also encounter
in section 6 the slightly different untargeted scenario. An adversarial image D is
still required to be similar to A for a human eye, while VGG-16 classifies D as
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belonging to a category c 6= cA, in the sense that the label value of c outputted
by VGG-16 for D is the largest among all label values, and is strictly larger than
the label value of cA. In particular, an image adversarial for the target scenario
is also adversarial for the untargeted scenario, but the inverse may not be true.

Keeping these notations, let us summarize the strategy adopted in [5, 4] to con-
struct an evolutionary algorithm EAtarget

L2
, that creates such adversarial images

fooling VGG-16 trained on CIFAR-10 for the target scenario. The main compo-
nents of our EA are as follows.

Population initialization. The initial population is set to 160 copies of the an-
cestor image A.

Evaluation. This operation is performed on each individual image ind of a given
generation gp via the fitness function fitL2(ind, gp) that takes into account a
dual goal made of both the evolution of ind towards the target category ct, and
its proximity with the ancestor A, measured thanks to the L2-norm:

fitL2
(ind, gp) = A(gp, ind)oind[ct]−B(gp, ind)L2(ind,A) ≥ 0, (1)

where the quantities A(gp, ind), B(gp, ind) ≥ 0 weight and balance the dual goal
(see section 4 for their values). The L2-norm is used to calculate the difference
between the pixel values of the ancestor and of the considered image ind:

L2(ind,A) =
∑

pj

|ind[pj ]−A[pj ]|2, (2)

where pj is the pixel in the jth position, and 0 ≤ ind[pj ],A[pj ] ≤ 255 are the
corresponding pixel values of the images ind and A.

Evolution. Once the fitness function of each individual in the population is com-
puted (starting with the first generation made of the initial population), the
on-going generation is split into 3 groups. The ”elite” consists of the 10 best in-
dividuals in the population. The ”didn’t make it”, consisting of the lower scored
half of the population, is discarded. The ”middle class” consists of the remain-
ing individuals. The ”elite” is kept unchanged. Each of the 80 individuals of the
”didn’t make it” group is replaced by an individual resulting of the mutation of
elements from the ”elite” and the ”middle-class”. All ”middle-class” individuals
are mutated. The performed mutations are those described in [4] (they remain
similar to some extent to those of [1]). Cross-overs (see [4]) are applied to all
individuals except those of the ”elite”. Pixel values are modified in a range ±3
in the version used here of EAtarget

L2
. These operations lead to the 160 individuals

composing the new generation subject to the next round of evaluation.

This loop is performed as many times as necessary to create the adversarial
image D as the result of EAtarget

L2
run on A for the target category ct. Hence

D = EAtarget
L2

(A, ct) satisfies oD[t] ≥ 0.95.
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4 Obtention of the adversarial images: Running EAtarget
L2

Concretely, for any generation gp, one sets B(gp, ind) = 10− log10(L2(ind,A)). The
value of A(gp, ind) depends on oind[ct] (note that log10 oind[ct] ≤ 0).

A(gp, ind) =





10−3+log10 oind[ct] if oind[ct] < 10−3

10−2+log10 oind[ct] if 10−3 ≤ oind[ct] < 10−2

10−1+log10 oind[ct] if 10−2 ≤ oind[ct]

(3)

EAtarget
L2

was implemented in Python 3.7 with the NumPy [11] library. Keras [6]
was used to load and run the VGG-16 [12] model. Our experiments were run
on a computer with an Nvidia RTX 3080 GPU and an Amd Ryzen 7 5800X CPU.

Figure 1 shows the ancestor image A taken in the category dog (image n◦16 in
the category c6 of the test set of CIFAR-10, used throughout this article). Besides
A, Figure 1 also presents the 9 evolved adversarial images Di = EAtarget

L2
(A, ci),

with i 6= 6, classified by VGG-16 as belonging to the category ci with the nota-
tions of Table 1. By slightly changing many pixels instead of heavily changing
a few pixels, this approach, that enhances the indistinguishability between the
adversarial image and the ancestor image, differs substantially from [13], where
one single pixel is changed, but this modification is noticeable for a human with-
out difficulty.

Fig. 1. Comparison of the ancestor A (chosen as the image n◦16 in the dog category
c6) in the 6th position with the adversarial images Di = EAtarget

L2
(A, ci) in the ith

position (i 6= 6). VGG-16 classifies A in the dog category with probability 0.9996387,
and classifies Di in the target category ci with probability ≥ 0.95.

Table 2 specifies the number of generations and the execution time required by
EAtarget

L2
to create the adversarial images Di of Figure 1. The images pictured

in Figure 1 are tested in section 6. More precisely, filters performed on these
images create new images that are given as input to VGG-16 for classification.
The choice of these filters is described in the next section.

5 Selection of filter

In image processing, a filter or a Kernel [14] is essentially given by a square
f × f matrix for an odd integer f . Filtering an image I, say of size n× n, is an
operation performed pixel for pixel as follows. For each pixel p of I, one puts
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Table 2. For 1 ≤ i ≤ 10, i 6= 6, the 2nd row specifies the number of generations
required by EAtarget

L2
to create the adversarial image Di pictured in Figure 1. The 3rd

row shows the total execution time, measured in seconds, while the 4th row represents
the average number of generations per second.

i 1 2 3 4 5 7 8 9 10

# of generations 815 960 494 127 1011 376 286 970 526

total time (in seconds) 46.22 69.14 27.02 8.27 53.93 20.67 16.2 52.36 28.21

# of generations/second 17.63 13.88 18.28 15.36 18.74 18.19 17.65 18.53 18.65

in matrix form a f × f area of the image centered on p. The coefficients of the
resulting f × f matrix Ip are the RGB values of the corresponding pixels in the
considered area. The convolution operation of the kernel matrix and of Ip leads
to a f × f matrix F ∗ Ip. The values of the pixel p of the filtered image F (I)
is the sum of the coefficients of F ∗ Ip. Pixels at a distance < f of an edge of I
require a special treatment to ensure that the size of the filtered image F (I) is
also of size n×n (otherwise, its size would be reduced to (n−f+1)×(n−f+1)).

Although one could consider a large list of filters, we focus in this article on the
following four [10, chapters 7 and 8], that have a significant impact on images.
In our computations performed on images of size 32 × 32, we shall take f = 1
for F1 and f = 3 for F2, F3, F4, and used the OpenCV implementation library [3].

The inverse filter F1 replaces all colors by their complementary colors. This op-
eration is performed pixel for pixel by subtracting the RGB value (255, 255, 255)
of white by the RGB value of that pixel.

The Gaussian blur filter F2 uses a Gaussian distribution to calculate the Kernel,

G(x, y) = 1
2πσ2 e

− x2+y2

2σ2 , where x is the distance from the origin on the x-axis,
y is the distance from the origin on the y-axis and σ is the standard deviation
of the Gaussian distribution. By design, the process gives more priority to the
pixels in the center, and blurs around it with a lesser impact as one moves away
from the center.

The median filter F3 is used to reduce noice and artefacts in a picture. Though
under some conditions it can reduce noise while preserving the edges, this does
not really occur for small images like those considered here. In general, one se-
lects a pixel, and one computes the median of all the surrounding pixels.

The unsharp mask filter F4 enhances the sharpness and contrast of images. The
unsharp masked image is obtained by blurring a copy of the image using a Gaus-
sian blur, which is then weighted and subtracted from the original image.

Any such filter F , or any combination of filters Fi1 , Fi2 , · · · , Fik operating suc-
cessively (in that order) on an image I, creates a filtered image F (I) or Fik ◦
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· · · ◦ Fi2 ◦ Fi1(I). In section 6 we make use of the previous four filters taken
individually, and of the combination F3 ◦ F4.

6 Filtering the ancestor and the adversarial images

The ancestor image A, and the adversarial images Di = EAtarget
L2

(A, ci) (i 6= 6)
represented in Figure 1 are tested against the filters of section 5. Figure 2 shows
the outcome of this process. From left to right, the 10 pictures on the kth row rep-
resent F (A) in the 6th position and F (Di) in the ith position for 1 ≤ i 6= 6 ≤ 10,
with F = Fk for 1 ≤ k ≤ 4, and F = F3 ◦ F4 for the 5th row. The reason for
the choice of F3 ◦ F4 is that F4 is used to amplify and highlight detail, while
F3 is used to remove noise from an image without removing detail. Therefore,
a combination of these filters could remove the noise created by the EA while
maintaining a high level of detail.

Fig. 2. Comparison of the impact of filters on the ancestor A and on the adversarial
images Di. The kth row represents F (A) (in 6th position) and F (Di) (in ith position,
i 6= 6), where F = Fk for 1 ≤ k ≤ 4, and F = F3 ◦ F4 for k = 5.

These filtered images are given to VGG-16 for classification. Table 3 shows the
outcome with filters F = Fk for 1 ≤ k ≤ 3, while Table 4 is produced with F4,
and Table 5 with F3 ◦ F4. Each Table has (groups of) rows showing the proba-
bility of the filtered images for the c6 category, the target class ci, the maximum
probability and its corresponding class outputted by VGG-16, respectively. In
all tables, we set D6 = A to ease the notations.

The inverse, Gaussian blur and median filters (F1, F2 and F3, Table 3) produce
images that are adversarial against VGG-16 for the untargeted scenario. Indeed,
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Table 3. Label values in the category c6, target class ci, maximum probability and its
corresponding class given by VGG-16 for the filtered ancestor F (A) and the filtered
adversarial images F (Di) (i 6= 6) for F = F1 (1st group of 5 rows), F2 (2nd group of 5
rows) and F3 (3rd group of 5 rows).

i 1 2 3 4 5 6 7 8 9 10

oF1(Di)[6] 8e-04 1e-02 8e-03 8e-04 5e-03 1e-03 2e-02 1e-02 3e-03 8e-04

oF1(Di)[i] 5e-04 8e-04 8e-05 0.99 6e-04 1e-03 2e-02 4e-05 1e-02 0.91

max(oF1(Di)) 0.98 0.72 0.98 0.99 0.68 0.99 0.95 0.97 0.82 0.91

cargmax(oF1(Di))
truck frog cat cat frog cat cat cat truck truck

i 1 2 3 4 5 6 7 8 9 10

oF2(Di)[6] 1e-04 1e-02 3e-03 1e-04 6e-04 3e-04 1e-03 1e-03 1e-04 2e-04

oF2(Di)[i] 1e-05 2e-06 8e-05 0.99 2e-05 3e-04 1e-05 2e-05 3e-06 2e-06

max(oF2(Di)) 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

cargmax(oF2(Di))
cat cat cat cat cat cat cat cat cat cat

i 1 2 3 4 5 6 7 8 9 10

oF3(Di)[6] 1e-02 0.84 0.22 6e-03 1e-02 0.26 0.14 0.12 2e-02 0.11

oF3(Di)[i] 1e-05 3e-06 1e-03 0.99 2e-05 0.26 5e-05 6e-05 4e-06 5e-06

max(oF3(Di)) 0.98 0.84 0.77 0.99 0.98 0.73 0.86 0.88 0.97 0.89

cargmax(oF3(Di))
cat dog cat cat cat cat cat cat cat cat

Table 4. Label values in the category c6, target class ci, maximum probability and its
corresponding class given by VGG-16 for the filtered ancestor F4(A) and the filtered
adversarial images F4(Di) (i 6= 6).

i 1 2 3 4 5 6 7 8 9 10

oF4(Di)[6] 1e-03 8e-05 1e-02 0.15 3e-04 0.99 3e-04 1e-02 1e-03 5e-05

oF4(Di)[i] 0.94 0.99 0.97 0.84 0.99 0.99 0.99 0.98 0.99 0.99

max(oF4(Di)) 0.94 0.99 0.97 0.84 0.99 0.99 0.99 0.98 0.99 0.99

cargmax(oF4(Di))
plane car bird cat deer dog frog horse ship truck

Table 5. Label values in the category c6, target class ci, maximum probability and
its corresponding class given by VGG-16 for the filtered ancestor F3 ◦ F4(A) and the
filtered adversarial images F3 ◦ F4(Di) (i 6= 6).

i 1 2 3 4 5 6 7 8 9 10

oF3◦F4(Di)[6] 0.17 0.99 0.75 0.11 8e-02 0.91 0.51 0.32 0.22 0.58

oF3◦F4(Di)[i] 3e-05 1e-06 3e-03 0.88 3e-05 0.91 1e-04 8e-05 8e-06 7e-06

max(oF3◦F4(Di)) 0.82 0.99 0.75 0.88 0.91 0.91 0.51 0.67 0.77 0.58

cargmax(oF3◦F4(Di))
cat dog dog cat cat dog dog cat cat dog

the c6 probabilities of the F (Di) are very low, and there is a category c 6= c6 of
probability strictly larger. Only one adversarial image reverts to the dog class
after being filtered (filter F3, class 2). The noticeable predominance of the cat
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class as the predicted category of the filtered images is likely due to the similarity
in features of the CIFAR-10 dog and cat images that VGG-16 was trained on.
Another reason for the inefficacy of filters F1, F2 and F3 to protect VGG-16 for
the untargeted scenario is that the c6 probability of F (A) is drastically reduced
from the initial 0.9996387 of A, which is undesired. Although adversarial for the
untargeted scenario, these filtered images can not be considered adversarial for
the target scenario. Still, almost all F (Di) are classified in the same category cat
as F (A), hence follow F (A)’s pattern.

Filters F4 and F3 ◦ F4 do not significantly reduce the c6 probability of F (A)
(Tables 4 and 5). The F4(Di)s are classified in ci with high confidence, and are
definitively adversarial for the untargeted scenario. Moreover, they are all adver-
sarial for the target scenario, while F4(A) simultaneously remains classified as
dog. In that sense, our EAtarget

L2
attack is robust against the unsharp mask filter

for the target and a fortiori the untargeted scenario.

The final filter F3◦F4 has a particular impact. First, F3◦F4(A) remains classified
as dog. Second, the c6 probabilities of the F3 ◦ F4(Di)s (Table 5) are either the
largest or the second largest. Out of the 9 adversarial images, 4 reverted to the
dog class after filtering, while the other 5 were classified as cat, with dog being
the second most likely category. Hence the F3 ◦ F4 combination of filters, which
brings back a significant proportion of filtered images to the ancestor category,
may render our EA-based attack less effective, not only for the target, but also
for the untargeted scenario.

7 The variant EAtarget,F
L2

Results of the previous section lead to the conception of EAtarget,F
L2

. This variant

of EAtarget
L2

natively takes into account the goal to create adversarial images that
remain adversarial for the target scenario once filtered, in addition to remaining
close to the ancestor and being classified as belonging to a target category. The
main modification is clearly in the fitness function :

fitFL2
(ind, gp) = A(gp, ind)(oind[ct] + oF (ind)[ct])−B(gp, ind)L2(ind,A) (4)

where the last component measures the probability that the individual filtered
with F is classified as the target category. Since F3 ◦ F4 is the only filter which
can revert a significant proportion of the adversarial images to c6, it makes sense
to explore EAtarget,F3◦F4

L2
. For the sake of consistency, the range of pixel value

modification is set to ±3 as well for EAtarget,F3◦F4

L2
.

Running EAtarget,F3◦F4

L2
for the target scenario on the same dog ancestor image

as during the previous experiments leads to the DF3◦F4
i adversarial images pic-

tured in Figure 3.
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Fig. 3. Comparison of the ancestor A in the 6th position with the adversarial images
DF3◦F4

i = EAtarget,F3◦F4
L2

(A, ci) in the ith position (i 6= 6, from left to right). VGG-16

classifies DF3◦F4
i as belonging to the target category ci with probability ≥ 0.95.

The ancestor image A, and the adversarial images DF3◦F4
i = EAtarget,F3◦F4

L2
(A)

(i 6= 6) pictured in Figure 3 are tested against the filters of section 5. Figure 4
shows the outcome of this process. More precisely, from left to right, the picture
in the ith position on the kth row represent F (DF3◦F4

i ) for i 6= 6 and F (A) for
i = 6, filtered with F = Fk for 1 ≤ k ≤ 4, and F = F3 ◦ F4 for k = 5.

Fig. 4. Comparison of the impact of filters on the ancestor A and on the adversarial
images DF3◦F4

i . The kth row represents F (A) (in 6th position) and F (DF3◦F4
i ) (in ith

position, i 6= 6), where F = Fk for 1 ≤ k ≤ 4, and F = F3 ◦ F4 for k = 5.

These filtered images are given to VGG-16 for classification. Table 6 is produced
with the filters F1, F2, F3, while Table 7 is produced with F4, and Table 8 with
F3 ◦ F4. Each Table has (groups of) rows showing the probability of the filtered
images for the c6 category, the target class ci, the maximum probability and
its corresponding class outputted by VGG-16, respectively. In all tables, we set
DF3◦F4

6 = A to ease the notations.

The first outcome of Tables 6, 7 and 8 is that the EAtarget,F3◦F4

L2
attack is robust

against all individual filters considered for the untargeted scenario. This result
is not surprising, since the Fk (1 ≤ k ≤ 4) filters were already not a good de-
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Table 6. Label values in the category c6, target class ci, maximum probabil-

ity max o = max

(
o
F
(
DF3◦F4
i

)
)

and its corresponding class cmax, where cmax =

arg max

(
o
F
(
DF3◦F4
i

)
)

given by VGG-16 for the filtered ancestor F (A) and the fil-

tered adversarial images F (DF3◦F4
i ) (i 6= 6) for F = F1 (1st group of 5 rows), F2 (2nd

group) and F3 (3rd group).

i 1 2 3 4 5 6 7 8 9 10

o
F1

(
DF3◦F4
i

)[6] 3e-03 2e-03 8e-04 1e-03 1e-03 1e-03 7e-03 0.11 1e-03 1e-04

o
F1

(
DF3◦F4
i

)[i] 2e-03 1e-04 7e-05 0.99 6e-04 1e-03 0.22 5e-05 1e-02 0.99

max o 0.58 0.66 0.97 0.99 0.85 0.99 0.73 0.86 0.75 0.99

cmax frog cat cat cat frog cat cat cat frog truck

i 1 2 3 4 5 6 7 8 9 10

o
F2

(
DF3◦F4
i

)[6] 2e-04 3e-04 6e-03 1e-04 1e-03 3e-04 6e-03 1e-03 3e-04 1e-03

o
F2

(
DF3◦F4
i

)[i] 3e-05 3e-06 2e-04 0.99 4e-05 3e-04 2e-05 5e-05 4e-06 3e-06

max o 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

cmax cat cat cat cat cat cat cat cat cat cat

i 1 2 3 4 5 6 7 8 9 10

o
F3

(
DF3◦F4
i

)[6] 9e-04 4e-02 1e-03 3e-04 4e-02 0.26 4e-02 4e-03 1e-02 0.10

o
F3

(
DF3◦F4
i

)[i] 0.84 0.17 0.99 0.99 0.88 0.26 0.84 0.98 1e-02 8e-02

max o 0.84 0.72 0.99 0.99 0.88 0.73 0.84 0.98 0.97 0.80

cmax plane cat bird cat deer cat frog horse cat cat

Table 7. Label values in the category c6, target class ci, maximum probability

max o = max

(
o
F4

(
DF3◦F4
i

)
)

and its corresponding class cmax, where cmax =

arg max

(
o
F4

(
DF3◦F4
i

)
)

given by VGG-16 for the filtered ancestor F4(A) and the fil-

tered adversarial F4(DF3◦F4
i ) (i 6= 6).

i 1 2 3 4 5 6 7 8 9 10

o
F4

(
DF3◦F4
i

)[6] 4e-04 6e-05 4e-03 6e-02 4e-04 0.99 3e-04 5e-03 1e-04 1e-04

o
F4

(
DF3◦F4
i

)[i] 0.96 0.99 0.99 0.93 0.97 0.99 0.99 0.99 0.99 0.98

max o 0.96 0.99 0.99 0.93 0.97 0.99 0.99 0.99 0.99 0.98

cmax plane car bird cat deer dog frog horse ship truck

fense for the CNN when using adversarial images created with EAtarget
L2

. Hence,

although the DF3◦F4
i adversarial images were only designed to circumvent filter

F3 ◦ F4, they are also robust against filters F1 to F4.
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Table 8. Label values in the category c6, target class ci, maximum probability

max o = max

(
o
F3◦F4

(
DF3◦F4
i

)
)

and its corresponding class cmax, where cmax =

arg max

(
o
F3◦F4

(
DF3◦F4
i

)
)

given by VGG-16 for the filtered ancestor F3 ◦ F4(A) and

the filtered adversarial F3 ◦ F4(DF3◦F4
i ) (i 6= 6).

i 1 2 3 4 5 6 7 8 9 10

o
F3◦F4(D

F3◦F4
i )

[6] 6e-05 2e-04 1e-04 2e-04 1e-04 0.91 1e-04 1e-04 5e-04 8e-05

o
F3◦F4(D

F3◦F4
i )

[i] 0.99 0.99 0.99 0.99 0.99 0.91 0.99 0.99 0.99 0.99

max o 0.99 0.99 0.99 0.99 0.99 0.91 0.99 0.99 0.99 0.99

cmax plane car bird cat deer dog frog horse ship truck

None of the EAtarget,F3◦F4

L2
adversarial images filtered with F1 to F3 were clas-

sified as dog. Nonetheless, the predicted categories vary between filters. While
the Gaussian filter predicts cat for all images, the inverse and median filters
also predict the target class for some images. By simply observing the images
of Figure 4, one can see that the Gaussian filter produces the blurriest images,
hence reducing not only the object details, but also the noise added by the EA.
This might explain why the predictions corresponding to the Gaussian-filtered
images do not contain much information related to the target class.

As is the case with EAtarget
L2

, the adversarial images produced by EAtarget,F3◦F4

L2
,

once filtered with F4 are all classified as the target class, hence being adversarial
for the target scenario. This is probably due to the fact that, while the unsharp
mask increases the contrast of the dog object, it also intensifies the noise added
by the EA, which directs the image towards the adversarial class. The noisy
aspect of the filtered images can be seen in the 4th row of Figure 4.

Finally, Table 8, corresponding to F3 ◦F4, shows a clear improvement compared
to Table 5, as EAtarget,F3◦F4

L2
produces images that are no longer vulnerable to

this filter for the target scenario.

Although EAtarget,F3◦F4

L2
provides an increase in robustness compared to EAtarget

L2
,

it is also interesting to compare the time efficiency of the two algorithms. Ta-
ble 9 gives the number of generations and the amount of time required by
EAtarget,F3◦F4

L2
to create the adversarial images DF3◦F4

i .

Comparing Tables 2 and 9 shows that the higher robustness of EAtarget,F3◦F4

L2
re-

quires both a longer execution time per generation and more generations. Firstly,
EAtarget,F3◦F4

L2
must satisfy not two, but three conditions. More generations are

needed to have not only the plain adversarial images with a target class prob-
ability higher than 0.95, but also its filtered version. Secondly, the drop in the
average number of generations computed per second is due to the additional
filtering step in EAtarget,F3◦F4

L2
.
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Table 9. For 1 ≤ i ≤ 10, i 6= 6, the 2nd row specifies the number of generations
required by EAtarget,F3◦F4

L2
to create the adversarial images DF3◦F4

i . The 3rd row gives

the total execution time, while the 4th row gives the average number of generations
per second.

i 1 2 3 4 5 7 8 9 10

# of generations 1495 1164 717 194 1812 820 541 1262 1330

total time (in seconds) 159.2 136.04 80.23 22.85 199.08 82.98 53.26 133.33 139.01

# of generations/second 9.39 8.56 8.94 8.49 9.1 9.88 10.16 9.47 9.57

8 Conclusion

This ongoing work addresses the issue of the robustness against filters of adver-
sarial images fooling CNNs. By considering VGG-16 trained at image classifica-
tion on CIFAR-10, adversarial images Di created by the EAtarget

L2
evolutionary

algorithm performed on the dog instantiation of the ”target scenario” with an-
cestor image A, and specific filters F1, F2, F3, F4, we first prove that the F (Di)
images, while no longer adversarial for the target scenario for F = F1, F2, F3,
are not only adversarial for the untargeted scenario, but foremost follow F (A)’s
pattern for these three individual filters. We also prove that the F4(Di) images
remain adversarial for the target scenario, and a fortiori for the untargeted sce-
nario, while F4(A) is classified in the same category as A. Hence, by essentially
following the ancestor’s behavior towards these four individual filters, the adver-
sarial images Di acquire an additional similarity with A. These results confort
their adversarial profile, and enhance the robustness and quality of the EAtarget

L2

attack.

We secondly show that the F3◦F4 combination of filters brings back a significant
proportion of filtered images in the ancestor category, while F3 ◦F4(A) is classi-
fied in the same category as A. Since this may render EAtarget

L2
less effective, not

only for the target, but also for the untargeted scenario, a third outcome of this
work is the construction of the variant EAtarget,F

L2
of the evolutionary algorithm,

that natively takes into account the robustness of adversarial images against a
generic filter F . We instantiate this EA on F = F3 ◦ F4. The produced images
DF3◦F4
i are adversarial against F3 ◦F4 for the target scenario, but also essentially

against F4 and F3. They are to a large extent adversarial against F1 and F2 for
the untargeted scenario as well. The performance of this new EA is compared
to that of EAtarget

L2
, showing that the provided robustness comes at the cost of

more, as well as longer generations.

These preliminary results lead to a series of future work. We intend to extend
our methodology to all images of Figure 10 of [4], beyond the sole dog series of
the present article, potentially with more than one ancestor and more than one
descendant in each given category. We also plan to assess the efficiency of the
creation of adversarial images with EAtarget,F

L2
depending on which ancestor im-
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age is provided as input: either the original A or the processed adversarial image
EAtarget

L2
(A, ci). An important direction would be to consider larger images, such

as those of ImageNet [7], since the small 32× 32 images of this study are natu-
rally grainy. Finally, one could consider to address these issues with a different
choice of the measure of proximity between images, for instance with SSIM [15]
instead of L2, and with different scenarios, for instance the flat scenario of [4].
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1 Introduction

Lot sizing problems have been studied widely in the literature over the last decades. The expected
output of lot sizing is to give a complete picture over a planning horizon of how many parts to
produce at each period and how many pieces to carry in inventory. It takes its origin in the well-
known Economic Order Quantity (EOQ) model [1] under the assumption of single item, constant
demand and infinite planning horizon. Since then, numerous researchers have built more realistic
models to tackle real world problems. A literature review of this problem have been done and the
problem positioning is highlighted in Figure 1.

Fig. 1. Problem Positioning

2 Tire Manufacturing Process

The whole production process can be divided in 5 major sub-processes (See Fig.3) [11].

First, a banbury mixer creates a homogeneous rubber material based on natural rubber, carbon
black, resins and other chemicals. All these components are mixed in a banbury mixer to obtain
the homogeneous rubber material which is the basic raw material to build a tire, in the form of
thin layers. In addition to the rubber compounds, two more raw materials are necessary to build
a tire : textile reinforcements and steel wires, ensuring its rigidity and geometry. The second sub-
process is the production of semi-finite products. Two different technologies are used. The first
one is the extruding and calendaring process. Different types of rubber material from the first
sub-process are warmed up, mixed and then pushed through dies of the appropriate shape. The
second one is the profiling and cutting process. Textiles are cut at the right dimensions thanks to
fabric bias cutter to provide crown plies and fabric used in the casing plies (among other pieces
of fabric). Then the task of building the tire begins. This third sub-process is called the assembly
sub-process. The tire building machine also needs a resource called a drum (a rotative cylinder) on
which the different parts of the tire are assembled. The end result is called a “green” or uncured
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Fig. 2. Tire Manufacturing Process

tire. Fourth is the curing and vulcanizing process. A tire-specific mold is placed into the curing
machine, which is also called a heater or curing press, and the green tire is put into that mold.
The increase of temperature causes the sulfur contained in the rubber compound to bound with
the rubber molecules. This is what we call vulcanization. The rubber is then transformed from a
plastic to an elastic state. When ejected from the mold and after cooling the tire has taken on his
final shape and properties. Finally inspection and finishing operations remains before the tire is
stored in the warehouse.

3 Problem description and Contribution

We focus on the curing sub-process production planning problem. It is the most important stage
as it has been identified as the bottleneck by the company, requires consequent setup times and is
highly restricted by tire - heater eligibility matrix. The plant management face a complex produc-
tion planning problem with a wide portfolio of tires to be produced on unrelated parallel machines
with numerous eligibility constraints. Furthermore market trends tend to dilute demand signal on
more and more different references of tire. Thus the portfolio is getting wider and wider to match
customer expectations and makes even more difficult the planning problem of the company. The
production is based on a make-to-stock inventory policy, so that the inventory level stays between
a minimum and a maximum level calculated to prevent shortage and keep Working Capital Re-
quirement to a minimum.

During the curing process the green tire is put into a mold that provides a specific pattern
for the tire. Each mold is tire-specific: it can be used for exactly one type of tire. For some tire
references several molds are available, though for most tires there is only one mold. Every mold
can be placed in several heaters, respecting the tire-heater eligibility matrix. Still each heater can
contain at most one mold at a time. The curing time depends on the tire produced and the heater
used. The heaters capacity therefore links together different tire references that compete for the
same resource - available time of a given heater where the molds can be placed in. Except for
the first and the last period of the production campaign, tires are produced in a continuous run
and production is always done at full capacity. This type of production is often referred as “all-or-
nothing” production. Also, only one type of tire can be cured in a heater within one period. Thus
our problem is classified as a small-bucket lot sizing problem.

In [2] a MIP formulation of the presented problem is proposed. The contribution of this study
is to explore the sensitivity of one particular input parameter which is very critical and erratic
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according to the company : the tire-heater eligibility constraint. We use the same solving method
as in [2] and generate different scenarios for the tire-heater eligibility matrix with the company
supply chain manager’s help. This study allows the company to use our modelling as a decision
support system and evaluate different scenarios for future projects.

4 Conclusion

The originality of the problem studied in this paper is the application of a simultaneous lot-sizing
and scheduling problem in tire industry with specific constraints. This work is a continuation of
the previous work presented in [2]. It allows the company to make a step further in his journey to
industry 4.0 and an agile and digital manufacturing system.
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Abstract. The paper studies a vehicle routing problem with simultaneous pickups and de-
liveries that arises in the retail sector, which considers a heterogeneous fleet of vehicles, time
windows of the demands, practical restrictions on the drivers and a roster specifying the order
of vehicle loading at the depot. The high competition in this industry requires that a viable
optimisation approach must achieve a good balance of solution time, quality and robustness.
In this paper, a novel iterated local search algorithm is proposed which dynamically reduces
the neighbourhood so that only the most promising moves are considered. The results of com-
putational experiments on real-world data demonstrate the high efficiency of the presented
optimisation procedure in terms of computation time, stability of the optimisation procedure
and solution quality.

Keywords: Vehicle routing problem · Iterated local search · Neighbourhood reduction

1 Introduction

This paper considers a vehicle routing problem with simultaneous pickups and deliveries (VRP-
SPD) which arises in the retail sector. The features of this problem include: a heterogeneous fleet
of vehicles, time window for pickups and deliveries, open routes, restriction on shift length and
loading roster at the depot. In spite of the practical importance of these features, few applications
in the literature considered all of them simultaneously [9], [6]. Furthermore, the objective of the
considered problem is to maximise the number of allocations which is practically essential, but is
rarely considered in the literature [9].

Since VRPSPD is NP-hard in the strong sense [3], the majority of the publications in this topic
present various heuristics and metaheuristics [9], [6]. In practice, a scheduler expects to produce
a good solution within a short time limit, typically no more than one minute. In contrast, most
research in the literature focuses more on solution quality. In this paper, an iterated local search [7]
based optimisation algorithm is presented to achieve a satisfactory balance between solution quality
and computation time.

The iterated local search algorithm (ILS) has been widely used to solve combinatorial optimi-
sation problem [7]. It iteratively generates a sequence of local optimums. At each iteration a local
search is performed on a problem-specific neighbourhood structure. A perturbation mechanism is
employed to avoid local optimum and expand the search space. By allowing infeasible solutions in

? Supported by an Australian Government Research Training Program Scholarship
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the designed neighborhood structure [12], [5], ILS has been demonstrated to be much faster than
the state-of-the-art for solving the Workforce Scheduling and Routing Problem, which is, from a
practical application viewpoint, similar to the studied problem in this paper.

The most time-consuming component in ILS is the evaluation of potential moves in the local
search procedure due to the large size of the neighbourhood of the current solution. It is also critical
to select proper moves to increase the probability of converging to the global optimum. This paper
presents a mechanism to reduce the neighbourhood dynamically, which makes the move evaluation
faster, and at the same time direct search in the most promising part of the neighbourhood.

Contributions of this paper include

– development of a MIP model for a VRPSPD problem with many features from the retail sector
– introduction of neighbourhood reduction to speedup the ILS algorithm
– computational studies on real-world data

The remainder of the paper is organised as follows. Section 2 presents the problem formula-
tion. Section 3 describes the proposed iterated local search. Section 4 presents the results for the
computational experiments. Section 5 concludes the paper.

2 Problem statement

The considered vehicle routing problem can be stated as follows. Let G = {L,A} be a directed
graph, where the set of vertices L = {0} ∪C and C = {1, 2, ..., l}, the set of arcs A = AD ∪AC and
AD = {(0, i)|i ∈ C}, AC = {(i, j)|i 6= j,∀i, j ∈ C}. Vertex 0 represents the depot and the remaining
vertices represent the l customers. Each arc (i, j) ∈ A has an associated travel time ti,j .

The delivery to customer i ∈ C is characterised by its weight wdi and volume vdi . The pickup
from customer j ∈ C is characterised by its weight wpi and volume vpi . For customer i ∈ C, the
associated time window [ai, bi] indicates the earliest and latest time when the driver can start the
corresponding services, and let pi > 0 be the service time required for the driver to complete the
service.

Let T be the set of all vehicles. Each vehicle i ∈ T is differed by its weight capacity Wi and
volume capacity Vi. All vehicles i ∈ T depart from the same single depot and are not required
to return to depot after serving all allocated customers. The driver in each vehicle i ∈ T finishes
the shift after serving the last allocated customers. Due to the loading capacity of the depot, each
vehicle i ∈ T arrives at the depot at the specified starting time ri with loading time δi. Furthermore,
there exists an upper bound Si on the shift time of the driver in vehicle i ∈ T , which is the length
of time interval between the time when driver starts loading at the depot and the time when driver
finishes the service of the last allocated customers.

Each customer i ∈ C can be served only once, but not all vehicles are capable to serve certain
customers. In this paper, two types of vehicles are considered, i.e., the one-man vehicle T ′ ⊂ T and
the two-men vehicle T ′′ ⊂ T . The customers are also classified as either one-man customer C ′ ⊂ C,
or two-men customer C ′′ ⊂ C. The one-man customer can be served by all vehicles, while two-men
customer can only be served by two-men vehicles.

The objective is to maximise the total number of allocated customer services while respecting
all the constraints on drivers, vehicles and the depot.

Let xijk be a binary variable indicating if customer j is the immediate predecessor of customer k

in the route of vehicle i; ηij be a binary variable indicating if customer j is allocated to vehicle i; γij
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be a binary variable indicating if customer j is the first customer to visit after vehicle i departing
from the depot; θij be a binary variable indicating if customer j is the last customer in the route of

vehicle i. Denote the time when driver in vehicle i starts serving customer k by sik; the weight of
the vehicle when leaving customer j by yj ; the volume of the vehicle when leaving customer j by
zj . The considered problem can be formulated as follows:

J = max
∑

i∈T

∑

j∈C
ηij (1)

subject to
∑

i∈T
ηij ≤ 1, ∀j ∈ C (2)

∑

j∈C
γij ≤ 1, ∀i ∈ T (3)

γij +
∑

k∈C
xik,j = ηij , ∀i ∈ T, j ∈ C (4)

θij +
∑

k∈C
xij,k = ηij , ∀i ∈ T, j ∈ C (5)

aj ≤ sij ≤ bj , ∀j ∈ C, i ∈ T (6)

(ri + δi + t0,k)γik ≤ sik, ∀i ∈ T, k ∈ C (7)

sij + (pj + tj,k)xij,k + (ak − bj)(1− xij,k) ≤ sik, ∀i ∈ T, ∀(j, k) ∈ AC (8)

pj + sij − ri − (pj + bj − ri)(1− θij) ≤ Si, ∀j ∈ C, i ∈ T (9)
∑

k∈C
wdkη

i
k ≤Wi, ∀i ∈ T (10)

yk ≤Wi + (max
e∈T

We −Wi)(1− ηik), ∀i ∈ T, k ∈ C (11)

∑

j∈C
wdj η

i
j − wdk + wpk − (max

e∈T
We − wdk + wpk)(1− γik) ≤ yk, ∀i ∈ T, k ∈ C (12)

yj − wdk + wpk − (max
e∈T

We − wdk + wpk)(1− xij,k) ≤ yk, ∀i ∈ T, ∀(j, k) ∈ AC (13)

∑

k∈C
vdkη

i
k ≤ Vi, ∀i ∈ T (14)

zk ≤ Vi + (max
e∈T

Ve − Vi)(1− ηik), ∀i ∈ T, k ∈ C (15)

∑

j∈C
vdj η

i
j − vdk + vpk − (max

e∈T
Ve − vdk + vpk)(1− γik) ≤ zk, ∀i ∈ T, k ∈ C (16)

zj − vdk + vpk − (max
e∈T

Ve − vdk + vpk)(1− xij,k) ≤ zk, ∀i ∈ T, ∀(j, k) ∈ AC (17)

∑

i∈T ′

∑

k∈C′′

ηik = 0 (18)

xij,k ∈ {0, 1}, ∀{j, k} ∈ AC , i ∈ T (19)
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ηij ∈ {0, 1}, ∀i ∈ T, j ∈ C (20)

θij ∈ {0, 1}, i ∈ T, j ∈ C (21)

yj ≥ 0, ∀j ∈ C (22)

zj ≥ 0, ∀j ∈ C (23)

where (7) and (3) guarantee that a vehicle either stays at the depot or visits exactly one customer;
(4) and (5) ensure that each customer must have an immediate successor from the same route except
for the last customer; together with (2) ensure that a customer is visited by at most one vehicle;
the arrival time, loading time at the depot, travelling time between vertices, the time window are
taken into account by (7), (8) and (6)-(8) respectively; the shift length, weight capacity, volume
capacity are enforced by (9), (10)-(13), and (14)-(17) respectively; (6) and (8) eliminate subtours
by virtue of pi > 0.

3 ILS with neighbourhood reduction

A critical component of ILS is the design of proper neighbourhood structures. It has been demon-
strated by many publications that permitting infeasible solutions in local search together with
the use of an augmented objective function can significantly boost the performance of the meta-
heuristics in the field of vehicle routing problem [1, 2, 8, 12]. The neighbourhood structures con-
sidered in this paper are defined by the commonly used edge exchange operators, which allows the
violation of the time window, shift length, weight and volume capacity constraints. However, the
algorithm presented in this paper reduces the size of the neighbourhood by only allowing moves
that lead to more allocations than the best known feasible solution. To be specific, let J(s) be the
number of allocated customers in a solution s which can be infeasible; H(s,O) be the neighbour-
hood of a solution s induced by an edge exchange operator O permitting infeasible solution. The
corresponding reduced neighbourhood is defined as

Ĥ(s,O) = {s′ ∈ H(s,O)|J(s′) > J(s∗)}

where s∗ be the best known feasible solution. In the studied problem, it is permitted to have
customers not allocated. Therefore, feasible solutions can be efficiently generated using simple
heuristics (see Section 3.1 for more details). It should be noted that the reduced neighbourhood
is dynamic since s∗ can be updated in the iterative process of ILS. Since ILS can quickly find
good solutions, the size of the reduced neighbourhood becomes significantly smaller after just a
few iterations, which leads to faster convergence of the algorithm. Also, the solution process can be
more stable because only solutions with more allocations are considered in the local search process.

The paper considers two edge exchange operators

– inter-route swap O1: exchanges a sequence of up to two consecutive customers in a route with
a sequence of up to two consecutive customers in another route; exchanges a sequence of up to
two consecutive customers in a route with at most one unallocated customer;

– intra-route swap O2: extract at most two consecutive customers from a route and insert it into
a different position of the same route; reverse the order of a sequence of consecutive customers
in the route.

It should be noted that O2 cannot increase the number of allocated customers. Therefore, it is used
mainly for repair infeasibility in the local search procedure.
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In the local search procedure, the solution in the reduced neighbourhood is evaluated based on
the augmented objective function

f(s) = J(s)− α× TW (s)− β ×WD(s)− σ ×Weight(s)− ψ × V olume(s) (24)

where TW (s), WD(s), Weight(s), V olume(s) are the total violation for constraints on time win-
dow, working duration, weight, volume corresponding to s and α, β, σ, ψ are non-negative weights
for TW (s), WD(s), Weight(s), V olume(s). Furthermore, TW (s), WD(s), Weight(s), V olume(s)
are computed by the technique used in [8, 10, 11].

The details of the local search procedure based on the reduced neighbourhood (NRS) are given
in Algorithm 1.

Algorithm 1 NRS(s)

1: while TRUE do
2: if Ĥ(s,O1) == ∅ then return s∗ end if
3: s′ = s
4: s = argmaxx{f(x)|x ∈ Ĥ(s,O1)}
5: if f(s′) < f(s) then
6: s′ = s
7: if s is feasible then s∗ = s end if
8: else
9: Break

10: end if
11: end while
12: s = s′

13: if Ĥ(s,O2) 6= ∅ then s = argmaxx{f(x)|x ∈ Ĥ(s,O2)} end if
14: if f(s′) < f(s) then
15: if s if feasible then s∗ = s end if
16: else
17: s = s′

18: end if
19: return s

In this pseudocode, the input solution s is permitted to be infeasible. The edge exchange operator
O1 is applied until a local optimum is found under the reduced neighbourhood Ĥ(s,O1). Since the
size of the reduced neighbourhood is related to the number of allocations in the current global
optimum s∗, s∗ is updated whenever a new global optimum is found (line 7 and 15). It should be

noted that Ĥ(s,O1) is empty only if the current s∗ has all customers allocated, which is also the
global optimum. Following the strategy in [12], local search based on the edge exchange operator O2

is performed for at most one iteration after the local optimum under O1 is found (line 13). In line

13, Ĥ(s,O2) is empty only if s is a feasible solution. The output of NRS is either the input solution,
or a solution with more allocated customers and higher augmented objective function value.
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Algorithm 2 ILS with neighbourhood reduction (ILS-NR)

1: s′ = INITIAL()
2: s∗ = s′

3: t = J(s∗)
4: h = 1
5: while s∗ has unallocated customers and h ≤M do
6: α = β = σ = ψ = 1
7: e = 1
8: repeat
9: s̄ = s′

10: s′ =NRS(s′)
11: if f(s̄) 6= f(s′) then Update α, β, σ, ψ end if
12: e+ +
13: until f(s̄) == f(s′) or s∗ has unallocated customers or e > E
14: if J(s∗) > t then
15: t = J(s∗)
16: h = 1
17: end if
18: s′ = PERTURB(h)
19: h+ +
20: end while
21: return s∗

The ILS with neighbourhood reduction (ILS-NR) is now presented in Algorithm 2. It begins
with the INITIAL procedure which generates a feasible solution for the problem (line 1). The details
of INITIAL is given in Section 3.1. This solution is also the current best known solution s∗ (line 2).
It should be noted that the current best known s∗ is a global variable and may be updated inside
the NRS and PERTURB procedure.

After the call of the INITIAL procedure, the WHILE loop (line 5 - 20) is executed if the current
best known solution s∗ has at least one unallocated customer. The WHILE loop terminates if the
current best known solution allocates all customers, or counter h exceeds M which is a parameter.
Each iteration of the WHILE loop (line 5 - 20) attempts to find a solution with more allocations
than the current best known solution s∗ applying the local search procedure (line 8 - 13).

Each iteration of the local search (line 8 - 13) is an applications of NRS which aims to find a
solution with a better value of the augmented objective function (24). The penalties for violation
of corresponding constraints are updated to force the convergence to feasible solutions. Following
[1, 2, 12], at the beginning of each iteration of the local search (line 8 - line 13), the initial value for
weights α, β, σ, ψ in the augmented objective function (24) are set to one (line 6). If NRS returns
an improving solution, a weight is multiplied by 1+∆ if the corresponding constraint has a positive
violation; otherwise the weight is divided by 1 +∆. ∆ is a parameter that controls the strength of
the adjustment. This weight updating mechanism is effective in producing feasible solutions, which
explains why O2 is only applied for one iteration in NRS (line 10). Local search terminates if either
the NRS procedure fails to obtain a solution with better value of the augmented objective function
(24), the current best known solution s∗ allocates all customers or the count e exceeds E which is
a parameter.
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3.1 INITIAL procedure

The INITIAL procedure is a sweep heuristic [4] that constructs a feasible solution for the problem.
First a list of customers is constructed based on the geographic coordinates of the customers. Then
the customers are inserted to a route one by one until no customer can be inserted, in which case
a new route is constructed. Since one-man vehicles can only serve one-man customers, whereas
two-men vehicles can serve all-types of customers, the procedure constructs the routes for one-man
vehicles first, then followed by the routes for two-men vehicles. When inserting a customer into the
route, the procedure chooses the insertion position that respects all the constraints and gives the
smallest increase in travel time. The procedure terminates until either no customers can be inserted
into the vehicle’s route, or all customers have been allocated.

3.2 PERTURB procedure

The PERTURB procedure expands the search space by randomly perturbing the current best
solution s∗. An unallocated customer is randomly chosen, and then inserted into a position among
the routes which gives the largest value of (24) when α = β = σ = ψ = 1. Then, two randomly
selected sequences of consecutive customers are swapped between two randomly selected routes. This
random swap will be performed multiple times which depends on the counter h in the pseudocode
for the ILS-NR (Algorithm 2). To be specific, the number of swaps starts from one and increases
by one each time when counter h in Algorithm 2 increase. The current best solution s∗ may also
be updated in this process.

4 Computational study

This section presents the results of computational experiments aimed at the evaluation of the
performance of ILS-NR. A total of 60 instances were provided by a transportation company working
in the retail industry. Each instance represents the real-world situation on a particular day. The
travel time from the location of the depot to each customer, and the travel time between the location
of each customer are specified by a symmetric matrix. The time when driver arrives at the depot is
specified by a roster and each driver can work for a maximum of 10 hours. ILS-NR is implemented
in c++, and compiled with g++ O3. The following settings are used throughout the experiments
[12]:

– The maximum permissible number of consecutive unsuccessful attempts to improve the current
best known solution (the parameter M in Algorithm 2) is computed as |C|+ λ|T |), where C is
the set of all customers, T is the set of all vehicles, λ = 10.

– The maximum number of exchange operations in the perturbation is five.
– The parameter ∆ for adjusting the weights (Section 3) is 0.5.

In addition, the maximum permissible iterations for local search (the paramter E in Algorithm 2)
is 100. All computational experiments are conducted on a computer with Intel Xeon CPU E5-2697
v3 2.60GHz and 8GB RAM.

We first compare the performance of ILS-NR with CPLEX which solves the IP model in Section
2. Furthermore, we test the performance of CPLEX when the best solution from ILS-NR is used as
a warm start. Both CPLEX and CPLEX with warm start have a time limit of 6 hours and memory
limit of 7.5GB RAM. Version 12.10 of CPLEX is used for all the tests. In Table 1, the groups
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Table 1: CPLEX vs ILS-NR vs CPLEX warm start

CPLEX ILS-NR CPLEX warm start

Instances |C| |T | Obj Gap(%) Time(s) Avg. Max. #Max Time(s) Input Obj Gap(%) Time(s)
M-2017-07-23 30 3 27 10.88 9112 28.00 28 30 0.13 28 28 0.00 3711
M-2017-07-24 26 2 21 9.52 14257 21.93 22 28 0.10 22 22 9.09 21600
M-2017-07-25 14 2 14 0.00 1 14.00 14 30 0.00 14 14 0.00 0
M-2017-10-08 28 2 24 12.50 10288 24.63 26 1 0.17 26 26 3.85 21600
M-2017-10-09 22 2 21 4.76 21600 21.00 21 30 0.03 21 21 4.76 21600
M-2017-10-10 22 2 17 11.76 21600 17.00 17 30 0.07 17 17 11.76 11304
M-2017-10-16 34 2 26 19.99 21600 26.10 27 3 0.30 27 27 15.55 21600
M-2017-10-17 24 2 21 9.52 21600 21.30 22 10 0.10 22 22 4.55 21600
M-2017-10-21 34 2 24 29.17 21600 26.87 28 1 0.33 28 28 12.75 21600
M-2017-10-24 17 2 17 0.00 3 16.90 17 27 0.00 17 17 0.00 0
M-2017-10-30 37 2 27 29.63 21600 28.90 30 1 0.40 30 30 16.85 21600
M-2017-12-22 72 7 66 9.09 21600 69.43 70 13 3.47 70 70 2.86 21600
M-2017-12-23 70 5 59 18.64 21600 65.80 67 3 3.47 67 67 4.48 21600
M-2017-12-24 70 5 50 40.00 21600 57.47 59 1 3.20 59 59 18.64 21600
M-2017-12-25 70 5 52 25.00 21600 57.50 59 1 3.40 59 59 10.17 21600
R-2017-07-23 47 5 47 0.00 463 47.00 47 30 0.00 47 47 0.00 1
R-2017-07-24 65 3 48 14.58 21600 52.13 53 5 2.60 53 53 3.77 21600
R-2017-07-25 43 4 42 0.00 19472 42.00 42 30 0.50 42 42 0.00 0
R-2017-10-08 88 6 80 8.71 21600 85.60 86 18 7.40 86 86 0.00 18582
R-2017-10-09 63 4 54 5.56 21600 55.27 56 8 2.37 56 56 1.79 21600
R-2017-10-10 44 5 44 0.00 593 44.00 44 30 0.00 44 44 0.00 0
R-2017-10-16 72 5 64 9.37 21600 68.67 69 20 3.50 69 69 1.77 21600
R-2017-10-17 37 4 34 8.82 5084 35.93 36 28 0.37 36 36 2.78 21600
R-2017-10-21 60 5 55 5.45 21600 58.00 58 30 1.80 58 58 0.00 1
R-2017-10-24 53 6 53 0.00 790 53.00 53 30 0.00 53 53 0.00 1
R-2017-10-30 71 7 69 2.90 21600 70.67 71 20 1.43 71 71 0.00 1
R-2017-12-12 52 4 49 6.12 21600 51.43 52 18 0.67 52 52 0.00 1
R-2017-12-19 52 4 46 10.87 21600 50.47 51 14 1.20 51 51 0.00 0
R-2017-12-22 62 4 53 15.09 21600 57.03 58 3 2.47 58 58 5.17 21600
R-2017-12-23 70 5 63 9.52 21600 67.73 68 22 3.23 68 68 1.47 21600
R-2017-12-24 70 5 56 10.71 21600 60.70 62 1 3.27 62 62 0.00 2
R-2017-12-25 70 5 65 7.69 21600 69.77 70 23 0.93 70 70 0.00 1
T-2017-07-23 64 5 63 1.59 21600 64.00 64 30 0.00 64 64 0.00 1
T-2017-07-24 70 5 67 2.99 21600 69.00 69 30 2.63 69 69 0.00 1
T-2017-07-25 57 4 55 3.64 21600 56.77 57 23 0.57 57 57 0.00 0
T-2017-10-08 65 8 65 0.00 3834 65.00 65 30 0.00 65 65 0.00 1
T-2017-10-09 43 7 43 0.00 31 43.00 43 30 0.00 43 43 0.00 1
T-2017-10-10 46 5 46 0.00 675 46.00 46 30 0.00 46 46 0.00 0
T-2017-10-16 63 7 63 0.00 6631 63.00 63 30 0.00 63 63 0.00 2
T-2017-10-17 56 4 49 12.24 21600 52.53 53 16 1.43 53 53 3.77 13380
T-2017-10-21 76 4 58 8.62 21600 61.93 62 28 4.23 62 62 1.61 21600
T-2017-10-24 62 4 52 10.05 21600 55.33 56 10 2.30 56 56 1.79 21600
T-2017-10-30 36 5 36 0.00 13 36.00 36 30 0.00 36 36 0.00 0
T-2017-12-12 63 7 63 0.00 1345 63.00 63 30 0.00 63 63 0.00 2
T-2017-12-19 54 5 54 0.00 923 54.00 54 30 0.00 54 54 0.00 1
T-2017-12-22 91 7 75 18.67 21600 88.73 89 22 7.47 89 89 0.00 7
T-2017-12-23 70 5 63 11.11 21600 69.93 70 28 0.67 70 70 0.00 1
T-2017-12-24 70 5 63 9.52 21600 67.10 68 3 3.77 68 68 1.47 21600
T-2017-12-25 70 5 64 9.37 21600 68.53 69 16 3.23 69 69 1.45 21600
T-2017-12-26 70 5 65 4.62 21600 67.97 68 29 3.07 68 68 0.00 1
A-2017-10-16 100 4 53 30.19 21600 61.73 63 2 4.90 63 63 9.52 21600
A-2017-12-22 100 7 76 22.37 21600 82.70 84 2 9.20 84 84 10.72 21600
B-2017-10-08 100 6 72 15.16 21600 79.60 80 18 8.70 80 80 3.65 21600
B-2017-10-16 100 5 71 15.49 21600 78.93 80 6 8.03 80 80 2.50 21600
B-2017-10-30 100 7 81 13.58 21600 86.93 88 5 9.40 88 88 4.55 21600
B-2017-12-22 100 4 58 41.79 21600 67.97 70 1 7.90 70 70 17.49 21600
C-2017-07-24 100 5 86 9.30 21600 92.83 93 25 8.77 93 93 1.65 21600
C-2017-10-16 100 7 96 2.08 21600 97.97 98 29 6.97 98 98 0.00 5
C-2017-10-21 100 4 67 20.47 21600 75.40 76 12 9.67 76 76 6.06 21600
C-2017-12-22 100 7 89 11.24 21600 97.87 99 1 10.20 99 99 0.00 5
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Table 2: ILS vs ILS-NR

ILS ILS-NR

Instances |C| |T | Avg. Max Time(s) Avg. % Max. % Time(s) %
M-2017-07-23 30 3 28.00 28 0.17 28.00 0.00 28 0.00 0.13 20.00
M-2017-07-24 26 2 21.57 22 0.13 21.93 -1.70 22 0.00 0.10 25.00
M-2017-07-25 14 2 14.00 14 0.00 14.00 0.00 14 0.00 0.00 0.00
M-2017-10-08 28 2 24.13 25 0.17 24.63 -2.07 26 -4.00 0.17 0.00
M-2017-10-09 22 2 21.00 21 0.07 21.00 0.00 21 0.00 0.03 50.00
M-2017-10-10 22 2 16.97 17 0.03 17.00 -0.20 17 0.00 0.07 -100.00
M-2017-10-16 34 2 25.83 26 0.33 26.10 -1.03 27 -3.85 0.30 10.00
M-2017-10-17 24 2 21.03 22 0.10 21.30 -1.27 22 0.00 0.10 0.00
M-2017-10-21 34 2 26.23 28 0.27 26.87 -2.41 28 0.00 0.33 -25.00
M-2017-10-24 17 2 17.00 17 0.03 16.90 0.59 17 0.00 0.00 100.00
M-2017-10-30 37 2 28.47 29 0.40 28.90 -1.52 30 -3.45 0.40 0.00
M-2017-12-22 72 7 69.30 70 4.37 69.43 -0.19 70 0.00 3.47 20.61
M-2017-12-23 70 5 65.70 67 4.33 65.80 -0.15 67 0.00 3.47 20.00
M-2017-12-24 70 5 57.47 59 3.87 57.47 0.00 59 0.00 3.20 17.24
M-2017-12-25 70 5 57.37 58 4.00 57.50 -0.23 59 -1.72 3.40 15.00
R-2017-07-23 47 5 47.00 47 0.00 47.00 0.00 47 0.00 0.00 0.00
R-2017-07-24 65 3 51.80 52 2.93 52.13 -0.64 53 -1.92 2.60 11.36
R-2017-07-25 43 4 42.00 42 0.67 42.00 0.00 42 0.00 0.50 25.00
R-2017-10-08 88 6 85.50 86 16.10 85.60 -0.12 86 0.00 7.40 54.04
R-2017-10-09 63 4 55.07 56 2.90 55.27 -0.36 56 0.00 2.37 18.39
R-2017-10-10 44 5 44.00 44 0.00 44.00 0.00 44 0.00 0.00 0.00
R-2017-10-16 72 5 68.90 70 4.73 68.67 0.34 69 1.43 3.50 26.06
R-2017-10-17 37 4 36.00 36 0.43 35.93 0.19 36 0.00 0.37 15.38
R-2017-10-21 60 5 58.00 58 2.30 58.00 0.00 58 0.00 1.80 21.74
R-2017-10-24 53 6 53.00 53 0.00 53.00 0.00 53 0.00 0.00 0.00
R-2017-10-30 71 7 70.77 71 1.33 70.67 0.14 71 0.00 1.43 -7.50
R-2017-12-12 52 4 51.10 52 1.10 51.43 -0.65 52 0.00 0.67 39.39
R-2017-12-19 52 4 50.50 51 1.47 50.47 0.07 51 0.00 1.20 18.18
R-2017-12-22 62 4 56.67 58 9.67 57.03 -0.65 58 0.00 2.47 74.48
R-2017-12-23 70 5 67.77 68 4.07 67.73 0.05 68 0.00 3.23 20.49
R-2017-12-24 70 5 60.73 61 3.73 60.70 0.05 62 -1.64 3.27 12.50
R-2017-12-25 70 5 69.83 70 0.87 69.77 0.10 70 0.00 0.93 -7.69
T-2017-07-23 64 5 64.00 64 0.00 64.00 0.00 64 0.00 0.00 0.00
T-2017-07-24 70 5 69.00 69 3.20 69.00 0.00 69 0.00 2.63 17.71
T-2017-07-25 57 4 56.47 57 0.93 56.77 -0.53 57 0.00 0.57 39.29
T-2017-10-08 65 8 65.00 65 0.00 65.00 0.00 65 0.00 0.00 0.00
T-2017-10-09 43 7 43.00 43 0.00 43.00 0.00 43 0.00 0.00 0.00
T-2017-10-10 46 5 46.00 46 0.00 46.00 0.00 46 0.00 0.00 0.00
T-2017-10-16 63 7 63.00 63 0.00 63.00 0.00 63 0.00 0.00 0.00
T-2017-10-17 56 4 52.47 53 1.63 52.53 -0.13 53 0.00 1.43 12.24
T-2017-10-21 76 4 61.30 62 4.37 61.93 -1.03 62 0.00 4.23 3.05
T-2017-10-24 62 4 55.03 56 2.60 55.33 -0.55 56 0.00 2.30 11.54
T-2017-10-30 36 5 36.00 36 0.00 36.00 0.00 36 0.00 0.00 0.00
T-2017-12-12 63 7 63.00 63 0.00 63.00 0.00 63 0.00 0.00 0.00
T-2017-12-19 54 5 54.00 54 0.00 54.00 0.00 54 0.00 0.00 0.00
T-2017-12-22 91 7 88.97 89 15.00 88.73 0.26 89 0.00 7.47 50.22
T-2017-12-23 70 5 69.50 70 2.17 69.93 -0.62 70 0.00 0.67 69.23
T-2017-12-24 70 5 66.90 68 4.03 67.10 -0.30 68 0.00 3.77 6.61
T-2017-12-25 70 5 68.17 69 3.97 68.53 -0.54 69 0.00 3.23 18.49
T-2017-12-26 70 5 67.87 68 12.83 67.97 -0.15 68 0.00 3.07 76.10
A-2017-10-16 100 4 61.23 62 5.97 61.73 -0.82 63 -1.61 4.90 17.88
A-2017-12-22 100 7 82.63 84 10.90 82.70 -0.08 84 0.00 9.20 15.60
B-2017-10-08 100 6 79.33 81 16.80 79.60 -0.34 80 1.23 8.70 48.21
B-2017-10-16 100 5 78.17 80 9.20 78.93 -0.98 80 0.00 8.03 12.68
B-2017-10-30 100 7 86.47 88 17.07 86.93 -0.54 88 0.00 9.40 44.92
B-2017-12-22 100 4 67.20 68 8.90 67.97 -1.14 70 -2.94 7.90 11.24
C-2017-07-24 100 5 92.50 93 12.00 92.83 -0.36 93 0.00 8.77 26.94
C-2017-10-16 100 7 98.00 98 10.33 97.97 0.03 98 0.00 6.97 32.58
C-2017-10-21 100 4 75.20 76 16.60 75.40 -0.27 76 0.00 9.67 41.77
C-2017-12-22 100 7 98.20 99 13.73 97.87 0.34 99 0.00 10.20 25.73
Average 56.19 56.70 4.05 56.33 -0.32 56.82 -0.31 2.67 17.61
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titled “CPLEX” and “CPLEX warm start” contain results obtained by CPLEX and CPLEX with
warm start. In these groups, the objective value, optimality gap, computational time are displayed
in columns titled “Obj”, “Gap(%)” and “Time(s)”. The column titled “Input” in group “CPLEX
warm start” displays the objective value of the warm start solution. ILS-NR is run 30 times on each
instance with the average objective value (“Avg.”), best objective value (“Max.”), number of runs
the best objective value is obtained (“#Max”) and computation time (“Time(s)”) being reported
under the group “ILS-NR”.

According to Table 1, CPLEX can prove optimality for 13 instances. With warm start, CPLEX
can prove optimality for another 16 instances with significantly reduced CPU time. Among these
29 instances proved optimality by CPLEX, ILS-NS can find optimal solutions with high frequency
(#Max) within 10.2 seconds. For 45 out of 60 instances, the average objective values produced by
ILS-NR are better than the objective values produced by CPLEX which has a time limit of 6 hours.

To demonstrate the effectiveness of the neighbourhood reduction, Table 2 presents the compu-
tational results for ILS-NR and ILS without neighbourhood reduction. The performance of ILS-NR
was measured against ILS by the percentage difference

XILS −XILS−NR
XILS

× 100 (25)

where X can either be the average objective value (column “Avg.”), best found objective value
(“Max”) or CPU time (“Time”); XILS−NR is the value obtained by ILS-NR and XILS is the value
obtained by ILS. Therefore, a negative percentage difference indicates that ILS-NR is better with
respect to the average objective value and best found objective value, while a positive percentage
difference indicates that ILS-NR is better with respect to CPU time. For readers’ convenience, the
superior results produced by ILS-NR are shown in bold.

In Table 2, ILS-NR is faster than ILS on 41 out of 60 instances with an average difference of
17.61%, which clearly demonstrates the improvement on computation time due to neighbourhood
reduction. In terms of stability, the average objective value produced by the ILS-NR outperforms
the average objective value produced by ILS on 49 instances.

5 Conclusion

This paper considers a practical vehicle routing problem with simultaneous pickups and deliveries
which arises in the retail sector. A novel neighbourhood reduction technique is introduced to enhance
the performance of the state-of-the-art iterated local search algorithm. Computational experiments
carried out on a set of real-world instances demonstrate the superior performance of the proposed
algorithm in terms of computational time, solution quality and stability. The advantage of the
proposed algorithm is more conspicuous for time-critical applications given the longest computation
time among the test instances is just 10.2 seconds.
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1 Escuela Superior de Ingenieŕıa, Universidad de Cádiz, Av. Universidad de Cádiz, 10, 11519, Campus
Universitario de Puerto Real, Cádiz, Spain

{david.morales, patricia.ruiz, bernabe.dorronsoro}@uca.es
2 CICESE Research Center, Carretera Ensenada-Tijuana 3918, 22860, Ensenada, Baja California, México
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1 Introduction

Global CO2 emissions reached a record of 33.5 GtCO2 in 2018, driven by the population’s robust
growth and different economic activities. In combination with the transportation sector, power
generation accounted for more than two-thirds of total emissions; these two sectors are responsible
for almost all global growth since 2010 [5]. For example, in the U.S. the greenhouse gas (GHG)
emissions from the transportation sector increased by 23.3% from 1990 to 2018 (Fig. 1(a)) and
represent over 28% of the total emissions (transportation sector supposes 24% of worldwide emis-
sions) [4]. The Intergovernmental Panel on Climate Change (IPCC) report concluded that GHG
emissions must be reduced by 50% to 85% before 2050 [6], thereby avoiding many of the worst
impacts of climate change. Besides, nowadays, 54% of the world’s population lives in urban areas
instead of 30% in 1950. The projection of the United Nations for 2050 claims that the number
of city dwellers will increase to 68% [8], which implies an increase in demand for all sectors that
interact with people straightly. This situation will lead to many significant challenges, such as
overpopulation that encourage the request for a limited supply of essential resources like h2O,
combustible material, electric energy, or services, including health care, security, education, and
transportation. Reducing GHG emissions from transportation will likely require a broad range of
strategies, as increasing vehicles’ efficiency, lowering the carbon content of fuels, and optimizing
routes. Public transportation can contribute to the solution. Fig. 1(b) shows the average yearly fuel
use per vehicle for the principal land transportation sector vehicles, measured in Gasoline Gallon
Equivalents (GGEs). GGEs represents the amount of fuel (e.g., diesel or electricity) it takes to
equal the energy held in a gasoline gallon. The vehicle’s mean distance traveled per year and their
fuel economy are the main factors that affect the annual fuel use on average (Fig. 1(c)). Buses
for public transport are relatively inefficient because of the high number of trips per day and the
stop-and-go drive cycles, spending more fuel on average than any other kind of vehicle. Regarding
fuel economy (FE), transit buses are not quite efficient due to their passenger load rates being less
than their capacity. Vehicles like UBER or taxis (demand response) are the least efficient because
they use combustible to pick up the passengers in reply to users’ calls or requests at mobile applica-
tions [4]. Public transport vehicles like transit buses that travel with low ridership have been shown
to produce more per-passenger-km emissions than private automobiles [2]. Transit bus scheduling
has conflicting objectives; for example, the governments strive to reduce the negative environmen-
tal impact while users want better service, more vehicles, and lower fares. Those objectives are
tackled in this paper. Our multi-objective formulation is based on the importance of minimizing
the number of buses transiting with low ridership, which are wasting fuel and increasing air pollu-
tion. Simultaneously, from the passengers’ perspective, reducing the waiting times and moving in
safe and comfortable vehicles is desirable. This study focuses on the timetable optimization that
assigns different types of buses (i.e., extra capacity, energy consumption, weight, etc.) to cover a
defined route, assessing its effects on GHG emissions when the number of transit buses is reduced,
as well as the consequences in terms of degradation of quality of service (QoS). Additionally, this
study attempts to highlight the benefits of determining a timetable combining different types of
vehicles inspired by the notion suggested by Potter [7] to enhance vehicle utilization preventing
an overloaded scenario. We focused on tactical planning and operating emissions of public trans-
port (without considering the total life cycle GHG emissions, e.g., infrastructure, maintenance,
and operation), applying a heuristic approach based on Multi-Objective Evolutionary Algorithms
(MOEA) to estimate a solution to the Multiple Vehicle-Types Timetabling Problem (MVTTP).
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(a) Greenhouse Gas (GHG) Emissions by Transportation Sector

(b)Yearly average of Fuel Use by Vehicle Type (c) Fuel Economy by Travel Mode

Fig. 1. (a) GHG emissions in million metric tons carbon dioxide equivalent (MMT CO2 eq.). (b) The
average annual fuel used to represent the quantity of fuel with the same amount of energy contained in a
gallon of gasoline. (c) *Transit buses are not efficient at their current ridership rates or load factor (i.e.,
number of passengers on board), where, on average, a given bus is less than 25% full. [4] [2]

2 The multi-objective Multiple Vehicle-Types Timetabling Problem

In our work, we split the timetabling phase, proposed by Ceder [1] along with three other fun-
damental phases for a transit planning problem (network route design, timetable development,
vehicle and crew scheduling) into two tasks: frequency decision and timetable design. Accordingly,
we assume that the route map and its bus stops are established. Moreover, information about route
conditions like route elevation or average speed is available. The passenger demand is provided for
each time-period in every stop (e.g., the number of passengers in the route).
MVTTP models a complex problem where a set of transit buses of different types is assigned to
cover a predefined route. The multi-objective problem (MOP) is to find an appropriate distribution
of multiple bus-types to minimize two essential objectives simultaneously: I) reduce GHG emissions
related to the fuel consumption of the vehicle used for a trip, and II) minimize the unsatisfied user
demand. Minimizing the function of the GHG emissions, associated with the negative environmen-
tal impact, can also contribute to reducing the operational costs (e.g., fuel, driver salary, or repairs)
and enhance the traffic flow due to the reduction of needless bus circulation and unoccupied vehi-
cles wasting fuel and polluting. QoS, represented by the unsatisfied user demand function, should
guarantee a good experience in terms of safety, availability, and comfort. The latter is usually
associated with the load factor and the waiting time (i.e., delay in boarding the vehicle).

2.1 Encoding and solution representation

Evolutionary Algorithms (EAs) are efficient search methods belonging to the family of heuristics.
Inspired by the evolutionary process of living beings, they use the principle of natural selection to
solve problems. EAs are capable of performing robust and multi-directional searches in complex
spaces working with a population of potential solutions, where each individual is the coding of a pos-
sible solution to the problem (chromosome). One virtue of such algorithm is that they require little
information about the problem and generally obtain relevant approximate solutions in reasonable
execution times. In this work, we are looking for the “best set of timetables” that simultaneously
minimize the conflicting objective functions described before, using a heterogeneous fleet to cover
every trip in a specific period where each possible timetable is an individual (solution). Solutions
are encoded as arrays of integers (genotype), representing the bus type assigned to cover different
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trips of the route (phenotype). We propose the utilization of zeros to mark the time-periods finish
and the start of the next one. The order of departures is specified in the sequence.

3 Results and discussion

For these preliminary results, we used a well-known MOEA proposed by Deb et al. called NSGA-II
[3], employing three crossover and two mutation operators with different probabilities (10% to 100%
in steps of 10), we define the algorithm parameters based on 600 different combinations. The final
settings as defined as follows: population size of 100 individuals (solutions), 100 generations per
run, 10% of probability of mutation, and a crossover probability of 100%. The results obtained from
the experiments carried out in this work indicate that the MOEA used provides a set of solutions
that represent diverse timetables for a possible real-world scenario, with a static ridership. Those
timetables assign different kinds of transit buses to cover the daily demand on the route, which can
reduce the environmental impact while maintaining an acceptable QoS. The decision-maker could
adopt the solution set to choose the best one according to governmental restrictions for example.
Furthermore, we develop an extensive experimentation, showing a stable hypervolume behaviour
and acceptable performance in terms of diversity and approximation to the Pareto front (Fig. 2).

(a) Pareto front approximation behaviour (b) Hypervolume performance

Fig. 2. (a) The evolution process applying the crossover and mutation methods on the initial population
(red dots) attaining the Pareto front approximation for the last generation (blue dots), (b) Hypervolume
performance for 30 independent runs of NSGA-II.
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Abstract. The Quadratic Assignment Problem (QAP) is one of the most challenging com-
binatorial optimization problems with many real-life applications. Currently, the best solvers
are based on hybrid and parallel metaheuristics, which are actually highly complex and para-
metric methods. Finding the best set of tuning parameters for such methods is a tedious
and error-prone task. In this paper, we propose a strategy for auto-parameterization of QAP
solvers. We show evidence that auto-parameterization can further improve the quality of
computed solutions. Our auto- parameterization scheme relieves the user from having to
find the right parameters while providing a high quality solution.

1 Introduction

The Quadratic Assignment Problem (QAP) is a hard combinatorial optimization problem
with many real-life applications such as scheduling, facility location, electronic chipset layout,
production, process communications, turbine runner balancing, data center network topol-
ogy, among many others [14, 5]. QAP has been shown to be NP-Hard and finding effective
algorithms to solve it is an active research topic in recent years.
Medium size problems can be solved using exact methods (e.g., size ≤ 30), which can find
an optimal solution or prove that a problem has no solution [1]. Exact methods consider
the entire search space: either explicitly by exhaustive search or implicitly, by pruning some
portions of the search space that have been detected as irrelevant for the search.
To tackle harder problems, one must resort to incomplete methods which provide good, albeit
potentially sub-optimal solutions in a reasonable time. Such is the case for metaheuristics,
which are high-level procedures that make choices to efficiently explore part of the search
space, so as to make problems tractable. Metaheuristics usually have several parameters to
adjust their behavior depending on the problem to solve [9]. Examples of metaheuristics
include genetic algorithms, tabu search, local search and simulating annealing.
Metaheuristics operate on two main working principles: intensification and diversification.
The former refers to the method’s ability to explore more deeply a promising region of the
search space, while the latter refers to the exploration of different regions of the search space.
By design, some metaheuristics methods are better at intensifying the search while others
are so at diversifying it. However, the behavior of most metaheuristics can be controlled
via a set of parameters. A fine tuning of these parameters is therefore crucial to achieve an
effective trade-off between intensification and diversification, and hence good performance in
solving a given problem. Unfortunately, selecting the best set of parameters is a tedious and
error-prone task. This process is even harder because the best parameters values vary with
the problem structure and even just for different instances of the same problem, as stated
by the Non-Free-Lunch theorem [48].
Each metaheuristic has its own strengths and weaknesses, which may vary according to the
problem or even to the instance being solved. The trend is thus to design hybrid metaheuris-
tics, which combine diverse methods in order to benefit from the individual advantages of
each one [7]. However, this increases the number of parameters (parameters of individual
metaheuristics and new parameters to control the hybridization). The design and implemen-
tation of a hybrid metaheuristic is a complex process; tuning the resulting parameters, to
reach the best performance, is also very challenging.
Despite the good results obtained with the use of hybrid metaheuristics, it is still necessary to
reduce the processing times needed for the hardest instances [42]. One of the most plausible
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options entails parallelism [17]. In parallel metaheuristics one can have multiple instances of
the same (or different) metaheuristics running in parallel, either independently or cooper-
atively through concurrent process communications [12, 43]. Not only does parallelism help
to decrease processing time, but it can also be a means to easily implement hybridization.

In previous work we proposed a Cooperative Parallel Local Search solver, called CPLS [37,
35]. CPLS embeds various simple local search metaheuristics and then relies on cooperative
parallelization to concurrently execute several metaheuristic instances, which cooperate dur-
ing the search process. We later extended CPLS, by proposing PHYSH (Parallel HYbridiza-
tion of simple Heuristics) [32, 31]. PHYSH supports the combination of population-based and
single-solution metaheuristics by proposing a strategy for efficiently exchanging information
between metaheuristics of a different nature.

CPLS and PHYSH facilitate the creation of parallel hybrid methods, but they also require
the fine tuning of a larger number of parameters, since more metaheuristics (of different
types) are involved. Moreover, the configuration of the parallel interaction itself (commu-
nication between the methods) involves yet another set of parameters which need to be
adjusted. Tuning this increasing number of parameters makes it even more difficult to find
the appropriate setting for the algorithm to behave optimally.

Automating the task of finding good parameters is thus desirable and has attracted significant
attention from researchers. We may identify two kinds of strategies for automatic tuning:
parameter tuning and parameter control [24]. In parameter tuning (off-line tuning) the set of
parameters are defined before applying the algorithm to a specific problem (static definition
of parameters). Several strategies for automatic parameter tuning of metaheuristics have
been proposed [25, 26]. In contrast, parameter control strategies (online-tuning) adapts the
values of the controlled parameters during the algorithm execution (dynamic adaptation of
parameters). The idea is to find the best parameters setting during the solving process, using
some mechanism to alter the parameter values according to the algorithm performance.

Parameter tuning can be seen as a pre-process pass which is executed before the solving
in order to determine the adequate values for parameters. This does not affect the imple-
mentation of the solver. On the other hand, parameter control has to be implemented in
the kernel of the solver. The former may appear easier but when the number of parameters
become large it is hard to use in practice. Indeed, it usually requires many runs to identify
the best parameter settings, making this a time-consuming process. These methods are often
limited by the number of parameters and the computational power available. In that case,
parameter control strategies emerge as a viable solution to deal with the high complexity of
current solvers (hybrid and/or parallel).

In this paper we propose a parallel hybrid method with a parameter control strategy for
solving the QAP, called DPA-QAP. DPA-QAP embeds multiple metaheuristic methods in
a parallel hybrid execution and self-adapts the parameters of the metaheuristics using an
iterative process, adaptation is performed based on performance measures. We carried out
an experimental evaluation which shows that the auto-parametrization strategy outperforms
a simpler version of DPA-QAP with no auto-parametrization, i.e., a parallel hybrid method
with static parametrization. We perform the evaluation using the classical QAPLIB instances
and also a particular set of very hard QAP instances.

In the remaining of this paper we present the related work on Section 2. Section 3 presents the
general structure of DPA-QAP and Section 4 introduces the auto-parametrization strategy.
Section 5 contains the experimental evaluation performed which validates our strategy. A
short conclusion ends the paper.

2 Related work

The Quadratic Assignment Problem (QAP) was first proposed by Koopmans and Beckmann
in 1957 [30] as a model for a facilities location problem. This problem consists in assigning
a set of n facilities to a set of n locations, while minimizing the cost associated with the
flows of items among facilities and the distance between them. Let F be the flow matrix,
where fij is the flow between facilities i and j, let D be the distance matrix, where dkl, is
the distance between the locations k and l. The goal is to find an optimal assignment of
facilities to locations at minimum total cost, which is defined as the sum of all products
between flows and distances [28]. Equation 1 presents a formulation of QAP, where φ(i) is
the location which facility i is assigned to and dφ(i)φ(j) is the distance between locations φ(i)
and φ(j).
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min
n∑

i=1

n∑

j=1

fij ∗ dφ(i)φ(j) (1)

Metaheuristic methods have been successfully applied for solving QAP. From the early 90s,
several metaheuristic methods have emerged as a suitable option to solve this problem,
e.g. Simulated Annealing [15], Iterated Local Search [44], Tabu Search [45], Genetic Algo-
rithms [47], among several others. These methods perform well on a wide range of QAP
instances, however, some hard instances still require very long runs to achieve quality so-
lutions. Moreover, no method was able to get good performance on an extensive set of
instances. The aforementioned problems spurred the emergence of new techniques based on
hybridization and parallelization.

The idea on hybrid metaheuristics is to combine different methods to integrate their strengths
and counter their weaknesses. For instance, one of the fundamental methods of hybrid meta-
heuristics is the memetic algorithm (MA) [34]. MA is an effective approach which combines
an evolutionary algorithm with a local search procedure. Hybrid metaheuristics are intricate
procedures, tricky to design, implement, debug and tune, therefore, it is unsurprising that
hardly any of them only combine more that a couple of methods.

Parallelizing metaheuristics grants access to using powerful computational platforms with
the aim of speeding up the search process [16]. A straightforward implementation of par-
allel metaheuristics is the Independent multi-walks approach which speeds up the search
process by performing concurrent executions of multiple metaheuristic instances, therefore
augmenting the probability to get quickly a good solution [13]. Another kind of parallel
metaheuristics allows the concurrent instances to cooperate by exchanging information dur-
ing the search process, aiming to improve the efficiency of the solver [46, 33]. We identify
these methods as Cooperative multi-walk approaches. Cooperative parallelization not only
improves the processing times but also open a plethora of possibilities to create new hybrid
algorithms.

We proposed a way to create hybridization through cooperative parallelization in our CPLS
framework [37, 35]. CPLS allows the user to code the individual metaheuristics, and the
framework manages parallelism and communications. In CPLS, different local search (single-
solution) metaheuristics concurrently interact by exchanging relevant information about the
search. This interaction provides a cooperative way to intensify the search. This framework
has been successfully used to solve hard variants of Stable Matching Problems [38] and
hard instances of QAP [36, 35]. Since CPLS does not support population-based methods,
we proposed an extension of the framework called PHYSH [32, 31], which provides an effi-
cient strategy to promote cooperation between population-based and single-solution meth-
ods. Both CPLS and PHYSH have proved able to efficiently solve several hard combinatorial
optimization problems, including QAP.

Parallel hybrid metaheuristics often have many parameters which modify the algorithm be-
haviour. Setting these parameters has a heavy influence on the performance of the method,
however, finding the optimal values for these parameters is usually a hard task [25]. Using
hybridization and parallelism makes this task even more difficult for mainly two reasons:
First, hybrid metaheuristics inherit the parameters of each “low level” metaheuristic, so one
needs to find the setting of more parameters, since a parameter configuration for one algo-
rithm usually is not suitable for another. Second, cooperative parallel strategies also require
parameters to define their behaviour, e.g., for determining how frequently metaheuristics
should interact or how each metaheuristic has to use the received information,. . .

Tuning metaheuristic parameters (known as offline-tuning) has been carried out in different
ways, in earlier times the tuning process was done by hand, another popular approach was
to take parameters values from similar algorithms reported in the literature. More recently,
the use of specialized tools for automatic parameter tuning has become prevalent, these tech-
niques use advanced methodologies and tools from a theory of experiment design to machine
learning approaches, among others [23]. Several methods have been proposed for parame-
ter tuning, for instance SPO [4], CALIBRA [2], REVAC [39], F-Race [6], ParamILS [25],
SMAC [26], HORA [3]. However, these methods have limitations when tuning a large num-
ber of parameters or when they require significant computational resources to perform the
test runs [24].

Parameter control (online-tuning) emerges as a reasonable option. Some strategies have
been proposed for specific metaheuristics such as [41] for swarm intelligence and [27] for
evolutionary algorithms. Also, some specific strategies has been proposed for the QAP, such
as [20] which proposes a strategy for self-control parameters on a Tabu Search method.
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4 J. Duque, D. Múnera, D. Diaz and S. Abreu

Hyper-heuristics present another way to face the problem of metaheuristic parameter control.
These form a novel research approach in which a high level strategy selects or generates the
best metaheuristics with their respective parameters and acceptance criteria. This approach
is used with the aim of having more general methods, not designed for a single problem or
for a few instances of a problem [11]. To the best of our knowledge, only one hyperheuristic
method solves the QAP and uses parallelism in its design [18]: the authors propose a pa-
rameter control method using a genetic algorithm (GA) acting as a high-level strategy in
the hyperheuristic approach. The GA, generation by generation, performs the adaptation of
parameters through cross-over and mutation operators, ending up with the parameters at
their best adjustment for each method.
We achieve a form of hyperheuristic using cooperative parallelism. The key idea is to use
the parallel computational power to not only create a hybrid metaheuristic but also to
automatically control the parameters of the metaheuristic involved in the parallel hybrid
method.

3 DPA-QAP method

This section presents the general structure of DPA-QAP, a Dynamic Parameter Adaptation
method for solving the Quadratic Assignment Problem. DPA-QAP is build on the top of a
parallel hybrid metaheuristic solver, similar to the one presented in [35]. Figure 1 presents
the two main components of DPA-QAP, the Worker nodes and a Master node. Worker
nodes run a set of metaheuristics, in parallel, carrying out the search process. We design
each worker node to run in a separate thread, ideally bound to its own dedicated core, each
thread runs a specific metaheuristic instance.

Fig. 1: DPA-QAP top-level view.

Each worker reports periodically its current candidate solution and some contextual infor-
mation (e.g., solution cost, performance metrics, etc.) to the master node, which stores best
intermediate solutions into an elite pool. When the master receives a solution from a worker
node, it merges it into the elite pool. If the incoming solution is already present, it gets
mutated by performing two random swaps. This mechanism promotes some diversity for the
candidate solutions in the pool. When the elite pool is full, the master node sends solutions to
worker nodes, ensuring the receiver implements a different metaheuristic from the one that
inserted that solution into the population. This process constitutes a flexible interaction
feature which eases the hybridization of metaheuristics promoting cross-fertilization among
different types. The size of this population is equal to the number of worker nodes, since the
population must have a solution for each method.
On the top of this cooperative parallel search, DPA-QAP implements a dynamic adapta-
tion strategy which is tasked to automatically adjust the parameters of the metaheuristics
during their execution, looking for the best setting and trying to ensure a balance between
intensification and diversification in the search.

3.1 Metaheuristics used in the DPA-QAP method

We select three different metaheuristic methods for the worker nodes: Robust Tabu Search
(RoTS), Extremal Optimization (EO), and Multistart Local Search (MLS). We select these
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metaheuristics because they are commonly used in combinatorial optimization problems
particularly for the QAP. We now present a brief description of each of these methods.

Robust Tabu Search The name Tabu Search (TS) refers to the use of an adaptive
memory and special problem-solving strategies, called intelligent strategies, in order to get a
better local search method [21]. The idea is to memorize within a structure the elements that
for the LS will be forbidden to use (tabu) and thus avoid getting trapped in local optima.
TS looks for the best solution within the neighborhood but does not visit the solutions
of previous neighbors if they have been visited before or have been marked as prohibited
locations [18]. Robust Tabu Search is an adaptation of TS to the QAP and has been one of
the best performing methods for this problem [45].

Extremal Optimization Extremal Optimization (EO) is a metaheuristic inspired by
self-organizing processes as frequently found in nature: for EO this is self-organized criticality
(SOC). The version proposed by [8] has only one adjustable parameter: τ , and uses of a
Probability Distribution Function (PDF). EO proceeds like this: it inspects the all candidate
configurations (all assignments in the neighborhood). Each one is assigned a fitness value,
by means of the goal function. The configurations are then ranked from worst to best. After
that is turn for the PDF, which introduces uncertainty in the search process. EO resorts to
the PDF to choose a solution from organized configurations. The role of the τ parameter is to
provide different search strategies from pure random walk (τ = 0) to deterministic (greedy)
search (τ ⇒∞). In previous work, we extended the basic EO metaheuristic to support not
only a power-law PDF, but also an exponential and a gamma-law PDFs [36].

Multistart Local Search A simple Local Search (LS) is one of the oldest and most
frequently used metaheuristics. LS starts from an initial solution and repeatedly improves
it within a defined neighborhood. Neighbor solutions can be generated by applying minor
changes to the initial solution. LS ends when no improved solutions are found in the neigh-
borhood of the current solution, achieving a local optima [49]. Multistart Local Search (MLS)
is a modification of LS that iteratively performs multiple different searches, executing each
local search from a different starting point. When MLS reaches a local optimum, it tries
to escape by restarting the search from scratch or performing some random moves in the
current solution.

Metaheuristics Parameters Table 1 presents the parameters considered for each meta-
heuristic, together with the range of variation for each parameter. These ranges are picked
from the best performances, as reported in the literature. For RoTS we use the parameters
reported in [45], for EO we select the parameters reported in [36] and for MLS, the only
parameter used is the restart process, then no range is needed.

Table 1: Metaheuristic’s parameter ranges (note that n stands for QAP instance’s size).

Metaheuristic Parameter name Range

RoTS
Tabu duration factor [4n - 20n]

Aspiration factor [n2 - 10n2]

EO
PDF Power - Exponential - Gamma

τ [0,1]

MLS Start type
Restart from scratch

Random swaps

4 Automatic Parameter Adaption in DPA-QAP

The DPA-QAP method operates within an iterative process. At the beginning, worker nodes
are initialized with random parameters. DPA-QAP dynamically adapts the best setting
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of parameters in every worker (which is executing a metaheuristic instance). Parameter
tuning depends on the performance in the solving process for an individual worker at each
iteration. Each worker periodically reports relevant information to the master. With this
information, the master node evaluates the worker’s performance and tweaks its parameters,
trying to strike a balance between intensification and diversification in the search. Figure 2
depicts the flow diagram of this process. Gray boxes represent the functionality executed
by worker nodes, in parallel. White boxes specify the iterative adaptation process by the
master. The master waits while the worker nodes perform the search. When it receives a
metaheuristic report, it develops a performance evaluation for each worker and executes the
parameters’ adaptation procedure. The master then sends a new, evolved, set of parameters
and a new configuration back to the worker nodes. Worker nodes resume the search with
the settings they received: parameters and restarting from a new initial solution (from the
master’s elite pool). DPA-QAP repeats this process until an established number of iterations
is accomplished or when the solution target is reached.

Fig. 2: DPA-QAP flow diagram.

4.1 Metaheuristics Performance Metrics

At each iteration of the parameters’ adaptation process, each metaheuristic runs for a given
time, iteration time. When the iteration time is running out, worker nodes report to
the master node the initial solution and the best found solution in the interval with theirs
associated costs. In order to assess the performance of a worker using a specific set of pa-
rameters, the master computes the distance between the initial and final solution (pair-wise
difference) and the percentage gain for that iteration. The percentage gain is defined as:

gain =
costinitial − costfinal

costinitial

Evaluating the performance of the metaheuristics is a critical process, and selecting the
right set of metrics affects the overall performance of the parameters’ adaptation process. In
this work we consider two classical metrics, the percentage gain in the cost of the objective
function and the distance between solutions. The gain acts as a direct indicator of the
metaheuristic’s performance, meanwhile the distance is assessing how diverse the search is.
Other metrics can be also considered, for instance, the time spend on local optima, the
number of iterations without improvements, among many others.

4.2 Performance Evaluation

The parameters’ adaptation process evaluates the workers’ performance by processing the
percentage gain and the similarity between the initial and final solution (see Figure 3).
Through experimentation we verify that the gain is usually bigger at initial stages of the
search than at the final stage. For this reason, DPA-QAP changes the value of the diver-
sification gain limit during the search process, inspired by how the temperature decreases
in simulated annealing [29]. Figure 4 shows how the diversification gain limit decreases in
DPA-QAP during the search process. Using this dynamic limit, DPA-QAP diversifies the
search more easily at the beginning than at the end of the search process.
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Fig. 3: Performance evaluation in DPA-QAP.

Fig. 4: DPA-QAP gain diversification limits.

The similarity criterion is computed comparing the distance between the initial and final
solutions. If this distance is lower than one-third of the QAP size (i.e., 66% of the variables
are equal), we consider both solutions as “very similar”.
Considering these two criteria, we defined the following rules to determine which action must
be taken for adapting the worker’s parameters:
– If the gain obtained by the method and its pair-wise difference is lower than the cor-

responding limits, the component adapts the metaheuristic parameters to diversify the
search.

– If the gain is higher than the corresponding diversification gain limit or the pair-wise dif-
ference is higher than the distance solution limit, the component adapts the parameters
to intensify the search.

Both the dynamic diversification limits and the distance solution limit are hyper-parameters
of the auto-parametrization strategy. We plan to test different limits in future work.

4.3 Adapting the Parameters

The evaluation of the worker’s performance outputs a mandate which can be, intensify or
diversify. This output is used as input for the parameters adaptation process. For each
possible case we define a behavior depending of the metaheuristic type.

Extremal Optimization In EO the parameter τ is in the range 0 to 1 and, depending on
its value and the PDF, this may lead the metaheuristic to intensify or diversify the search,
by adding or subtracting a delta value belonging to the range (see Figure 5). The parameters
are then adjusted by adding to their values using deltas, so the master performs a search
process that looks for the best parameters setting for a given metaheuristic.

Fig. 5: Parameters adaptation in EO.
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Robust Tabu Search We define the parameter adaptation process for Robust Tabu
search as follows: if the parameter adaptation component returns diversify, a delta of n/2 is
added to the tabu duration and a delta of n2/2 is added to the aspiration parameters. If the
parameter adaptation component returns intensify, the tabu duration is subtracted by n/2
and the aspiration is decreased by n/2. For intensification, the delta for the adaptation of
the aspiration parameter is different to diversification. This is done intending to slow down
the intensification process, avoiding to stagnates on a local optimum.

Multi-start Local Search For the case of MLS, if there is any gain in cost, the type of
restart is retained. If there is no gain, the algorithm changes to the other option.

5 Experimental Evaluation

In this section we present an experimental evaluation of our proposed method, DPA-QAP,
comparing its performance against an independent parallel hybrid metaheuristic method.
We consider three sets of very hard benchmarks: the 20 hardest instances of QAPLIB [10]
and two sets of even harder instances: Drezner’s [19] dreXX and Palubeckis’s [40] InstXX
instances. Each instance is executed 30 times stopping as soon as the Best Known Solution
(BKS) is found or when a time limit of 5 minutes is hit, in case the BKS is not reached. All
experiments have been carried out on a quad-AMD Opteron 6380 system, totaling 64 cores
running at 2.5GHz and 128 GB of RAM.
At present, DPA-QAP is systematically configured with 30 worker nodes: 10 running RoTS,
10 running EO and 10 running MLS. Each worker node randomly initializes each parameter of
its metaheuristic. To do so, a value is randomly picked from the admissible values according
to Table 1. These parameters are then periodically adapted as explained in the previous
section. In this experiment, parameter control is triggered every 15 or 20 seconds, depending
on the size of the problem. Each metaheuristic can thus adapt its parameters up to 20 times
during the 5 minutes global execution cap. We plan to study the impact of varying this
interval and determine if it is also possible and useful to dynamically adapt it.
We compare DPA-QAP to a base solver (called BASE-QAP) which is statically parametrized
(from an implementation point of view, this solver is actually derived from DPA-QAP by
disabling the parameter control mechanisms). Other than that, BASE-QAP is identical to
DPA-QAP: it also creates 30 metaheuristic instances (10 of each type of metaheuristic);
each metaheuristic instance also randomly initializes its parameters, which instead remain
fixed during the execution. Our goal is to compare this pre-process parameterization (pa-
rameters fixed) with self-parameterization. Usually the parameter tuning pre-process is a
time-consuming task, the idea is to avoid this offline tuning step by having an online method
able to adapt its parameters meanwhile the problem solution is carry out.
Both methods are similarly implemented in Java 11 using the ForkJoinPool and AtomicType

classes to handle the parallelism in a shared memory model 4. In all cases we made sure that
each worker node is actually mapped by the JVM onto a different physical core, at runtime.

5.1 Evaluation on QAPLIB

We evaluated the performance of the DPA-QAP on QAPLIB, a well-known collection of
134 QAP problems of various sizes and difficulties [10]. The instances are named as nameXX
where name corresponds to the first letters of the author and XX is the size of the problem. For
each instance, QAPLIB also includes the Best Known Solution (BKS), which is sometimes
the optimum. Many QAPLIB instances are easy for a parallel solver, we therefore selected
the 20 hardest ones (removing all systematically solved instances). We ran both DPA-QAP
and BASE-QAP under the same conditions (30 repetitions, time limit of 5 minutes).
Table 2 presents the results. For each solver, the table lists the number of times the BKS is
reached across the 30 executions (#BKS), the Average Percentage Deviation (APD), which
is the average of the 30 relative deviation percentages computed as follows: 100× Avg−BKS

BKS
,

where Avg is the average of the 30 found costs, and finally the average execution time
(Time). Execution times are given in seconds (as a decimal number). This time is the
elapsed (wall clock) time, and includes the time to install all solver instances, solve the
problem, communications and the time to detect and propagate the termination. To compare
the performance of both solvers, we first compare the number of BKS found, then (in case
of tie), the APDs and finally the execution times. For each benchmark, the best-performing
solver row is highlighted and the discriminant field is enhanced in bold font.

4 source and instances are at https://github.com/JonathanDuque/QAPMetaheuristic/tree/DPA-QAP
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Table 2: Evaluation of dynamic adaptation on 20 hardest instances of QAPLIB.

DPA-QAP BASE-QAP

BKS #BKS APD Time #BKS APD Time

sko72 66256 28 0.010 130.9 24 0.012 161.2
sko81 90998 20 0.012 209.6 10 0.011 242.3
sko90 115534 9 0.022 262.2 8 0.016 274.9
sko100a 152002 12 0.027 245.0 4 0.029 279.3
sko100b 153890 20 0.012 223.1 14 0.014 242.9
sko100c 147862 27 0.010 268.7 20 0.010 287.2
sko100d 149576 6 0.024 287.7 9 0.021 285.9
sko100e 149150 20 0.012 266.1 16 0.015 271.2
sko100f 149036 8 0.018 267.8 9 0.017 265.9
tai40a 3139370 4 0.082 272.7 3 0.085 290.6
tai50a 4938796 0 0.386 300.0 0 0.401 300.0
tai60a 7205962 0 0.479 300.0 0 0.519 300.0
tai80a 13499184 0 0.689 300.0 0 0.780 300.0
tai100a 21044752 0 0.647 300.0 0 0.685 300.0
tai80b 818415043 14 0.031 282.1 13 0.028 254.5
tai100b 185996137 5 0.084 282.9 10 0.077 285.3
tai150b 498896643 0 0.654 300.0 0 0.601 300.0
tai256c 44759294 0 0.183 300.0 0 0.179 300.0
tho150 8133398 0 0.095 300.0 0 0.086 300.0
wil100 273038 19 0.011 292.0 13 0.013 293.0

Summary 192 0.174 269.5 153 0.180 276.7

DPA-QAP outperforms BASE-QAP on 14 out of 20 of the hardest QAPLIB instances,
while the reverse only occurs for 6 instances. 7 instances can never been solved by any
solver. Clearly, a time limit of 5 minutes is too short for those hard problems: we plan to
experiment with larger time limits. The “summary” row shows that DPA-QAP obtains a
better #BKS than BASE-QAP (192 vs. 153, a 25% increase). The average APD is also
better (0.174 vs. 0.180). It is worth noticing that solutions of better quality are obtained in
a slightly shorter average execution time (269.5sec vs. 276.7sec).
Notice that BASE-QAP is indeed an efficient solver for this benchmark, it implements a
parallel hybridization strategy and its parameters, despite being randomly initialized, are
selected within a range taken from state-of-the-art solvers which report competitive results.
Still, DPA-QAP managed to outperform BASE-QAP in most instances.

5.2 Evaluation on harder instances

We also evaluated DPA-QAP on two more sets of instances, artificially crafted to be very
difficult for metaheuristics: the dreXX instances proposed by Drezner at al. [19] and the
InstXX instances by Palubeckis [40]. These problems are generated with a known optimum.
For this test we used the same machine and configuration as for QAPLIB (30 cores and a
time limit of 5 min with 30 repetitions).
Table 3 presents the results for Drezner’s instances. We have omitted small instances which
are systematically solved by both solvers in less than 15 seconds. We start with dre42 which
is solved by both solvers at each replication; even on this case DPA-QAP is much faster
than BASE-QAP: 33sec vs. 61sec. In all instances, DPA-QAP outperforms BASE-QAP.
Regarding the 3 largest instances, we note that a time limit of 5 minutes is clearly too short
and we need to experiment with a higher timeout. As a whole, DPA-QAP reaches more BKS
(60 vs. 38) and, when the optimum is not reached, solutions provided by DPA-QAP are of
much better quality than BASE-QAP as shown by the APDs (23.558 vs. 32.408), and it does
so in a shorter period of time.
Table 4 presents the results for Palubeckis’ instances. As in the previous case, we did not in-
clude small instances which are systematically solved by both solvers in less than 15 seconds.
Here again, DPA-QAP performs better than BASE-QAP on all instances of the benchmark.
As for Drezner’s instances, the time limit of 5 minutes appears too short to solve large
instances. However, DPA-QAP does find more BKS (83 vs. 60) and dynamic parameter
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Table 3: Evaluation on Drezner instances.

DPA-QAP BASE-QAP

OPT #BKS APD Time #BKS APD Time

dre42 764 30 0.000 33.5 30 0.000 61.4
dre56 1086 21 14.140 212.6 8 21.020 259.3
dre72 1452 9 27.391 264.7 0 34.944 300.0
dre90 1838 0 22.052 300.0 0 28.031 300.0
dre110 2264 0 36.072 300.0 0 52.111 300.0
dre132 2744 0 41.694 300.0 0 58.343 300.0

Summary 60 23.558 235.1 38 32.408 253.5

adaptation makes it possible to improve the quality of solutions wrt. BASE-QAP as shown
by the APDs (0.147 vs. 0.157).

Table 4: Evaluation on Palubeckis’ instances.

DPA-QAP BASE-QAP

OPT #BKS APD Time #BKS APD Time

Inst40 837900 29 0.150 107.8 26 0.173 150.6
Inst50 1840356 23 0.096 199.4 18 0.124 237.8
Inst60 2967464 20 0.165 188.3 11 0.147 248.5
Inst70 5815290 9 0.121 266.6 3 0.156 293.3
Inst80 6597966 2 0.184 291.8 2 0.193 291.8
Inst100 15008994 0 0.179 300.0 0 0.184 300.0
Inst150 58352664 0 0.140 300.0 0 0.142 300.0
Inst200 75405684 0 0.137 300.0 0 0.138 300.0

Summary 83 0.147 244.2 60 0.157 265.2

6 Conclusions and future work

We have proposed a dynamic parameter adaptation scheme for parallel and hybrid solvers
based on metaheuristics to solve the QAP. The basic principle of this approach is to have
a master node which periodically collects the progress of each metaheuristic. This node has
a global view of the overall search progress, therefore it can provide each metaheuristic
with new parameter values in order to increase its effectiveness. We proposed DPA-QAP:
an implementation of this architecture in Java, embedding three well-known metaheuristics:
Robust Tabu Search, Extremal Optimization and Multistart Local Search. The first exper-
iments performed on very difficult instances of QAP validate our approach by significantly
improving solution quality.
We plan to extend this work in several directions. First, we will experiment on machines with
more cores and with time limits greater than the 5 minutes cap which was allowed in this
work. We will also try to determine the best settings for parameter reporting and adjustment:
in this experiment we used a constant interval which needs to be refined. Another line of
potential experiments consists in including efficient metaheuristics, such as Ant Colony Op-
timization [22]; or embedding population-based metaheuristics, such as genetic algorithms.
Finally, we plan to address larger instances of the QAP as well as other difficult problems.
As an outcome, we aim to design and propose a general framework for self-adaptation able
to address a wide variety of combinatorial search and optimization problems.
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1 Introduction

Industrials and scientists are often faced decision-making problems that are too difficult for humans
to solve. The complexity stems from the same source: data collection and integration as in the case
of large volume of health-care data from multiple sources in the hospital environment (medical
records, patient surveys and comments, administrative databases, etc.); or for example real-time
re-planning in the event of anomaly or incident detection in the transportation & logistic domain.

In order to address such real-life problems, we observe today more and more research works
which deal first with the integrative aspect (throughout the data collection and analysis until the
problem modeling) using techniques derived from Machine Learning (ML); then which cover the
paradigm of Optimization (OPT) to find the best possible solution(s).

Over many years, ML & OPT fields have provided great theoretical insights, offered many
successful methods and found practical applications in all areas of science. In fact, ML analysts
prefer simpler algorithms that work in reasonable computational time for specific classes of prob-
lems. Thus, ML research advances and develops rapidly, which has made a lot of works applied
in various popular fields such as image recognition, recommender systems and anomaly detection,
natural language processing, etc. In turn, OPT researchers often address more complex (or NP-
hard) problems by deriving the core resolution process and using specific optimizers to solve them.
OPT methods and approaches have attracted much attention in almost all decision-making fields.

While the two domains having more evolved independently from each other, their classical
approaches have become increasingly inadequate with the recent data explosion. Then, to deal
with the exponential increase of data volume and complexity, business and research communities
have paid a lot of attention to the synergy and interplay between ML & OPT. Indeed, the two
scientific disciplines are deeply interwoven: On one hand, OPT lies at the heart of ML in the sense
that most ML problems, once formulated, can be solved as OPT problems. On the other hand,
OPT concepts and methods equip ML researchers with tools for training large families of models.
Besides, modern OPT algorithms are using ML theories and techniques to improve their efficiency.

Recently, numerous research works have been focused on the developments of new techniques
and tools inspired at the same time by the ML principles and OPT concepts. In this context,
we propose to give some classification and summary of the most popular studies, which can offer
guidance and inspiration to contribute in both domains. Thus, we first suggest to distinguish two
major types of research directions:

1. OPT for ML: The first question is how the combination with OPT can help ML researchers to
rapidly develop new tools for more complex families of learning models? The second question
is how to use OPT methods to solve specific ML problems? For instance, how to yield optimal
estimations or predictions based on large or dynamic collected data?

2. ML for OPT: The question here is how to improve the OPT algorithmic structure, process
and strategies by means of ML techniques? An interesting challenge involves performance
measurements problems namely, how to use ML models to efficiently report and assess the
results quality of a particular OPT algorithm?

In the following paragraphs, we seek to examine a brief state-of-the-art of existing approaches
along the two axes.
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2 OPT for ML

This section presents the recent advances in ML community, especially the studies that use OPT
principles or methods to exploit novel ML branches. A wide range of works aimed at extending
well-known OPT methods to create novel mixed learning models and paradigms [3]. For instance,
[10] discussed the extensive use of mathematical programming methods in ML. In [4], convex
optimization methods are applied for nonlinear kernel approximation or classification problems.
In [6], constraint-based OPT methods are developed for incorporating domain knowledge into
graphical learning models. In [12], parametric or hybrid OPT methods are used to find the optimal
solution for simulation-based problems.

Moreover, many researchers have discussed the role of some analytical methods of optimization
in very popular fields like neural network (NN), reinforcement learning, meta learning, etc. They
have shown that the development of optimization algorithms in specific ML fields can be inspiring
to perform more informative learning [8]. For example, learning the parameters of complex NNs
is one of the most well studied problems in the field of ML. [1, 7] have proposed an adaptive
gradient-based methods for online NN learning.

Unfortunately,the gradient descent scheme can result in poor learning training and performance
in the case of NNs that have multiple hidden layers (i.e. deep networks). Thus, recent works have
focused on the combination of new layer-wise training methods with stochastic gradient-based
algorithms (i.e. which are first-order optimization approach) [5]. The results of such a combination
lead to new general high-order optimizers which can efficiently learn deep models without any need
for pre-training [9, 11]. Some problems are emerging when applying these adaptive optimizers. For
example, the learning rate can be oscillating in the later training stage, which may lead to non-
converging problem. Thus, further OPT algorithms based on variance reduction were proposed to
improve the convergence rate [13]. Other popular methods that have a significative influence on
various ML fields are: optimization-based meta-learning methods, Adam optimization for image
super resolution, trust-region optimization for deep reinforcement learning, etc [8].

3 ML for OPT

In turn, ML has highly motivated advances in the OPT community by allowing the develop of new
effective methods. This original research axe presents modern algorithms including small changes
in their underlying core process that enable high computing power. Otherwise, in order to promote
the development of OPT, a series of effective learning methods were put forward, which have
improved the performance and efficiency of optimization algorithms.

The essence of most OPT algorithms is first to build an optimization model and then to find
the best parameters in the objective function w.r.t. some problem constraints. A taxonomy of
related concepts and methods exists based on the type of optimization (Integer or discrete), of
objective function (single or multiple), of constraints (exact, imperfect or dynamic), etc. Then, as
data set size and complexity grows, classical OPT methods become inadequate. New approaches
that exploit the ML properties and techniques can outperform most large complex problems.

From the perspective of integrating the ML techniques into optimization methods, research
interests can be divided into three categories according to the chosen step integration: i) Before
the model mathematical definition, ML techniques can be used to learn for example uncertain and
missing data in order to incorporate adequate constraints into the model. ii) During the selection
and optimization process in order to enforce the optimality conditions and to converge to optimal
solution(s) more efficiently. iii) In the process of algorithms validation by paying attention to the
characteristics of their parameters.

Many of the papers blend these different categories and novel methods have been successfully
designed and applied to NP-hard problems [2, 17]. Recently, evolutionary machine learning (EML)
took the interest of many researchers [14] since they have shown performance in many difficult
problems. [15] published a survey about the use of statistics and machine learning for the dis-
tributed optimization. [16] reviewed existing literature on the combination of metaheuristics with
machine learning methods and then introduces the concept of learnheuristics, a novel type of hybrid
algorithms.
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4 Conclusions and perspectives

This study, being of an exploratory and analytical survey nature, raises a number of opportunities
for future research, both in terms of concept validation and innovative development. More research
will in fact be necessary to refine and further elaborate our novel challenges.

An interesting perspective challenge is how to simultaneously exploit combinatorial optimiza-
tion and machine learning in order to solve a complex decision-making problem encountered in
hospital management domain. In fact, the use of both disciplines may help the healthcare systems
to be more effective, by improving the quality of in-hospital services and smoothing healthcare
performances along with administrative and financial control.
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1 Introduction 

Deep learning has been attracting attention as a method for analysis and prediction in Computational 

Fluid Dynamics (CFD). Deep learning is a multilayer neural network structure consisting of tens of millions 

of artificial neurons that are layered with nonlinear computational processes. It has been reported that deep 

learning has higher representational power than conventional modeling methods and can learn complex and 

abstract features. Convolutional neural networks (CNN) and recurrent neural networks (RNN) 
[2]

 are some of 

the most commonly used methods. By combining these network structures, it is possible to model a variety 

of objects. Deep learning has a wide range of applications, including image recognition and natural language 

processing. 

In this study, we propose a method for predicting the temporal evolution of a flow field by 

combining a CNN autoencoder 
[1]

 and Long Short-Term Memory (LSTM) 
[2]

, which is a method of RNN. 

The training target is the result of non-stationary computation around a two-dimensional cylinder. In the 

proposed method, the compressed feature vectors are input to the LSTM for a certain length of time and the 

feature vectors for the next time are output. The output feature vectors are decoded by the CNN autoencoder 

to predict the future state of the CFD results. In the proposed method, we try to improve the robustness of 

the model by repeatedly inputting the decoded output of the model to the same model during the training of 

the compressed model. In the proposed method, we try to improve the robustness of the model by repeatedly 

inputting the decoded output of the model into the same model during the training process. 

2 Methods 

Two types of neural network models are used: a compression model and a prediction model. First, 

the compression model based on CNN autoencoder is used to convert the data with three dimensions into a 

one-dimensional array structure vector, which is a compressed feature of the original data. The vector 

sequence is then inputted to a prediction model based on LSTM. The prediction model is a recursive neural 

network model that outputs the vector data corresponding to the one-time step to the vector data 

corresponding to the next time step. Finally, the output vector sequence is decoded by the compression 

model for each time step to obtain the prediction data for the time ahead of the input. 

As the training data, we used the velocity field around a two-dimensional cylinder. The governing 

equations are the uncompressed Navier-Stokes equation and the continuity equation. The Reynolds number 

was set to 10000. The target geometry and domain are as shown in Fig. 1. 

Learning is performed for the compressive model and the predictive model. In the training of the 

compressive model, each instantaneous field is input to the autoencoder independently, and the parameters 

in the model are updated to minimize the sum of squares with the output data. In the training of the 

prediction model, the training data is compressed using the encoder of the trained compression model. The 

parameters of the encoder are not learned and are fixed. 

In the proposed method, we try to improve the robustness of the model by repeatedly inputting the 

decoded output of the model to the same model during the training of the compressed model as shown in  

Fig. 2. In the proposed method, the original input data is given as the supervisory data to the data that has 

accumulated errors due to repeated input. In the proposed method, the original input data is given to the 
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model as teacher data, and the model learns to correct the accumulated errors. As for the number of 

iterations of repeated input, since the reproduction performance of the model is considered to be insufficient 

in the initial stage of learning, if a large number of iterations of input are performed from the beginning, the 

output data will differ greatly from the input data, and the learning process will not be efficient. Therefore, 

in the proposed method, learning is performed without repeated input at the beginning, and the number of 

repeated inputs is gradually increased as learning progresses. For updating the model parameters in the 

learning process, error backpropagation is applied only at the last iteration, since the amount of parameter 

updates increases with the number of iterations if error backpropagation is applied to all iterations. The 

number of compressed dimensions was set to 50. The number of compressed dimensions was determined by 

the parametric study, and the number of compressed dimensions with the smallest error was adopted. The 

CNN that constituted the autoencoder had two dimensions for input and output, and the output of the first 

layer had 10 dimensions, and the number of dimensions was doubled for each layer. This method was based 

on VGGNet 
[3]

. 

Using the encoder and decoder of the trained model, time-series prediction is performed by the 

process shown in Fig. 3. During training, when the data input length is n, the prediction model is trained to 

output the feature vector t=2,3,...,n+1 one step ahead of the feature vector t=1,2,...,n. During prediction, each 

successive instantaneous field of the prediction input length is compressed by an encoder and input to the 

prediction model in the same way as during training. Next, the last output feature vector of the prediction 

model is input to the prediction model again, and the operation is repeated to output feature vectors up to an 

arbitrary time beyond the input range. The last output feature vectors are then decoded by the decoder to 

obtain the predicted flow field data. 

 

 

Figure 1. Computational domain and shape of the 

object to be computed. 

 

Figure 2. Proposed Learning Method for 

Repeatedly Inputting Data into Autoencoder. 

Figure 3. The Flow of Time-series Prediction by 

LSTM. 

3 Results 

The length of the input interval was set to 50 steps, and time-series prediction was performed by 

varying the input interval. The output results at the start of input, at the start of prediction, and 500 steps 

from the start of prediction are shown in Fig. 4. The left column CFD represents the instantaneous field 

output by CFD, the center column Decoded represents the left column encoded and decoded by autoencoder, 

and the right column Predicted represents the instantaneous field predicted by the prediction model. The 
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right column, Predicted, represents the instantaneous field predicted by the prediction model. The types of 

values are, from the top row, velocity u, velocity v, and vorticity ω calculated from u and v. 

The CFD and Decoded models were compared to investigate the performance of the compression 

model, and it was confirmed that the distributions of the velocity and vorticity components were generally 

reproduced at all times. In the boundary area where the value becomes zero, such as around the object or the 

contour of the vortex, the accuracy of reproduction is low as if the shape is blurred. Besides, the long and 

narrow vortex shape shown in Fig. 4(c) was not fully reproduced, probably because the error calculation 

method used for CNN training is the squared error over the entire space, so the importance of reproducing 

the detailed shape is relatively low. 

Next, comparing CFD and Predicted to investigate the performance of the prediction model, we can 

see that the prediction is relatively accurate at the start of prediction, while the error of the prediction is 

larger around the object and in the contour of the vortex at the start of input. This is because the internal 

parameters of the LSTM are initialized at the start of the input, so the time-series features cannot be applied 

to the prediction, and the accuracy is reduced. On the other hand, at the start of forecasting, the internal 

parameters have been updated by the previous inputs, so the model is now ready for forecasting. 

   

(a) Input start time. (b) Prediction start time. (c) 500steps after prediction start.  

Figure 4. Comparison of CFD results of the velocity field and vorticity calculated from the velocity field at 

different times. 

4 Conclusions 

In this study, time-series prediction was performed for a velocity field with time-series by two-

dimensional non-stationary CFD calculations. Two types of networks, a compression model based on 

autoencoders and a prediction model based on LSTM, were used together to output time-series data from 

data with a certain time-series length. In the previous studies, the prediction results were greatly corrupted 

with each time step, making it difficult to make normal predictions. However, by using the compressed 

model learning method proposed in this study, which is based on repeated input of data, the robustness of 

the model was improved and normal prediction of data became possible. 

We used only one type of data (circular) for training and prediction, but in practical use, it is 

necessary to predict data that is not used for training. In the future, we would like to develop a method that is 

capable of predicting time-series of unknown data for the model by using multiple target shape data for 

model training. 
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1 Introduction 
Sustainability and efficient management of the continuously growing urban areas are major challenges to face in 
the next future. The uncontrolled growth of cities and the services they provide, led to inefficient road transport, 
traffic congestion, higher pollution levels, noise and stress for citizens. In very dense urban areas with high mobility 
demands, public transport (PT) is the only solution that can address all the aforementioned problems. Moreover, 
strategies like the definition of ZE corridors, where noise and tailpipe emissions are eradicated, are being settled in 
some European countries and will be mandatory soon.  
 
Electric and connected vehicles play a key role in this public transport revolution. In this context, Plug-in Electric 
Hybrid (PEH) buses are moving from pilot project to small scale deployment [1], because of their high flexibility 
and their zero emission zone management system that allows to pre-set locations of electric driving thanks to 
geofencing and connectivity. Currently, the main research lines focus in deploying strategic locations of e-charging 
stations [2], analysing the potential of the ZE zone –ZEZ– [6], and the benefits of applying cooperative Intelligent 
Transportation Systems [5]. However, the current ZEZ management of PEH buses is naïve (based on the first-come 
first-served rule), the assignment is highly conservative and therefore, the full potential of dynamic ZEZ is not 
exploited [4].  
 
In previous work [3], two different approaches were used for solving the Efficient PH Bus Operation (EPBO) for 
finding the effective management of electric drive PH buses. The goal was to minimize the energy consumption 
(i.e. maximize the electric range) while still respecting the mandatory ZE corridors. The two approaches used were: 
i) genetic algorithm that uses global knowledge of the problem to find an optimal static strategy, and ii) a 
decentralised recommendation system based on supervised machine learning, that makes use of local knowledge to 
dynamically take decisions. Results show that the artificial neural network (ANN) was able to learn the right decisions 
from the GA to build a good strategy, discarding the wrong ones. This is evidenced by the fact that the solutions found 
by ANN outperformed those of the GA, in general, despite the fact that ANN only uses local information to take decisions 
while the GA makes use of global information. 
 
Encouraged by these results, in this work we study the suitability of unsupervised machine learning techniques in order 
to develop a recommendation system able to learn accurate strategies during the bus operation mode through 
reinforcement learning. The final goal of this approach is the possibility of deployment in any new location, and 
automatically improve its performance through experience. 

2 The Efficient PH Bus Operation Problem 
 
The Efficient PH Bus Operation Problem, or EPBO, was firstly introduced in [3] to optimise the operation strategy of 
PEH buses. In EPBO, the bus route is divided into a number of segments so that the consumption of the bus in every 
segment can be considered constant. Therefore, route segments are broken when there is a meaningful change in the 
road slope, or when there is a bus stop (because it implies that the bus stops and the weight it carries might change). In 
addition, segments can belong to a Zero Emissions Zone (ZEZ), meaning that the bus is forced to cover its length using 
the electric engine. 

423



 2 

 
The bus route is divided into n segments T = {t1, …, tn}, each segment ti being characterized by its length (li), its slope 
(si), and whether it belongs to a ZEZ or not (zi). The EPBO problem is to maximize: 
 

𝑓 𝑥 = 	 𝑥%&
%'( · 𝑔(𝑥, 𝑡%) ; 				𝑔 𝑥, 𝑡% =

2 · 𝑙% 𝑖𝑓	𝑧% = 1 ∧ 		 𝑐% = 𝑙%
𝑐% 𝑖𝑓		𝑧% = 0

−𝐾 · (𝑙9 − 𝑐%) 𝑖𝑓	𝑧% = 1 ∧ 	𝑐% < 𝑙%
 

 
where 𝑥 is the solution vector, assigning whether route segment 𝑡% should be covered in electric (𝑥% = 1) or explosion 
(𝑥% = 0) engine, and 𝑐% is the distance covered in segment 𝑡% using the electric engine. Function 𝑔 𝑥, 𝑡%  contributes to 
the fitness function with double the length of the segment if it is in a ZEZ and is covered in electric mode, or the length 
of the segment if it is covered with the electric engine, but it is not in a ZEZ. In the case when the segment is not in a 
ZEZ and is not completely covered in electric mode, 𝑔 𝑥, 𝑡%  penalizes the fitness with a negative high constant K 
multiplied by the number of kilometers not covered in electric mode. 
 
The length covered in electric mode in every segment is computed by our simulator. It is based on PHSim [3], but in this 
work we make it stochastic by adding some uncertainty on the consumption of the electric engine of the bus. 

3 Results and Discussion 
We follow in this work the same approach as in [3], to solve the problem, where an ANN chooses whether to use the 
electric or combustion engines according to the battery level of the bus when entering a given segment, the characteristics 
of the segment (its length, its elevation, and whether it is a green corridor), and the features of the rest of the route until 
the end (its length and the number of remaining ZEZ km). However, in this work we analyse the application of 
unsupervised machine learning techniques to address the problem. In particular, we evolve the weights of the ANN using 
a GA. Therefore, a solution of the GA is an array of real numbers (in interval [-1.5, 1.5]), each corresponding to the 
weight of a given connection in the ANN (we consider the same topology of ANN as in [3], 3 hidden layers with 10 
neurons each). The solution is evaluated by simulating the strategy defined by the ANN, and computing the fitness 
function according to the length covered in electric mode and if all green corridors are respected, as it is defined in 
Section 2. 
 
For evaluating the approach, we took route number 181 from Montevideo (as done in our preliminary work). We chose 
this route because of its high number of passengers and its length (among the longest routes in the city) with 16.07 km 
long, making it very challenging. Because the real route lacks of ZEZs, we have considered 5 different percentages of 
route segments that belong to ZEZ: 2%, 5%, 10%, 15% and 20%, and we have performed 10,000 evaluations to optimize 
the ANN in each case.  
 
Results with the unsupervised ANN are compared to those obtained in [3] with the supervised one (which outperformed 
the GA). Figures 1 and 2 show the percentage of valid solutions and their quality, respectively. A solution is considered 
valid if all the mandatory electric segments (ZE corridors) are fulfilled. As it can be seen in Figure 2, although the quality 
of the solutions is similar in both, the supervised and unsupervised approaches, the percentage of valid solutions found 
(Figure 1) is always either the same or higher when applying the unsupervised technique.  
 

 
Figure 1. Comparison of the Percentage of valid solutions between supervised and unsupervised approaches 
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Figure 2. Comparison of the quality of valid solutions between supervised and unsupervised approaches 

 

4 Conclusions 
In this work, we propose the use of unsupervised machine learning to reach accurate self-learned strategies for PEH buses 
to cover their route maximising the electric engine use. A Genetic Algorithm is used to tune the weights of the Artificial 
Neural Network (ANN), which are evaluated by simulating the performance of the bus with their defined strategy. The 
performance of the resulting ANN is compared against the state-of-the-art supervised ANN, offering similar quality 
results but a better reliability (in terms of the number of feasible solutions found).  
 
As future work, we plan to enrich our model with new features that will make our approach more realistic, as taking into 
account dense traffic situations and the weight carried by the bus. 
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1 Introduction

Nowadays, the Internet of Things (IoT) is one of the most prominent tech trends to have emerged in
recent years, enabling interconnected environments through IoT-based devices, dedicated networks
and many other technologies [1]. As demanded technology, IoT is being applied in many different
areas, such as healthcare, agriculture, smart buildings and, surely, smart manufacturing [2].

Smart factories (also known intelligent factories) is the cornerstone of the fourth industrial revo-
lution (Industry 4.0), a term and concept coined in 2011 to promote the complete computerization
of manufacturing (digitization) with the aim to enhance and foster automation, improve com-
munications and self-monitoring, and production of smart machines without the need for human
intervention [3].

Industry 4.0 is based in several enabling technologies, that is, Cloud Computing, Computer
Vision, Big Data, Cybersecurity and Internet of Things [4]. Although these technologies are crucial
for smart manufacturing, IoT stand out from the others as base technology to provide reliable
information gathered from the different devices integrated in the ecosystem of a smart factory (e.g.
environmental sensors/actuators, integrated IoT-based devices in manufacturing machines). Thus,
IoT applied in Industry 4.0 has led to a specific research and application area called Industrial
Internet of Things (IIoT) [5].

IIoT is crucial into smart manufacturing as provider of the technology to support multiple
functionalities required, such as better management of safety, cybersecurity, full autonomous op-
erations, advanced analytical tools and mobile technologies [6], bringing several benefits. However,
many significant challenges still lie ahead, such as IIoT standardization, energy efficiency, real-time
performance and interoperability, among others [7].

A relevant challenge faced by industrial partners nowadays as key functionality for smart manu-
facturing is the positioning and tracking of people and assets [8], usually supported by the so-called
Indoor Positioning Systems (IPS) or Indoor Location Systems (ILS) which enable high precision
and dimensional positioning in indoor environments. Even more, the use of services provided by the
IPS along with the use of an Outdoor Positioning Systems (OPS) (e.g. based on Global Positioning
System - GPS-) gives raise to Hybrid Positioning Systems (henceforth HPS ), which could provide
an all-in positioning system for an industrial complex or industrial parks [9].

Nevertheless, the design, development and deployment of HPS is complex, where several con-
cerns and issues must be addressed. First of all, a wide range of IoT-based technologies are suitable
for an HPS, and choosing the proper technologies, depending of the smart manufacturing scenario,
is crucial. For instance, the type of network must be carefully selected due to restrictions in in-
dustrial environments, depending of network parameters such as frequency range, physical range,
payload size, response time, etc [10]. Beside concerns related to IoT technology, software issues
are also involved, such as the use of the proper algorithm, technique or procedure to accurately
determine an object position (e.g. Fingerprinting, k-Nearest Neighbors (KNN), Kalman filtering,
probabilistic models) [11].

Secondly, smart factories are peculiar environments due to the manufacturing processes carried
out. For instance, materials used in the factory (walls, zones) and in some industrial assets may
vary regarding more conventional environments (e.g. smart office building), where several problems
(e.g. multipath propagation and noise due to metallic environments) can modify the state of the
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signal and conduct to errors in the positioning systems [12]. In this way, traditional approaches
supported by commonly used technology and techniques (e.g. WiFi, Bluetooth, Fingerprinting
basic techniques) are not the most suitable choice to deploy a HPS in a smart factory. Thus, the
way to design, develop and deploy adaptable HPS in a smart factory, regarding their application
area, is still a challenge for industrial partners as well as for researchers [13].

In this paper we present the first preliminary outcomes of a still on-going research about this
challenge, that is, the design, development and deployment of HPS in industrial environments.
As preliminary results, we present a methodology to describe the different stages needed, starting
from the requirements analysis and concluding with the validation of the proposal through an in-
the-wild Proof of Concept (PoC). Through the methodology, we identify the different concerns and
issues presented, according to feedback provided by industrial partners as well as a deep review of
the literature.

2 Methodology and Work Hypothesis

In the design and deployment of an HPS, many different concerns, challenges and issues are pre-
sented. The way to address these concerns and challenges is crucial, and the related tasks involved
must be carried out properly, where the order as well as the execution is important.

The methodology, depicted in Figure 1, falls into four different stages or phases. Several tasks
are carried out through the different stages and the outcome of each stage is the input information
required for the next one.

Fig. 1. Proposed methodology for the development of a full 4.0 Industry based HPS.

First of all, it is required a gathering of the requirements, with the aim to know the feasibility of
the proposal as well as the technological challenges involved. This is done through a deep literature
review and holding meetings with experts to get the know-how.

Secondly, with the requirements collected, we must conduct our research focusing on the pro-
posal of a new HPS system. Due to wide range of technologies and techniques available for in-
door/outdoor positioning systems, many different solutions can be proposed. With the aim to
determine the most suitable solution for our scenario (smart factories), we design an specific sce-
nario constrained by the requirements and we conduct several simulations to test the different
proposals through the proper tools (software). The main aim is to obtain promising results in
terms of accuracy in the positioning system into a smart factory or industrial environment.

Thirdly, as in any other conducted experiments or test, the success of the simulation scenario
and proposal lead to try to (partially) validate the proposal through a PoC. First of all, in a isolated
environment (laboratory, university) and, once the proposal is validated, deploy the PoC in a real
smart factory, testing the results (accuracy, efficiency, robustness, etc).
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3 Conclusions and Future Work

The deployment of HPS in industrial scenarios (e.g. smart factories) is complex, and traditional
technologies, techniques and approaches may not fit in this scope due to the distinctive features
presented in this scenarios, such signal frequency in industrial parks, the distance between access
points or how material composition affect the signal intensity. In this way, the design, development
and deployment of an HPS entail the addressing of many particular concerns and issues, where it
is important to define the required stages and related tasks to develop an HPS with reliable and
accurate results in terms of positioning system.

In this paper we address this concern proposing a methodology that describes, through four
different stages, what features and requirements must be considered in the development of an HPS
in industrial environments, as well as the related tasks that must be carried out to fulfill such goal.
The methodology starts with a requirement analysis of industrial scenarios and conclude with the
need of a PoC deployed in the industrial scenario, passing through simulations and conducted tests.

The proposal described so far in this paper is still in an early stage. Currently, we have completed
the stage one (Requirement Analysis) concluding, as one of the outcome of this stage, the use of
LoRaWAN as one of the most suitable technologies to support an HPS in industrial scenarios,
against common technologies such as WiFi and Bluetooth.

Currently we are focusing on the second stage (Simulation), researching about the construction
of set of simulations for further analysis in real environments. Therefore, as for further work,
we will work in the remaining stages, addressing and developing both PoC (in-the-lab as well as
in-the-wild), once the simulations are completed.
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