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1 Introduction

Recent work on the neural networks have shown great improvements over traditional machine learn-
ing algorithms. Especially in computer vision where a high adaptive capacity for a wide range of
pattern recognition problems was demonstrated. The convolutional neuron network (AlexNet)[11]
improved the classification accuracy of TOP-5 images in ImageNet [12] datasets from 73.8% to
84.7% and helped to improve the performance of different computer vision problems [13] with its
ability to extract features. However, the complexity of its calculation and storage is high. According
to current research, the size of the RN model continues to increase. In Table 1, we list the number
of operations (additions or multiplications), the number of parameters and the top-1 precision
on the ImageNet dataset [12] of the Convolutional Neural Networks (CNN) models found in the
literature for image classification, object detection, and image segmentation.

For instance, one of the largest and widely used CNN requires 39 billion floating point (FLOP)
operations with an image size of 224 x 224 and has a model parameter of 500 MB (VGG[14]). The
complexity of the calculations is proportional to the size of the input, then, the calculation of high
resolution images will require more than 100 billion operations.

Therefore, it is important to select a computing architecture for any CNN based solution. A
typical CPU runs 10 to 100 GFLOP per second. Energy efficiency is often less than 1 GOP per
day. The CPUs are difficult to apply to cloud applications that require high performance in terms
FLOP and mobile applications that require low power consumption. On the other hand, GPUs
offer high performance up to 10 TOP per second.

Usually, hardware accelerators are based on ASIC [12] or FPGA [13, 14]. ASIC-based accelera-
tors offer the highest performance and energy efficiency, but must withstand considerable develop-
ment costs. Because of their reconfigurable nature, FPGA-based accelerators are more economical
given development costs.

For years, FPGA developers have been struggling with difficult-to-use Register Transfer Level
(RTL) programming languages such as VHDL and Verilog HDL. This makes programming a major
issue for the FPGA. Thus, FPGA providers are beginning to provide high-level synthesis tools such
as the OpenCL framework [15] to enable FPGA programming using high-level languages. Although
developers can easily port codes originally designed for CPUs / GPUs to FPGAs with the OpenCL
framework, it is still difficult to make OpenCL codes run efficiently on FPGAs. The same code may
have different performance on different platforms because of the different execution methods related
to the architecture. Therefore, developers must consider the FPGA architecture when optimizing
OpenCL code.

The main contributions of this work are as follows: (1) an OpenCL based FPGA accelerator with
an efficient pipelined kernel structure is proposed for large scale network (CNN) implementation;
(2) the design space of the proposed architecture was fully explored on the Arria FPGA 10 and
Stratix-10, two large-scale CNN models, were implemented and tested. The results show that the
proposed scheme improves performance and resource utilization compared to previous work.

The rest of the paper is organized as follow: in the next section we recall CNN definition. In
section 3, the proposed implementation is presented. The obtained results are shown in the section
4. The conclusion ends the paper.
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2 Convolution Neural Network

In this section, we present the basic functions of a neural network and we focus only on the inference
procedure, which means that the Neural Network model was already trained and validated to
predict or classify new data.

The basic architectural ideas of a Convolution Neural Network (CNN) [5] consist of the local re-
ceptive fields via the convolution operation and the spatial sub-sampling via the pooling operation.
The Convolution operation can be formally written as:

el _ 17T .opi—-1 l
f17y7h_W}L fzs +bh (1)

where w! and b} are the weights and bias of the h'" feature map, fOP'=1 and fg;/lyh are the
input and output feature maps, [ denotes the layer and (x,y) is the spatial image coordinate. The
superscript C' denotes convolution and Op represents various operations, e.g., input (when I = 1),
convolution, pooling, activation, etc.

Pooling applies local operations, e.g., computing the maximum within a local neighborhood
has the following form:

Praasl Op,i—1
forgil?” = maznmyens,,, (fmmn (2)

where N, , denotes the local spatial neighborhood and P,,., denotes the max pooling. Often
a spatial resolution reduction is applied after the max-pooling operation. Besides the two above-
mentioned operations, there are several strategies applied within the CNN models, such as non-
linear activation (e.g., the Rectified Linear Unit (ReLU) [6]), dropout [7] and batch normalization
[8]. A Fully Connected (FC) layer, can be added at the end of the concatenated layers. It takes
all nodes (neurons) from the feature maps of the previous layer as input and connects it to every
nodes (neurons) of the output feature map. At the last layer, called dense layer, of the CNN models
(referred to as the prediction layer), it is the common to use the Softmax activation function defined

as follows: X
Softmax = (;Xp(%)) (3)
Zg:l exp (zg) =1

where K denotes the number of categories or classes, z = (z1, ..., 2k ) is the output of the affine
transformation in the dense layer.

Then, the convolution (CONV) layers and the dense layer of fully connected layer (FC) layers
are two common types of layers most of architectures. CONV layers conduct two-dimensional (2D)
convolutions on a set of input feature maps and add the results to get output feature maps. FC
layers receive a feature vector as input and conduct matrix-vector multiplications.

Besides CONV and FC layers, NN layers also have pooling, ReLU, concat[9], elementwise[10],
and other types of layers. But these layers contributes little to the computation and storage re-
quirement of a neural network model. Figurel shows the distribution of weights and operations in
the VGG-11 model. In this model, CONV and FC layers together contribute more than 99% of
the network’s weights and operations, which is similar to most of the CNN models. It is obvious
that most of the neural network acceleration systems must be focus on these two types of layers.

3 Proposed implementation

In this work, we used an Altera FPGA Development Kit to build our CNN accelerator. In particular,
the overall memory controller is a DDR3/DDR4 controller, the link controller is a PCle controller,
and the host computer is a desktop PC based on an x86 architecture.

The figure2 illustrates the proposed architecture that consists of four kernels which are con-
nected using Altera OpenCL extension channel/pipes.

The single threaded Convolution kernel is designed to implement both the 3D multiply-accumulate
operation, defined by:

C; K—-1 K-1

Do(fo,ysx) =Y > > Wilfo, fisky ka)Di(fir y + by, @ + kz) (4)

fi=1ky=0k,=0
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Parameters of VGG11 Operations of VGG 11

98,20%

Fig. 1. Distribution of the parameters and the operations in chain based architecture. Example of VGG
with 11 layers.

where D;(fi,y,x) and Dy(fo,y,x) denote the neurons located at position (z,y) in the input feature
map f;, and the output feature map fo, respectively. Wi(fo, fi, y, ) represents the corresponding
weights in the [*" layer which is convoluted with f;. The size of the convolution filters is K x K,
while the total number of input feature maps is C;. In this paper, we propose to implement 4 using
a 1-D convolution structure that flattens 3-D convolution as follows:

CixKxK

Do(fo)= Y Wilfo,x:)Di(x:) (5)

x;=1

where z; is the index of the parameters of the layer i. Local response normalization (LRN) layers
that perform normalization operations on each inputv neuron value by a factor that depends on
the neighboring neurons are also used following the pooling layer.

Therefore, we avoid nested 5-way loops levels and we get a 2-level nested loop structure, there-
fore, the multiplier-adder tree structure with a buffer can be efficiently pipelined by the OpenCL
compiler.

Two DataIN and DataOut data transfer kernels inspired by the work of [2], two NDRange 3-D
multi-mode transfer data of characteristics and weights from / to the global memory.

In addition to the most compute-intensive convolution kernel, we have designed new OpenCL
kernels to speed-up layer operations widely used in CNNs, such as pooling, etc. Therefore, our pro-
posed model can handle the CNN Forward compute stream with very small host CPU involvement,
resulting in high throughput and low latency.

Cascading kernels form a deep compute pipeline able to implement a series of basic CNN
operations without the need to store the interlayer data in global memory. It greatly reduces the
bandwidth requirements.
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Fig. 2. Proposed CNN accelerator architecture. LRN: local response normalization
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4 Results and discussions

In this section, we present the results of the implementation of the OpenCL model proposed on
the Alaric board based on Altera Arria 10 GX FPGA and the NallaTech board based on statix -
10 GX 2800.

The Arria 10 FPGA includes 660K logical elements (LE) 1687 DSP blocks and 42MB M20K,
while the stratix 10 FPGA includes 2753K logical elements (LE), 5760 DSP blocks and 229MB
M20K memory.

It should be noted that the card has a 2 GB DDR3 DRAM connected to the FPGA which
functions as global memory for Alaric and 32 GB of DDR4 for Nallatech. OpenCL kernel codes
are compiled using Altera OpenCL SDK v16.0 (Alaric) and v18.0 (Nallatech).

The host computer is equipped with an Intel Core 15-4590 processor and is running Ubuntu
Linux 14.04.3. We followed the same methodology described in [11].

and we implemented the basic design on the same Arria 10 platform. We also use the Caffe
[6] convolutional learning framework as a baseline for our CPU. We extract the input image, pre-
trained weights and output functions of Caffe. We compare the result of our implementation with
the result of Caffe to verify functional correctness.

Two large-scale CNN models: AlexNet (8 layers) and ResNet-50 (50 layers) models were used
as benchmarks to measure performance.

Since CNNs are intensive floating multiplications, the number of DSPs consumed is used as a
metric for evaluating performance. As in [2] the proposed CNN design implements full-precision
direct computation (32-bit float format), which also makes it favorable for implementing back-
propagation flow in the learning phase of the model. To make fair comparison, we provided the
normalized performance as ”performance density” in the table. It can be noticed that the proposed
implementation takes efficiently profit from the DSPs. The classification time is also better than
all other implementations.

Table 1. Comparison with other works. 2016a is in [3], FPGA2015 is in [4], and FPGRA2016b is in [2]

FPGA2016a FPGA2015 FPGA2016b This Work
Device Stratix-V Virtex-7 Stratix-V Arria 10 Startix 10
GXA7 VX485T GXA7 GX GX-2800
FPGA 622K LUTs 485K LUTS 622K LUTs 660K LUTs 2.753K
Capacity 256DSP 2800 DSP 256 DSP 1687 DSP LUTs
5760 DSP
Design OpenCL Vivado HLS OpenCL OpenCL
Scheme
Frequency 120 MHz 100 MHz 181 MHz 167 MHz 275 MHz
Precision Fixed(8-16b) Float Float Float
Classification 45.7 ms 21.6 ms 43 ms 50 ms 21.2 ms
Time
Throughput 31.8 GOPS 61.6 GOPS 33.9 GOPS 58.45 GOPS 96.25 GOPS
DSP 246 2240 162 379 181
Consumed
Performance 0.13 0.027 0.21 0.15 0.53
Density GOPS/DSP GOPS/DSP GOPS/DSP GOPS/DSP  GOPS/DSP
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This contribution deals with the optimization of highly expensive black-box functions, used
in engineering applications. Thus, optimization of such systems becomes a challenging task which
cannot be solved with classical optimization algorithms. One way to alleviate this cost is to use
surrogate models and replace black-box functions by a cheaper and faster model. Based on a
training set which contains prior knowledge about the function, surrogate modelling have already
exhibited probant results [1-3]. From all surrogate models, Gaussian Process represents one of
the most efficient surrogate model due to its ability to resist overfitting and quantify modelling
uncertainty. Several authors have highlighted performances of Gaussian Process in brake squeal
analysis [4, 5], identification of breathing cracks of rotors [6] and digital twins [7].

Albeit Gaussian Process is a practical surrogate model, problematical predictions may arise
from a loss of correlation between the samples of the training set, due to a small lengthscale after
optimization of the surrogate model [8,7,9]. This issue is all the more frequent when the function
under study is highly non linear, non stationary and multimodal.

In this contribution, we investigate the impact of this phenomenon on Bayesian Optimization
and suggest a method to handle it. Then, the performance of the suggested strategy is assessed
with a one mathematical problem well known in the literature.

1 Theoretical aspects

Gaussian Processes (hereby denoted GP) are a probabilistic class of surrogate models where the
output prediction Y is described as a Gaussian random vector. Its first two statistical moments
(mean y and variance §) are shown in (Eq. 1) for a given set of parameter values x..

y(x.) = C(x., X)C(X, X) 1y
3(x.) = C(x., %) — C(x,, X)C(X, X) " C(x,, X)7 (1)

where C(-,-) is the covariance matrix, X the matrix of input parameter values and y the vector of
solutions of the solver given X.

The numerical workflow for Bayesian Optimization with GP is shown in Fig. 1, as long as the
references to corresponding equations. The notations in Fig. 1 rely on the following data, namely
oy is the signal variance (or nugget), 6; is the lengthscale associated with the dimension i, n is the
number of input parameter values of X, k is an hyperparameter value which controls the constraint
over the likelihood and ¢ is a precision parameter equal to 5 - 1073,

At first, a training set, initialized with a Latin Hypercube Sampling procedure, is computed
to provide prior knowledge about the behavior of the considered function. Then, the inference is
performed by selecting a covariance function (Eq. 2) and finding 6; that maximize the likelihood
(Eq. 3). In this communication, we mainly focus on Gaussian likelihood and Matern 3/2 covariance
function. Finally, the prediction is carried out using (Eq. 1).

In Bayesian Optimization, the mean and variance of output prediction Y is used to determine
the location of a solution which represents the best guess for the true global optimum of the
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considered function. Via iterative incrementations of the training set and the use of an acquisition
function to determine the new best candidate, the algorithm converges toward the global optimum.

Choice of likelihood
(Eq. 3)

Choice of covariance Dy (i = %) D, (x5, = %)
C(x,,x,) = 1+-.3) ———— - — = '
[ function (Eq. 2) J % x) 6*[ * J z’ o, P z’ 0, @

1 1
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Fig. 1: Workflow of Bayesian Optimization procedure (blue rectangles) with a comparison between
the Classical Optimization of GP parameters prediction (denoted CO procedure) and the suggested
Anti-Deceptive Optimization prediction (denoted ADO procedure) for a given training set

A common choice for acquisition function is the Expected Improvement (Eq. 5), introduced by
[10], which relies on a compromise between exploitation (first term of the sum, searching for the
mininum) and exploration (second term of the sum, diversifying the search).

Apr(a) = i = 3o) |5+ gort (LT

Ymin — 37(%))] n 3(\/3%) ox

where x. corresponds to the candidate point and ¥,,, the minimum of the training set output.

Nevertheless, as the maximization of the likelihood succeeds in providing good approximations
most of the time, some training sets may induce poor predictions which annihilate the approxi-
mation power of GP. This phenomenon is as all the more so frequent that the considered function
is highly non-stationary and non-linear and is characterized by an optimum of (Eq. 3) associated
with a lengthscale 6; going to 0T. It is referred as deceptive prediction.

As emphasized by Fig. 1, a deceptive prediction, associated with the CO procedure, is defined
by almost constant mean and variance prediction. To handle these peculiar scenarii, we suggested
a method in [11] which consists in constraining the optimization of the likelihood by forcing the
maximum of the likelihood to be smaller than a precision value. This method hinges on the defini-
tion of a criterion, the Deceptive Upper Bound (hereby denoted DUB), which allows to detect these
bad predictions. This method works well to alleviate the deceptiveness behavior of the prediction

as shown in Fig. 1.

From the aspect of the mean and variance when considering CO procedure, it is clear that the
impact is important on the selection of new candidates in Bayesian Optimization algorithm. Thus,
the following section is focusing on quantifying this impact over the process.
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2 Numerical application

To illustrate the impact of deceptiveness over the convergence toward the global optimum, we
consider the Xiong’s function (Eq. 6) introduced in [12]. This function is highly non-stationary
which causes the optimization to begin quite challenging. The global minimum value is -0.6093.

f(z) = —0.5 (sin (40(z — 0.85)*) cos(2.5(z — 0.95)) + 0.5(z — 0.9) + 1) (6)

Both procedures have been evaluated for 50 different training sets, whose sizes are all equal to
10 samples. At first, results show that both procedures perform almost equally. A very small speed
up has been detected with ADO procedure (about 0.6 computations less than CO procedure for
the 50 computations).
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Fig. 2: Convergence of two different initial training sets for both optimization procedure

Fig. 2 exhibits two examples of convergence from the considered benchmark of 50 training sets
and where great differences have been noticed. The left one shows a faster convergence of ADO
procedure, which needs 51 computations against 57 for CO. On the other hand, the right one
presents a faster convergence of CO which needs 29 computations against 34 for ADO.

The reason of this performance of deceptive prediction comes from a flaw of the Expected
Improvement. Some areas of the design space might be overlooked because it only focuses on
non-explored areas with a potential of holding the optimum. Thus, it induces a non-optimal di-
versification. This lack of diversification in the exploration is also noticeable for other acquisition
functions.

As regards of deceptiveness, new samples are almost added ”"randomly” since the mean and
variance provided to the Bayesian Optimization algorithm are flawed. The new sample may be
added anywhere in the design space. Consequently, deceptiveness, which is primarily a defect of
GP, becomes helpful by bringing diversification during the Bayesian Optimization algorithm.

3 Conclusions

In this communication, the performance of Bayesian Optimization was investigated while consider-
ing deceptive Gaussian Processes. The phenomenon of deceptiveness was highlighted and a method
for detection and correction was described. Then, the impact of deceptiveness over Bayesian Op-
timization convergence has been emphasized with a non-stationary mathematical function.

This work has allowed to show that the deceptiveness is a phenomenon that penalizes the per-
formance of Gaussian Process for prediction whereas, for Bayesian Optimization, this phenomenon
may help the algorithm to converge faster. Indeed, it allows to introduce diversification in the search
of new potential candidates for global optimum. Nevertheless, it remains a flaw of the Gaussian
Process formalism and other methods to introduce diversification in the process have to be studied.
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Abstract. The problem of finding the optimal allocation of storage capacities in a pro-
duction line, known as the buffer allocation problem (BAP), is one of the most researched
problems in manufacturing systems design. However, the current context requires substantial
efforts for including sustainability concerns to the issue. Therefore, considering the energetic
dimension becomes crucial. In this study, we present a novel variant of the BAP for through-
put maximization and energy consumption minimization. The problem is solved using a
multi-objective approach.

Keywords : Buffer allocation problem, Production lines, Multi-objective optimization, Energy
efficiency

1 Introduction

One of the major concerns that face researchers and industrials in the design of production sys-
tems is the buffer allocation problem (BAP). Buffers are used to compensate the negative effects
of machines unreliability. However, larger storage capacities result in important costs for both in-
vestment and work-in-process inventory. Therefore, the issue of finding the optimal buffering is
intensively studied since decades.

A recent paper of [9] reviews the literature related to the BAP. Although various versions of the
BAP are presented, the dual and the primal BAPs are the most studied. These models were first
introduced by [2]. In the dual BAP, the objective is to maximize the throughput under total buffer
space constraint, whereas in the primal BAP, the objective is to minimize the total storage space
under a minimal required throughput constraint.

Nevertheless, with the current context of ecological awareness, limited energy sources and, increas-
ing energy costs, including the energetic dimension in the BAP becomes crucial. Therefore, in this
study, we formulate a novel variant of the BAP that optimizes energy consumption along with
throughput of unreliable production lines.

2 Problem formulation

In this study, a serial production line composed of K unreliable workstations and K —1 buffer areas
with finite capacities is considered. This system is presented in figure 1. The processing, failure

N N S

Fig. 1: Serial production line

and, repair rates of the machines, w;, A; and, p; respectively, are assumed to be exponentially
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distributed. It is also assumed that there is unlimited supply before the first machine and unlimited
storage capacity after the last machine. Therefore, the first machine cannot be starved and the last
machine cannot be blocked. In addition, operation dependent failure is assumed, no setup time is
considered and, transitions times between machines and buffers are assumed equal to zero.

In the BAP, buffer capacities are finite variables to be determined. Based on our literature
review, it is clear that this problem has been widely studied. However, research efforts focus mainly
on the issue of productivity improvement. Nevertheless, the current context requires a crucial focus
on energy efficiency in the design of manufacturing systems. The novel variant of the BAP proposed
considers a multi-objective optimization: energy consumption minimization along with throughput
maximization under total buffer space constraint. The mathematical model of this problem is given
as follows:

Find N = (N1, N3, ..., Nk _1) so as to :

(Max ¢ and Min E)

s.t. (1)
Zf:;l NJ < Ntotul ] cl.K— 17
N; € N* jel..K—1.

K is the number of machines in the production system, 1 the throughout of the line and, F the
total energy consumption. Moreover, N is the buffer size vector and N the total buffer space
available to be allocated among the K —1 buffer areas. IV;,Vj = 1...K —1 are non-negative integers
denoting the capacity allocated for each buffer B;.

3 Performance evaluation approach

The evaluation approach of the two crucial performances considered in the problem, i.e. through-
put and energy consumption of the line, are obtained using the performance evaluation method
developed in [1]. This recently developed method is, according to our literature review, the unique
study that considers the integrated evaluation of throughput and energy consumption of unreliable
production lines.

In this method, the throughput is evaluated using birth death Markov processes (the Equiv-
alent Machine Method [4]). In this analytical formulation, the different states of each buffer are
analyzed using birth-death Markov processes. Thereafter, each original machine is replaced by an
equivalent one taking into account the probabilities of blockage and starvation. The throughput
of the production line is defined as the bottleneck between the effective production rates of the
equivalent machines. Due to its main approach that considers only full and empty buffer states, the
state space cardinality of the Markov chain representation of the system is reduced. Results from
numerical experiments demonstrate a high accuracy with extensively reduced computational time
when compared to other methods from the literature, such as the decomposition and aggregation
methods.

The second part of the method evaluates the energy consumption and efficiency of the produc-
tion line. The energy consumption of the line is the sum of energy consumption of its K machines.
For each machine, the energy consumption is evaluated per machine state. A Markov chain formu-
lation is used to obtain transition and steady state probabilities for each state. These probabilities
are obtained as a function of machine parameters as well as probabilities of empty and full buffer
states derived from the throughput evaluation part. Thereafter, energy consumption and energy
efficiency are formulated for each machine M;,Vi = 1...K and consequently for the production line,
using steady state probabilities and specific state energy consumption. Corresponding formulations
for throughput and energy consumption evaluation as well as calculation details can be found in
[1] and [4].

4 Multi-objective approach and numerical experiments

The buffer allocation problem formulated in equation 1 requires a multi-objective resolution ap-
proach. In order to find the closest possible set of solutions to Pareto optimal front, e- constraint
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method [3] is used. In this method, one of the objective functions is selected to be optimized while
the other(s) are converted into additional constraints. In our case, the throughput is maximized
and the energy consumption minimization is converted into a constraint. Therefore, the problem
becomes a single-objective problem formulated as follows:

Find N = (N1, Na, ..., Nx_1) so as to :

Maz ¢

s.t.

P @
Z]K;ll N; < Niotar j€1..K -1,

N; e N* jel..K—1.

The model is formulated as a mixed integer non-linear program implemented on Lingo solver. Nu-
merical experiments are conducted on literature instances. The proposed BAP with throughput
and energy optimization is compared to the dual BAP that focuses on the throughput maximiza-
tion. The aim is to highlight potential improvements and energy economics allowed by the model.
Results for the e-constraint method using the instance represented in table 1 (refer to [1] for energy
parameters), are given in figure 2. Throughput loss and energy savings denote the gap between of
the proposed BAP and the dual BAP for respectively the throughput and the energy consumption.
Results show that the model can be used to develop a significant tool for decision making.

Table 1: Production line instance parameters [2, 6, 7, 8, 5]
Machine M1 M2 M3 M4 M5
Failure rate 0.8 0.4 0.450.35 0.1

Repair rate 0.64 0.83 0.75 0.85 0.74
Processing rate 2.8 1.7 2.5 3.4 1.9

Energy savings (%)

Throughput loss(%)

Fig. 2: Multi-objective optimization using e- constraint method

5 Conclusion

In this paper, a novel variant of the BAP with energy minimization and throughput maximiza-
tion was proposed. This problem, that requires a bi-objective optimization approach, is solved
using e-constraint method. Numerical experiments highlight the relevance of considering energy
consumption along with throughput optimization in the design of storage spaces. Future work
focuses on the multi-objective study of the energy-efficient BAP considering other approaches.
Moreover, this novel BAP allows to explore a new field of research and tackle more interesting
areas in manufacturing systems design.
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Abstract. Cooperative co-evolution is recognized as an effective ap-
proach for solving large-scale optimization problems. It breaks down the
problem dimensionality by splitting a large-scale problem into ones fo-
cusing on a smaller number of variables. This approach is successful when
the studied problem is decomposable. However, many practical optimiza-
tion problems can not be split into disjoint components. Most of them
can be seen as interconnected components that share some variables
with other ones. Such problems composed of parts that overlap each
other are called overlapping problems. This paper proposes a modified
cooperative co-evolutionary framework allowing to deal with non-disjoint
subproblems in order to decompose and optimize overlapping problems
efficiently. The proposed algorithm performs a new decomposition based
on differential grouping to detect overlapping variables. A new coop-
eration strategy is also introduced to manage variables shared among
several components. The performance of the new overlapped framework
is assessed on large-scale overlapping benchmark problems derived from
the CEC’2013 benchmark suite and compared with a state-of-the-art
non-overlapped framework designed to tackle overlapping problems.

Keywords: large-scale global optimization - evolutionary algorithms -
cooperative co-evolution - overlapping problem.

1 Introduction

Nowadays, many real-world optimization problems arising in engineering and
sciences deal with a large number of variables [7]. They present challenging
characteristics making them hard to efficiently optimize. They are commonly
solved by means of metaheuristics such as evolutionary algorithms or swarm

* The present research benefited from computational resources made available on the
Tier-1 supercomputer of the Fedration Wallonie-Bruxelles, infrastructure funded by
the Walloon Region under the grant agreement n°1117545.
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intelligence [3]. However, the standard metaheuristics are not suitable to solve
such large-scale global optimization (LSGO) problems because they suffer from
the curse of dimensionality, i.e. their performance deteriorates when increas-
ing the number of variables [1]. In this context, new approaches relying on the
”divide-and-conquer strategy” have been proposed. They divide the initial LSGO
problem into smaller ones which focus on smaller groups of variables. The lat-
ter are optimized in a round-robin fashion with a standard metaheuristic with
the aim of producing the solution of the initial problem. This framework has
been introduced by Potter and De Jong [9]. They designed a cooperative co-
evolutionary (CC) approach to optimize LGSO problems by means of a genetic
algorithm. Following this promising approach, the CC strategy have been embed-
ded in many other metaheuristics such as evolutionary programming [6], particle
swarm optimization [2] and differential evolution [11].

In any case, the efficiency of this approach is highly dependent on the per-
formed decomposition. The latter depends on the characteristics of the objective
function in terms of separability. A function is separable if the influence of any
variable on the function value depends only on itself [18]. In this case, any decom-
position that reduces the dimensionality is efficient in the CC framework. Other
functions can be classified as additively separable [8] if they can be written as:

f(z) = Z fi(ws), (1)

where z; (i = 1,...,m) are mutually exclusive k;-dimensional decision vectors
of f;, x is the n-dimensional decision vector of the function f and m is the
number of independent components such that &y +. ..+ k,, = n. In this way, the
influence, of any variable in a component, on the function value depends only on
other variables of the same component. Therefore, an ideal decomposition would
divide the initial problem such that each subproblem focuses on one component
given in Equation (1). The main challenge is thus to identify these components.
It can be done by using the differential grouping strategy [8, 16].

However, separable and partially separable problems are not representative
of most LSGO problems arising in real-world optimization applications. Most of
them incorporate several components that usually interact with each other. For
example, the supply chain design and optimization [4] involves several compo-
nents such as suppliers, manufacturers and distributors that interact with each
other through a variety of transportation and delivery methods. Such intercon-
nected problems are often referred as overlapping problems [17] because they are
composed of parts that overlap others. In other words, each component involves
multiple variables and some of them are shared with one or several other compo-
nents. This kind of function is very challenging and standard CC algorithms fail
to optimize them efficiently. Indeed, most of them rely either on random group-
ing [18] or on intelligent decomposition methods based on interaction identifica-
tion [8]. The former simply completes several random decompositions in order
to try catching linked variables in a same component but does not explicitly
consider the interaction structure. The latter assigns all the linked variables in a
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single group and therefore does not reduce the dimensionality when dealing with
overlapping problems. Two exceptions are the decomposition based on spectral
clustering introduced in [5] and the decomposition specially designed for over-
lapping problems introduced in [15]. The latter breaks the linkage at shared
variables between components in order to reduce the problem dimensionality,
even for overlapping problems. It will be further discussed in Section 2.2.

In addition to the above methods, other CC strategies considering subsets
that overlap each other have also received some attention. They raise some ques-
tions related to the exchange of information between components and related to
the construction of the complete n-dimensional solution. In [14], non separable
problems are decomposed into overlapping subproblems on the basis of a sta-
tistical variable interdependence learning scheme. The exchange of information
is ensured by a periodically updated global solution (built on the basis of sub-
problem cores) used as shared memory. In [13], an overlapping decomposition
covering the set of variables is predetermined. Compete and sharing strategies
are implemented to choose the representative variables and share them among
components. In [12], overlapping is not used to facilitate the decomposition but
to overlap influential variables and evolves them in several components.

Some of these algorithms claim to tackle overlapping problems but do it with
non-overlapped strategies [5,15]. Others, although based on overlapped strate-
gies, do not explicitly claim to be able to tackle overlapping problems [12-14].
One may obviously think that the best way to optimize them in a CC framework
is to do it with overlapped strategies. Nevertheless, to the best of the authors’
knowledge, there are no research studies in that way. This paper introduces such
a strategy and compare it with the non-overlapped approach specially designed
for overlapping problems in [15]. The paper is organized as follows: Section 2
briefly describes the CC framework and the recursive differential grouping. Sec-
tion 3 introduces the new strategy to split LSGO problems into overlapping
subproblems and the overlapped CC framework that manages the exchange of
information between subproblems. Experimental settings and results analysis are
given in Section 4. Finally, findings and perspectives are discussed in Section 5.

2 Related work

2.1 Cooperative Co-evolutionary algorithms

The first attempt to optimize a LSGO problem with an evolutionary algo-
rithm by means of a divide-and-conquer strategy was presented in 1994 [9].
Since then, this new approach, called cooperative co-evolution, has been widely
studied [7]. The classical structure of this framework is described as follows:

1. Decomposition: Split the n-dimensional decision vector into some smaller
disjoint subcomponents;

2. Optimization: Optimize each subcomponent with a standard evolutionary
algorithm for a fixed number of iterations in a round-robin strategy;
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3. Combination: Merge the solutions from each subcomponent to build the
n-dimensional solution.

Throughout the optimization stage, the individuals in each subcomponent need
to be evaluated with the n-dimensional function. For this purpose, they are
completed with the variables of the context vector. The latter is a n-dimensional
vector that contains information from all the subcomponents. Typically, it is
composed of the variables of the current best solutions in each subcomponent
and it is updated each time a better solution is found in a subcomponent.

2.2 Recursive Differential Grouping

In a CC framework, the decomposition should ideally be performed in such a
way that there is no interaction between variables from different subcompo-
nents. For additively separable problems, it can be uncovered with the Differ-
ential Grouping (DG) strategy [8,16]. In particular, the Recursive Differential
Grouping (RDG) that benefits, as stated by its name, from recursive interaction
detections between subsets of variables, relies on the following result [15, 16]:

Theorem 1. Let f : R” — R be an objective function; X1 and Xo be two
mutually exclusive subsets of decision variables: X1 N Xo = (. If there exist a
candidate solution x* and sub-vectors ay, as, by, ba such that

J11(2") = fau(z¥) # fr2(@”) — fa2(2") (2)

where, f; j(x*) is the function value obtained when replacing, in x*, the variables
of X1 with a; and the variables of Xo with b; (i,5 = 1,2), then there is some
interaction between the decision variables in X1 and Xs.

In practice, all the variables of z*, a; and b; are set to the lower bounds [
of the search space. The variables of as are set to the upper bounds u and
those of by are set to the mean m of the lower bounds and the upper bounds.
Furthermore, equation (2) is not directly employed since the inequality may be
the results of computational round-off errors instead of interaction detection, as
expected. Thus, the following quantities are computed

Ay = fl,l(ﬂf*) - f2,1($*), Ay = fm(w*) - f272(I*), A= \Al - Az\ (3)

and some interaction is detected when X is greater than a threshold € (see [16]
for further details). Eventually, the success of the RDG algorithm relies on the
recursive use of Theorem 1 to identify variables in X5 that interact with those
of X;. Indeed, if any interaction between X; and X, is detected using Equa-
tion (3), the set X3 is divided into two nearly equally-sized groups G; and Gs.
Then, the interaction between X; and G; and X5 and G5 is checked. The process
is repeated until all single variables in X5 that interact with X; are identified.
In brief, the complete RDG algorithm can be presented as follows: (1) deter-
mine all the variables that interact with a selected variable z; using the above
recursive strategy and put them in a set Xi; (2) identify variables that interact
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with X7 and add them to X7, repeat the process until no more variable is added
to X1; (3) select another variable that is yet to be classified and return to step (1).
Note that this approach would set all the variables of an overlapping problem
into a single group. In [15], this issue was solved by slightly modifying the step
(2) by imposing a condition on the size of X;. In this new approach called RDG3,
the step (2) is repeated: (a) until no more variable is added to X; or (b) until X;
contains more than ¢, variables, where ¢, is fixed to a predetermined value.

3 Proposed algorithm

The newly proposed algorithm aims to tackle LSGO overlapping problems within
an overlapped CC framework. The fact that it has to deal with subcomponents
that share several variables raises new challenges. The first one is to perform an
accurate decomposition that detects overlapping variables efficiently and share
them among several subcomponents. It can be achieved by using the modified
approach of the RDG strategy presented in Section 3.1. The second challenge
concerns the management of overlapping variables during the optimization, in
particular for function evaluations. It will be discussed in Section 3.2.

3.1 Overlapped Recursive Differential Grouping

The main idea of the newly proposed decomposition strategy is to relax the group-
ing by identifying variables that make the link between several components in in-
terconnected problems and share them among these components. For example, in
the interaction graph presented in Figure 1, three components can be identified:

51 = {%1,1’2,1‘3,1‘4},52 = {1‘3,%4,1’5,1‘6,1‘7} and S3 = {1'7,.%8,.7}9}. (4)

In each of them, interaction between variables are plentiful while there is no direct
interaction between variables from distinct components, i.e.V 7, j(i # j), k, [(k #£ 1)
such that z; € Sp\S; and z; € S)\S;, x; does not interact with z;. Using the
RDGS3 strategy to decompose such a problem will break the linkage at shared
variables and will lead to the decomposition illustrated in Figure la. The lat-
ter might not be the optimal one since x3 and x4 (resp. x7) are not optimized
with x5, 2 and 7 (resp. xg and z9) while they are strongly connected. The new
strategy, called Overlapped RDG (ORDG), is aimed to allow some overlapping
between subcomponents to prevent from breaking these important linkages. It
will produce the decomposition proposed in Figure 1b.

The ORDG strategy is presented in Algorithm 1. It is very closed to the
RDG algorithm except for the instructions in the ”else” statement at line 12.
In particular, the instruction at line 5 recursively identifies variables in X, that
interact with X;. They are added to X; to constitute the set X} (see Algo-
rithm 2).

— If no interaction has been identified, i.e. if | X}| = |X1|, the X set is recog-
nized as a nonseparable subset if it contains several variables, otherwise the
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(a) RDG3 (b) Overlapped RDG

Fig. 1: The two obtained decompositions for an overlapping problem using RDG3
and Overlapped RDG strategies respectively.

Algorithm 1: Overlapped Recursive Differential Grouping

1 seps = {}, nonseps = {};

2 Set all the variables of x; to the lower bounds, compute f = f(21) ;

3 X1 = {xl}, X2 = {$2,...7$n} ;

4 while X, # {} do

5 X1 =RInter(X1, X2, f, f) ;

6 | if [X7] = [X)]

// For RDG3, the if would be: if |X{|=|X1| or |X{|> €

then
if | X1| =1 then seps =seps U X ;
9 else nonseps = nonseps U X ;
10 Xlz{l’j} S.t.jSiVIiGXQ;
11 X2:X2\{£L'j};
12 else

// For RDG3, the else statement would only contains the
following instructions: X; = X7, Xo=Xo \ X1 ;
13 if | X1] =1 then

14 | Xi=X{, Xo=Xp\ X1
15 else

16 X1* = Lanter(X1, Xo, f, f) 3
17 nonseps = nonseps U X ;
18 XlzXf\Xlqu*;

19 X2 = XQ \ Xf ;

20 if |X1| =1 then seps = seps U X ;
21 else nonseps = nonseps U X ;
22 return seps and nonseps;
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only variable in X is identified as a separable one (lines 8-9). The process
moves on to the next variable that is yet to be classified (lines 10-11).

— Otherwise, some interaction has been identified between X; and Xs. The
variables in X5 responsible of the interaction have been identified during the
recursive detection at line 5 but at this stage, the variables in X; responsible
of the interaction have not yet been determined (and they should be to
perform the overlapped decomposition). If X contains only one variable, this
is the one responsible of the interaction. In this case, the algorithm moves
on to the next iteration while making the same update that for the RDG3
strategy (lines 13-14). Otherwise (i.e. if X contains several variables), those
interacting with X, are identified at line 16 using a recursive mechanism
again (see Algorithm 3) and the update described in lines 17-19 produces
the desired overlapped decomposition.

Algorithm 2: R_Inter(X1, Xo, f, f) Algorithm 3: L_Inter(X1, Xo, f, f)

1 if Interact(X1, Xo, f, f) then 1 if Interact(X1, Xo, f, f) then

2 | if |X2| =1 then 2 | if |X1] =1 then

3 L X1 =X1UXy 3 L return X ;

4 else 4 else

5 Split X into equally-sized 5 Split X into equally-sized
groups G1, G2 ; groups G1, G2 ;

6 X1 =R_Inter(X1,G1, f, f); 6 X1 =L_Inter(Gi, X2, f, f);
7 X? =R.Inter(X1,Go, f, f); 7 X? =L_Inter(G2, X2, f, f);
X, =Xiux?, 8 X, =X{iux?,

9 return X; ; 9 return X; ;

Note that the main difference between the R_inter and the L_inter functions
lies in the fact that the former focuses on the set X5 while the latter works on X7.
Furthermore, the two functions also differ in line 3 (see Algorithms 2 and 3) since
the R_inter function adds variables from X5 that interact with X; to X; while
the L_inter function only returns variables from X; that interact with X5. For
both algorithms, the Interact function at line 1 relies on Theorem 1.

3.2 Overlapped CC framework

The main layout of the overlapped CC framework is similar to the standard CC
presented in Section 2.1 with the major exception that it is designed to detect
and manage overlapping variables efficiently. For this purpose, the decomposition
step performs the ORDG algorithm presented in the previous section.

The optimization still consists in iteratively evolving each subcomponent in
a round-robin strategy. However, in this step, the cooperation between subprob-
lems through the sharing of best solutions in the context vector needs to be
revised. Since subcomponents overlap, a variable x; belonging to one compo-
nent Si may also appear in another component S;. This introduces the issue of
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which value of x; has to be shared in the context vector. In a standard framework
(i.e. without any overlapping), this value is the one of the variable z; of the best
individual in the (only) subpopulation containing x; (see Figure 2a for an illus-
trative example). For the overlapped framework, this idea is extended: the value
of z; in the context vector is the one of the best individual among all the indi-
viduals in the two subpopulations focusing on z; (or in the only subpopulation
if ; is not overlapped). Such an arrangement is illustrated in Figure 2b.

Note that, in order to choose the best individual within two different sub-
populations, the function value of each individual used for comparison is the
one that has been computed during the optimization of the corresponding sub-
components in the round-robin fashion loop. In this process, individuals in each
subcomponent are completed with the variables of the context vector in order
to be evaluated. The latter is updated each time a better solution is reached.

Context vector Context vector

Subpopy Subpopy  Subpops
best _— best

f(x)

worst
X1 Xo Xz Xa Xs Xg X7 Xg Xo X1 Xo X3 Xa Xs Xo X7 Xg Xo
(a) Standard CC (b) Overlapped CC

Fig. 2: Management of the context vector within a standard and an overlapped
CC framework. The illustrative example relies on the interaction structure pre-
sented in Figure 1. Dashed, dotted and solid lines represent individuals from
subpopulations 1, 2 and 3 respectively. The context vector is built with the
variables values of the best individual in each subpopulation.

4 Experimental settings and results

The performance of the new overlapped framework is assessed on large-scale
overlapping benchmark problems derived from the CEC’2013 suite [17] and com-
pared with the standard CC framework based on RDG3 decomposition [15]. The
benchmark set contains 6 functions. Two of them, F5 and Fg, are directly taken
from [17]: Fi is the 1000-d shifted Rosenbrock function and Fj is the 905-d shifted
Schwefel’s function with conflicting® overlapping subcomponents. The four other

3 Note that the function fi3 in [17] also contains overlapping subcomponents but it has
not been included in the benchmark set because their overlapping subcomponents are
conforming. It means that they have the same optimum value with respect to both
subcomponent functions. It can be simply optimized in a standard CC framework.
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functions, Fi to Fy, are obtained by replacing the Schwefel basis function in Fj
by Ackley, Elliptic, Rastrigin and Rosenbrock functions respectively. Therefore,
functions F; to F5 contain 20 overlapping subcomponents that share 5 variables
with adjacent subcomponents. The Fg function (Rosenbrock) can be seen as
containing 999 subcomponents sharing one variable with adjacent ones.

In order to evaluate the decomposition effects of the newly proposed frame-
work on overlapping problems, the RDG3 and ORDG strategies are used to
decompose the benchmark problems presented above. For the RDG3, two dif-
ferent threshold values ¢, = 50 and ¢, = 0 are tested. The first value is the
one used to study optimization results in [15] while the second value aims to
identify as many components as possible and systematically cut the overlapping
at shared variables. The number of components generated (k), the sum of the
number of variables in each group (r) and the number of function evaluations
computed (FEs) are reported in Table 1.

Table 1: Decomposition results of RDG3 (with €, = 50 and ¢, = 0) and ORDG
strategies. k is the number of components generated, r is the sum of the number
of variables in each group and FEs is the number of function evaluations.
Fun RDG3 (en = 50) RDG3 (e, = 0) ORDG

k r FEs k T FEs k r FEs
Fi 12 905 16273 20 905 16597 12 1011 16702
F 12 905 16252 19 905 16666 17 1000 18214
Fs 12 905 16249 20 905 16615 17 1000 18214
Fy 12 905 16252 20 905 16666 17 1000 18214
Fs 13 905 16288 21 905 16669 17 1003 18202
Fs 20 1000 49891 500 1000 25435 999 1998 59848

For the RDG3 decompositions, r is simply equal to the number of variables
of the function because there is no overlap. For F} to F5, the ORDG should cap-
ture the overlapping subcomponents introduced in [17] and therefore retrieve the
1000 variables involved in the benchmark construction. This is the case for Fy
to Fy. For Fy and F5, some additional interactions between independent vari-
ables have been identified due to computational round-off errors and lead to a
slightly larger value of r. Still according to [17], the number of components k
for functions F; to Fj is equal to 20 in the benchmark construction. The RDG3
with €, = 50 produces only 12 (or 13) components since components that con-
tain less than 50 variables are merged with other ones. The RDG3 with ¢, =0
retrieves the 20 subcomponents (except for F» and Fj for which the small dif-
ference is again due to computational round-off errors). The ORDG detects 17
components for functions F» to Fs*. They correspond to the ones formed in the
benchmark construction except that some of them have been merged. Indeed, if

4 Theoretically, 17 components should also be detected for Fy but round-off erros affect
the results for that particular function.
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the ORDG procedure starts the detection with a variable belonging to a com-
ponent that share some overlapping variables with two adjacent components,
the latter are merged to form only one component. Thereafter, adjacent compo-
nents to these components are also merged and so on. Although this prevents
the detection of the 20 subcomponents, the obtained decomposition still agrees
with the desired objective. In this particular case, the fact that some overlapping
components contain two subsets of variables that do not directly interact will not
affect the optimization efficiency. For the Fg function, the obtained decomposi-
tion corresponds to the expected one, 20 (500) components of 50 (2) variables
are formed for the RDG3 with ¢,, = 50 (= 0 resp.) and the ORDG produces 999
components of 2 variables. Finally, since the ORDG analyses additional inter-
actions with respect to the RDG3, the cost in terms of FEs is higher. However,
the additional cost remains reasonable and will be negligible with respect to the
budget in terms of FEs allowed for the optimization.

The influence of the decomposition on the optimization results is analyzed
by embedding each kind of decomposition in the overlapped CC framework pre-
sented above. In particular, when the latter is coupled with the RDG3 decom-
positions, it behaves like the standard CC. The evolutionary algorithm used to
optimize the subcomponents is a genetic algorithm. In this study, the one im-
plemented in the Minamo software is considered [10]. Here there is an overview
of its main features: real-value representation of the individuals; tournament
selection to pick up pairs of parents; arithmetic crossovers for recombination;
mutation rate of 1 %; elitism of two individuals. Within the CC framework,
the population size is set to 10 times the number of variables of the consid-
ered component. The round-robin fashion optimization loop is repeated until
the maximum number of FEs is reached. It is set to 3 x 10 in total (for the
decomposition and the optimization).

The median of the best solution over 51 independent runs and the stan-
dard deviation are reported in Table 2. The CC-ORDG produces better solution
quality than the CC-RDGS3 for 4 of the 6 functions. The CC-RDG3 with ¢, =0
generates the best results for the 2 other functions. Convergence graphs depict-
ing the convergence behavior along the optimization process are also provided
in Figure 3. It can be seen that the three algorithms follow the same trend for
functions F; to F5®. Between the two variants of the CC-RDG3, the slightly
different number of components does not have too much influence on the op-
timization quality. However, for Fg, the CC-RDG3 with €, = 0 that produces
many more subcomponents (each of them focusing on 2 variables) has a better
handle of the optimization. Furthermore, the closed results between the CC-
RDG3 with ¢, = 0 and the CC-ORDG may be surprising. By analyzing the
convergence behavior of the overlapping variables in the CC-ORDG in details,
it can be seen that most of the time, the variables shared among two subcompo-
nents converge to the same value at the same rate in the two subcomponents. In
this context, the overlapped decomposition does not significantly contribute to a

5 Note that for F,, the CC-ORDG is stuck in a pseudo-optima for a few runs. It causes
the large green-colored area in Figure 3b.
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Table 2: Optimization results of the CC-RDG3 (with €, = 50 and ¢, = 0) and
the CC-ORDG. The median of the best solution over 51 independent runs and
the standard deviation are presented. Best median values are in bold.
Fun RDG3 (en = 50) RDG3 (e, = 0) ORDG
median std median std median std
Fi 7.03e+07  1.77e+405 7.04e+07  1.48e+05 7.01e4+07 2.84e+05
> 3.95e+13  3.56e+12 3.53e+13 5.24e+12 3.85e+13  1.67e+14
Fs 4.83e4+08  2.81e+07 5.22e+08  4.45e+07  4.17e+08 8.11e+07
Fy 6.0le+11  1.82e+10 4.27e+11  1.40e+10 7.80e+11  3.58e+10
Fs 1.04e+11  2.15e+10 1.15e+11  2.66e+10 9.64e+10 1.75e+10
Fs 8.68e+05  9.80e+04 1.50e+03 1.21e402 1.34e+03 1.01e+402

better cooperation between subcomponents in comparison with the cooperation
through the sharing of the context vector performed in a standard CC frame-
work. Therefore, although results in Table 2 might indicate that the CC-ORDG
provides slightly better results, we can not definitely claim that a strategy is
better than the other.

5 Discussion

The new CC framework introduced in this paper is designed to optimize overlap-
ping LSGO problems with an overlapped decomposition strategy. In this context,
an overlapped variant of the RDG has been developed to efficiently detect over-
lapping variables and share them among several subcomponents. The optimiza-
tion step of the standard CC framework has also been extended in order to
efficiently sha-re information between overlapped subcomponents through the
context vector.

Numerical experiments were conducted on 6 benchmark functions. The ex-
tension of the method to a larger set of test functions is straightforward. However
we believe the latter goes beyond the scope of this introductory paper and thus
it will be considered in a further work. Similarly, the benchmark set is limited
to 905-d and 1000-d functions, which is common practice in LSGO studies. Fur-
ther research on the scalability may also be carried out to determine how the
algorithm performs on more complex problems with larger dimensions.

The experiments presented in this paper show that the new approach pro-
duces the desired overlapped decomposition. However, although the optimization
results might indicate that the new decomposition helps to get slightly better
solutions, we can not definitely claim that the new framework outperforms the
standard ones. This may be partly explained by the fact that the exchange of
information between subcomponents in a standard CC framework through the
context vector is stronger than we could expect. In any way, there is scope for
even better progress to further develop the CC concept to deal with overlapping
problems. We think that the new strategy that introduces overlapped subcom-
ponents may be a promising way to achieve such an improvement.
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Fig. 3: Convergence graphs representing the evolution of f(x) (in log-scale) with
respect to the number of FEs. CC-RDG3 with ¢, = 50 (blue stars), CC-RDG3
with €, = 0 (red circles), CC-ORDG (green triangles). The solid line depicts the
median value while the light-colored area represents the interval between the
best and the worst value over the 51 runs.
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Abstract. In many machine scheduling studies, individual algorithms
for each problem have been developed to cope with the specifics of the
problem. On the other hand, the same underlying fundamentals (e.g.
Shortest Processing Time, Local Search) are often used in the algorithms
and only slightly modified for the different problems. This paper deals
with the synthesis of machine scheduling algorithms from components of
a repository. Especially flow shop and job shop problems with makespan
objective are considered to solve with Shortes/Longest Processing Time,
NEH, Giffler & Thompson algorithms. For these components, the pa-
per includes an exemplary implementation of an agile scheduling system
that uses the Combinatory Logic Synthesizer to recombine components
of scheduling algorithms to solve a given scheduling problem. Special at-
tention is given to the composition heuristics and the process of recombi-
nation to executable programs. The advantages of this componentization
are discussed and illustrated with examples. It will be shown that algo-
rithms can be generalized to deal with scheduling problems of different
machine environments and production constraints.

1 Introduction

In production, machine scheduling algorithms help to decide automatically when
a certain job should be executed on which machine. Many manufacturers have
not yet automated their machine scheduling. One reason is that for each ma-
chine scheduling problem with its numerous specific characteristics, suitable
algorithms have to be selected, adapted, and implemented individually. Each
practical scheduling problem can be categorized into a problem class, for which
dedicated heuristics are applicable. If a class is a subset of another class, the
heuristics of the superset class can often also be applied to the subset class.
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Also, relationships and overlapping between categories can be identified which
simplifies the transfer of heuristics between problem classes.

The assignment problem which a combination of heuristics or metaheuristics
should be chosen for which practical production environment concerning the
applicability, solution quality, and computing time represents a combinatorial
challenge. The synthesis framework Combinatory Logic Synthesizer ((CL)S) [1]
is suitable for the automated solution of this task. The (CL)S can construct
software from a collection of individual components and it is possible to specify
components semantically, which enables the (CL)S to select the appropriate com-
ponents. The framework then automatically generates all possible combinations
in the form of executable software.

The objective of the paper is to use the (CL)S-Framework to automatically
select and combine different algorithms to solve a given scheduling problem.
Therefore, we build a (CL)S repository of algorithms for different machine en-
vironments, which takes the relationships of the classes into account and auto-
matically composes selected algorithms for instances of these problems.

This paper is structured as follows: First, we present the general classifica-
tion scheme of machine scheduling problems. In the related work, we discuss
algorithms for scheduling of flow shop and job shop problems and present the
framework on which our implementation is based on, the (CL)S. The handling
of this framework, as well as the generation and composition of algorithms, is
shown in the fourth chapter with example runs. In detail, we show the poten-
tial of the tool and the resulting possibilities using the Giffler & Thompson’s
algorithm.

2 Classification of Machine Scheduling Problems

Machine scheduling problems can be specified by a tuple «|S|y [2, pp. 288-290][3,
pp. 13-21][4, pp. 1-2]. In the following, parameter values are specified which are
considered in this paper.

The parameter « defines the amount and arrangement of machines [3, pp. 14—
15]:

1: Single Maschine, one machine is available for production.

F'm: flow shop, m machines with one machine per processing stage. All jobs

follow the same route through the machines.

— Jm: job shop, m machines with one machine per stage. Each job has a
prescribed route through the stages. The route may differ between the jobs.

— Om: Open Shop, m machines, where each job can visit the machines one

after the other in an order that is determined by the planner.

Parameter § can contain as many entries as required and describes characteristics
and limitations of the production process:

— prmu: Permutation, the processing sequence of jobs from the first processing
stage through all machines is to be kept consistent [3, p. 17].
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— skip: skipping stages of jobs is possible (further example, but not applicated
in the paper) [5, pp. 1151-1155, 4, p. 13].

~ specifies the objective function:

— Chnaz: Makespan, interval between production start of the first scheduled job
and finish time of the last job.

3 Related Work

In the following, important scheduling algorithms for these machine environ-
ments and [-constraints in combination with makespan minimization are de-
scribed, as well as related work according to the (CL)S.

3.1 Maschine Scheduling Algorithms for Flow Shops and Job Shops

In the context of machine scheduling, an enormous number of papers and al-
gorithms are available. Literature overviews for flow shops and job shops can
be found in Komaki, Sheikh, and Malakooti [6], Framinan, Gupta, and Leisten
[7] (permutation flow shop with makespan minimization) and Zhang et al. [8].
A comparison between commonly used algorithms for constructive flow shop
scheduling can be found in Ruiz and Maroto [9]. Different dispatching rules have
been studied in Arisha, Young, and El Baradie [10]. In the following, selectively
a few algorithms of the overviews are analyzed that dealt with flow shops or
job shops to minimize the makespan and are related to our problem classes (see
Section 2).

Some of the most commonly used constructive heuristics for flow shops and
job shops are Shortest Processing Time First (SPT), Longest Processing Time
First (LPT), and the NEH-heuristic (flow shops) and have therefore been con-
sidered in this paper. The benefits of dispatching rules like SPT and LPT are low
computational complexities and therefore fast calculations, and transparent be-
havior for production planners. The NEH-Heuristic, firstly published by Nawaz,
Enscore, and Ham [11, pp. 92-94] for permutation flow shops and makespan
minimization (F'm|prmu|Cies) produces good results in most cases. Giffler and
Thompson [12] published a constructive algorithm that also applies rules like
SPT and LPT to job shops.

3.2 Giffler & Thompson algorithm

Using the algorithm by Giffler & Thompson, job shop as well as flow shop prob-
lems can be solved. It schedules exactly one job on a machine in each iteration,
so the algorithm returns complete schedules after m x n iterations, where m is
the number of machines and n the amount of jobs. The heuristic is only pa-
rameterized by the applied dispatching rule. In the algorithm, this dispatching
rule decides between several competing jobs on the same machine. The imple-
mentation of the complete Giffler & Thompson algorithm is shown in Alg. 1.1.
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The algorithm consists of four phases where steps 2 to 4 iterate until all jobs
are scheduled [13, S. 75-76]. The calculated schedule and the completion times
of the scheduled jobs and for all machines are returned.

1 Let Z; be the completion time of machine i. Initialize Z; = 0 for ¢ = 0, ..., m. Select
a dispatching rule.

2 Select machine ¢* that first can finish a job out of the set of jobs, which are waiting
to be processed next on one of the machines and are not scheduled yet.

3 From the set of all jobs waiting to be processed on this machine i* select one job by
the dispatching rule which is initalized in step 1.

4 Schedule selected job on machine " and update Z;«. If there are jobs left to be
scheduled, return to step 2.

Algorithm 1.1: Implementation of the Giffler & Thompson algorithm

Alg. 1.1 works as follows. In each iteration (step 2-4), the machine is de-
termined, which can first complete a job. For this purpose, each not yet fully
scheduled job is iterated and the end time after scheduling on the next machine
to be visited is compared. Up to this point, it is a greedy algorithm that selects
a machine according to the earliest completion time on the next machine the job
has to be processed on. Once the machine to be scheduled has been determined,
in the second phase the job is varied to meet a prioritization on the machine.
This is done by determining all jobs that are also to be scheduled next on the
selected machine, including the job determined in the previous phase. If two
or more jobs are waiting to be scheduled on the selected machine, the jobs get
ranked according to the selected dispatching rule. After selecting a job on the
determined machine, it gets scheduled and Z;, as well as the current end time
of the job, gets updated.

3.3 Combinatory Logic Synthesizer

Combinatory Logic Synthesizer, short: (CL)S, is a type-based framework for
the synthesis of software from a set of components specified in a repository
[1]. The framework was developed in the programming language Scala and is
used in this paper. In addition to the synthesis, the framework also allows the
immediate execution of the synthesis result. Due to the implementation in the
Scala programming language, the synthesis results can also access existing Java
and Scala libraries. The framework (CL)S was developed at the chair 14 of the
faculty for Computer Science at the TU Dortmund University.

The Combinatory Logic Synthesizer ((CL)S) is particularly suitable for han-
dling unpredictable variability, which makes it well suited for the synthesis of
machine allocation algorithms in production planning. (CL)S enables the spec-
ification of components, their implementation, as well as the modeling of vari-
ability and the automatic composition of components under consideration of the
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modeled variability rules [14]. All this is uniformly done within the framework.
Thus, the framework provides a solid basis for mapping and specifying individ-
ual heuristics and algorithms, and is also suitable as a technological basis for the
automatic composition of components [15]. The (CL)S has been used in the past
for numerous applications of a similar nature. As an example, we mention the
automatic configuration of factory planning projects [16], the automatic gen-
eration of BPMN processes [17], and the automated configuration of plans in
construction projects [18]. The basis for the use of the framework is that within
the target domain, results can be composed of specifiable components. In the
(CL)S the specification is done by so-called semantic intersection types. How
components can be specified and implemented, and which solutions are then
generated automatically, is shown in the following chapters using an example.

4 Implementation

Type of machine
scheduling
problem 1
(flow shop, job Constructive
shop) C Heuristics
Demand data Iterative Machine
S dat Metaheuristics schedule
crap data . o
L Composition oo

Dispatching of heuristics

Processing times
s Rules i ——

Set-up times

Neighbourhood
S Strategies

Objective function

Constraints

Fig. 1. Concept of schedule generation with (CL)S

The (CL)S-Repository contains all algorithm components as shown in Fig. 1,
which can be combined into an executable scheduling system. Through a syn-
thesis request to the (CL)S framework, production characteristics can be used
to intersect with the defined types of the algorithm components. The (CL)S only
selects those heuristics that are applicable to the given problem class. Available
problem classes in this exemplary implementation are flow shop and job shop.
After composing the algorithms, they can be utilized to solve the given schedul-
ing problem and produce valid machine schedules. The synthesized algorithms
work as transition functions and transfer the given data object into an applicable
machine schedule. After scheduling, the makespan is calculated.

Further problem classes can be integrated by adding further possible pa-
rameter assignments and therefore extending the intersection types. By speci-
fying additional parameters, further 5 constraints can be realized, which may
exclude further heuristics because they are not applicable for the problem, or
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Scheduler: (String — String) N (Algorithm N shopClass — Scheduler(shopClass))
NEH: String N (Algorithm N FS)

FSDispatch: (String — String) N (PriorityRule — Algorithm N FS)
GifflerThompson: (String — String) N (PriorityRule — Algorithm N JS N FS)
LPT: String N PriorityRule

SPT: String N PriorityRule

Fig. 2. (CL)S repository

include others because they require certain assumptions or additional data such
as deadlines.

Our defined (CL)S repository is shown in Fig. 2 and the solution tree cal-
culated by the (CL)S across all combinators of the repository is illustrated in
Fig. 3. The repository’s first combinator Scheduler of Fig. 2 is a wrapping base
module, which serves as the common target type for all synthesis requests. Ac-
cordingly, it is found on the first level of the solution tree (left square in Fig. 3).
As parameter shopClass (see Fig. 2) it receives information about the problems’
machine environment (a-component). Starting from the base module, the differ-
ent algorithms for flow shop and job shop problems of the type Algorithm are
now available according to the parameter shopClass. By concretizing the param-
eter when calling the synthesis, the number of applicable combinators is reduced
in such a way that only the algorithms for the corresponding problem class can
be used. This is done by using the parameter also as an intersection type of the
base module and thus an intersection with combinators of other problem classes
is no longer possible.

NEH

PriorityRule & String SPT

String & Scheduler ~ Scheduler  Algorithm & Strin FSDispatch

GifflerThompson LPT

Fig. 3. (CL)S solution tree for flow shops

The first two algorithms NEH and FSDispatch in our implementation can
only be applied to flow shops while the algorithm of Giffler & Thompson can
be applied to job shops, which implies that it can also be used for flow shops
because flow shops are a real subset of job shops as shown in Fig. 4.
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Om

Fig. 4. Relationships between considered scheduling problem classes

The algorithms FSDispatch and GifflerThompson additionally require a dis-
patching rule. Fig. 3 shows the reuse of these dispatching rules SPT and LPT
for FSDispatch and GifflerThompson. This shows again one advantage of such a
composing method. It is easily possible to integrate and combine new algorithms,
heuristics, and dispatching rules into the tool by inserting them into the reposi-
tory as combinators with corresponding intersection types. New components can
reuse already existing ones. Individual components can also be replaced by other
possibly better performing components without having to replace them individ-
ually at all points. Furthermore, the derivation graph in Fig. 3 shows similarities
and differences between algorithms in the sense that the use of similar compo-
nents is immediately recognizable. The procedure of disassembling an algorithm
into reusable components and representing them as (CL)S-combinators is now
explained in detail using the example of the Giffler & Thompson algorithm.

5 Results

To show that the same implementation of an algorithm can be effectively used
for different machine environments, the Giffler & Thompson algorithm and its
implementation is shown in Alg. 1.1 has been applied to a flow shop and a
job shop problem. The selection of the dispatching rule takes place inside the
dispatching rule combinator that has been selected by CLS and parsed into the
program code at this point. The dispatching rule is varied by replacing the code
at this point.

To give a concrete example, processing times in Tab. 1 have been randomly
generated from a triangular distribution with lower limit 5s, upper limit 15s,
and mode 8s. For the job shop problem, also the processing order has been
randomized across the stages as shown in Tab. 2. The entry ”4” in row ”S1” and
column ”job 1”7 indicates that job 1 has to be processed on the first stage (S1) in
the fourth production step. Before, the job has to visit stage 3, then stage 2 and
stage 2 in exactly this sequence. The calculated job shop schedule of the Giffler
& Thompson algorithm with LPT-rule is shown in fig. 5.

Since the algorithm was not particularly designed for flow shop problems, it
is reasonable to compare its result with the NEH heuristic. The two schedules
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Job:l1 2 34567 8 910 Job:[12345678910
S1 612891089 9117 S1 (414344132 3
S2 (711 7797109 10 6 S2 (3314122231
S3 1812118 981213 7 9 S3 (122133444 4
S4 1912117 6 910 8 1110 S4 (243221311 2

Table 1. Generated processing times Table 2. Order for job shop production

Job Shop : G&T LPT

10 [ 20 [30 [ 4050 [ o0 70]s0]o0[100]110]120]130]140] 150

12 [J7 T3] J5 (i

19 [J2[I7 I8 [IB[I5]

[ J2 139 [J5] [J7 [ 93 [310] [J6 3] J1]

73 179 (02 (3739 [B[I6[J1] [JI0[7] _
Craz

Fig. 5. Jop shop schedule with Giffler & Thompson

are shown in Fig. 6. As expected, the NEH heuristic creates a better schedule
than the Giffler & Thompson algorithm. It is worth mentioning that Giffler &
Thompson created a valid schedule that can keep up with algorithms specially
designed for flow shop algorithms and can therefore be for example used as a
starter solution for an iterative algorithm or it can be used if no better solution
is available. In addition, Giffler & Thompson algorithm can be executed with
different priority rules. To execution of the algorithm with different priority rules
as input parameters lead to multiple solutions, the planner team can choose from.
The benefit is not having to implement an algorithm for flow shop problems as
the job shop algorithm can already handle it.
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Flow Shop : NEH

10|20|30|40|50|60|70|80|90|100|110|120|130|140|150

JITI0[J6 [J3[J7 ] J2 [ J9 [J4[J8] J5 |

(TG [J6][J5] 37 [J2 ][ J9 [ ][ I8 ][ J5

[(JL[JT0]J6] J3 [ J7 [ J2 [J9[J4] J8 [J5]

T I8 [ 33 |97 ][Iz [ 99 [H[I5]T5

Flow Shop : G&T LPT

J2 [J7]J9 [J8 [J3] J5 Pi0[J6 ] J4 [I1]

[J2 [ J7 [ J9 [ J8 [J3][J5 P10J6] [JA[I1]

[(J2 [ J7 [J9] J8 [ J3 |J5|J10|J6|J4|Jl§|

(72 [J7 [ 19 [J8][ I3 |J5||J10|J6|Jf4|n§

Cmax,NEH Cmar,G&T

Fig. 6. Comparison of flow shop schedules with NEH and Giffler & Thompson
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6 Conclusion

In this paper, we presented a repository for machine scheduling algorithms using
the (CL)S, a framework that can generate algorithms automatically and to create
solutions that are specially tailored to a previously specified problem. We used
this framework for the problem area of machine scheduling in order to solve flow
shop and job shop problems with SPT, LPT, NEH and Giffler & Thompson.

We have classified scheduling algorithms and mapped them as components in
a (CL)S repository. Through componentization, different algorithms can be inte-
grated into a framework via a uniform interface. This makes it easy to generate
different algorithmen to scheduling problems. The recombined algorithms gener-
ate valid schedules according to their functionalities. Algorithms can be defined
for various problem classes and constraints. According to the synthesis request,
only those algorithms are recombined that apply to the current problem.

The shown concept is not limited to constructive algorithm as presented
in this study and can also be applied to any iterative metaheuristic in further
studies if the given data object already contains a constructive start solution.
Concatenations of different constructive and iterative heuristics are conceivable
as well. Also, extensions of other objective functions are possible.
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Abstract. In this paper, we study the use of reinforcement learning in adaptive operator selec-
tion within the Iterated Local Search metaheuristic for solving the well-known NP-Hard Traveling
Salesman Problem. This metaheuristic basically employs single local search and perturbation op-
erators for finding the (near-) optimal solution. In this paper, by incorporating multiple local
search and perturbation operators, we explore the use of reinforcement learning, and more specif-
ically Q-learning as a machine learning technique, to intelligently select the most appropriate
search operator(s) at each stage of the search process. The Q-learning is separately used for
both local search operator selection and perturbation operator selection. The performance of
the proposed algorithms is tested through a comparative analysis against a set of benchmark
algorithms. Finally, we show that intelligently selecting the search operators not only provides
better solutions with lower optimality gaps but also accelerates the convergence of the algorithms
toward promising solutions.

Keywords: Adaptive operator selection - Iterated local search - Reinforcement learning -
Q-learning - Traveling salesman problem.

1 Introduction

Combinatorial Optimization Problems (COPs) are a complex class of optimization problems with
discrete decision variables and a finite search space. Many COPs are NP-hard for which no polynomial-
time algorithm exists. Meta-heuristics (MHs) can solve these problems in reasonable time and provide
them with acceptable solutions; however, they do not guarantee the optimality [22]. MHs employ either
single or multiple search operators to evolve a single or a population of solutions toward (near-) optimal
solutions. When using multiple search operators, the problem of operator selection arises.

Individual search operators may be effective in particular stages of the search process and not
throughout the search process. The reason is that the search space of COPs is a non-stationary en-
vironment that includes different search regions with dissimilar characteristics. Therefore, different
search operators act differently in different regions of the search space [7]. Accordingly, solving COPs
with single search operators does not necessarily lead to the highest performance of the search pro-
cess. Intuitively, employing multiple search operators selected in an appropriate way during the search
process not only leads to a more robust behavior of a MH with respect to the process of finding the
optimal solution [19], but also significantly affects the exploration (i.e., explore undiscovered regions)
and exploitation (i.e., intensify the search in promising regions) abilities of a MH, and provides an
Exploration-Exploitation balance during the search process. The main question in this regard is in
which order the search operators should be employed such that the MH can go toward the global
optimum. One efficient way is to dynamically select and apply the most appropriate operator based on
their history of performance during the search process. This is referred to as Adaptive Operator Selec-
tion (AOS) [7]. Adaptive selection strategies may differ from very simple strategies to more advanced
ones. In simple strategies, such as score-based selection strategy [16], an initial score is assigned to each
search operator and the scores are updated based on the performance of each operator at each step of
the search process. In this strategy, the selection chance of each search operators is then proportional to
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its accumulated score. Regardless of the neglectable overhead that they impose to the search process,
the added-value of simple strategies may not be necessarily significant [24]. Hence, more advanced
adaptive strategies should be embedded into the AOS.

In this regard, Machine Learning (ML) techniques can be used in AOS to provide a more intelligent
adaptive strategy when selecting the search operators during the search process. The integration of ML
techniques into MHs is an emerging research field that has attracted numerous researchers in recent
years [3,23,5,20,8,10,15]. In particular, ML techniques help the AOS to use feedback information on
the performance of the search operators during the search process. In this situation, operators are
selected based on a credit assigned to each operator (i.e., feedback from their historical performance).
Considering the nature of the feedback, the learning can be offfine or online. In offline learning,
knowledge is extracted from a set of training instance with the aim to solve new problem instances. In
online learning, the knowledge is extracted and incorporated into the resolution process dynamically
while solving a problem instance [23,4].

In this paper, we study the use of reinforcement learning (RL), particularly Q-learning as a ML
technique, in AOS within the Iterated Local Search (ILS) meta-heuristic [12] for solving the well-known
NP-hard Traveling Salesman Problem (TSP). The ILS basically employs single local search and per-
turbation operators for finding the (near-) optimal solutions. However, there are several specific and
efficient local search and perturbation operators for TSP in the literature (e.g., 2-opt, 3-opt, insertion,
etc. as local search operators and double-bridge, shuffle-sequence, etc. as perturbation operators) [22]
that can be employed simultaneously. In this paper, we incorporate multiple local search and pertur-
bation operators into the ILS and use Q-learning to adaptively select among them during the search
process. Indeed, Q-learning is integrated into ILS to adaptively select its operators during the search
process. This integrated algorithm is called Q-ILS hereafter. In this paper, two variants of Q-ILS are
proposed: in the first algorithm called Q-ILS-1, Q-learning is used to select appropriate local search
operators at each stage of the search process, and in the second algorithm called Q-ILS-2, Q-learning
is used for selecting appropriate perturbation operators. We will show that both Q-ILS-1 and Q-ILS-2
are able to find good solutions and outperform the ILS with single operator and also ILS with multiple
randomly selected operators.

The rest of the paper is organized as follows. Section 2 reviews the recent relevant papers studying
Q-learning for AOS in solving different COPs. Section 3 explains the preliminaries and main concepts
of this paper. The two Q-ILS algorithms (Q-ILS-1 and Q-ILS-2) are proposed in Section 4. The per-
formances of the proposed algorithms are investigated in Section 5. Finally, the conclusion is given in
Section 6.

2 Literature review

AOS has been widely studied within different MHs for adaptively selecting the search operators [7].
Most of the studies use simple score-based methods that select operators based on their accumulated
score [7]. Besides simple score-based mechanisms for AOS, RL techniques, in particular Q-learning
algorithm, have been used for AOS in recent years [2,19,18,14,9]. In the following, the studies on the
use of Q-learning algorithm for AOS for solving different COPs are elaborated.

In [19], Q-learning has been integrated into a Variable Neighborhood Search algorithm to solve
the symmetric TSP. The role of Q-learning is to select appropriate local search operators during the
search process, where both the states and actions are a set of local search operators (i.e., interchange,
insertion, 2-opt, and double-bridge). The authors show that using Q-learning to intelligently select the
local search operators achieves satisfactory results for small-sized instances of the TSP. In [18], the
Q-learning algorithm is used to select the search operators of a Genetic algorithm, namely mutation
and crossover operators, during the search process for solving TSP. The authors discuss that adaptive
operator selection based on the immediate performance of the operators might lead to a short-sighted
optimization. Therefore, to overcome this shortcoming, they recommended using RL that can learn
a policy to maximize the expected reward in a long term prospect. In [14], the authors have used
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Q-learning algorithm to select appropriate local search operators of a Simulated Annealing algorithm.
The proposed algorithm is applied to mixed-model sequencing problem to select among exchange, shift,
and knowledge sharing operators. The states are defined as the number of successful neighbor moves
(i.e., moves that improve the objective function) occurred during an episode, and actions are a set of
triplet local search operators. They show that the integration of Q-learning into Simulated Annealing
significantly improves its performance comparing to other Simulated Annealing-based algorithms. In
[2], the authors have employed Q-learning to select the order of applying mutation and crossover oper-
ators in each generation of the Genetic algorithm. In their algorithm, five states are defined depending
on the number of chromosomes within the population that are replaced by executing an action, and
there are two possible actions; apply crossover first and mutation next or apply mutation first and
crossover next. To show the performance of the proposed method, it is applied to job sequencing
and tool switching problem. The authors show that the proposed algorithm is competitive and even
superior to the state-of-the-art algorithms for solving some instances of the problem.

As shown by the reviewed papers, the use of Q-learning in AOS has provided promising results in
solving different COPs, and even in some cases it has been superior to some state-of-the-art algorithms.
Motivated by the good performance of Q-learning, this paper aims at investigating the integration of
Q-learning into AOS to select local search (Q-ILS-1 algorithm) and perturbation (Q-ILS-2 algorithm)
operators of the ILS for solving the T'SP.

The main contributions of this paper compared to the literature are threefold: 1) for the first time,
this paper investigates the use of Q-learning in ILS for intelligently selecting the search operators
throughout the search process, 2) the Q-learning is integrated into ILS in two levels for selecting local
search and perturbation operators, with the aim of investigating the effect of intelligent AOS in each
level, and 3) a new design of Q-learning is proposed where a set of appropriate states and actions are
defined according to the level of integration. In Q-ILS-1 the states are defined as the sequence of last k
local search operators and the actions are the local search operators. In Q-ILS-2, we define two states;
0 if there is no improvement in the best found solution during an episode and 1; otherwise, and the
actions are a set of perturbation operators.

3 Preliminaries

In this section, first a short introduction to the TSP is provided. Next, the basics of the ILS algorithm
and the Q-learning algorithm, are explained.

3.1 Traveling Salesman Problem

TSP is a classical NP-hard COP, which requires exponential time to be solved to optimality [11].
TSP can be formally defined by means of a weighted graph G = (V, A) where V is the set of vertices
representing cities and A is the set of edges that connect the vertices of V. The edge that connects
cities ¢ and j has a weight of d;;, which represents the distance between cities ¢ and j; 4,5 € V. In
TSP, the aim is to find the Hamiltonian cycle of minimum total travel distance such that all vertices
are visited exactly once.

3.2 Iterated Local Search

Iterated Local Search (ILS) is a well-known MH for its effectiveness in both exploration and exploitation
and its simplicity in practice. When the search gets trapped in a local optimum, ILS attempts to escape
from the trap without losing many of the good properties of the current solution [12]. Considering spes:
as the best solution found in the history of ILS, the general pseudo code of ILS is given in Algorithm
1. For a given initial solution sg, a LocalSearch(.) function is performed on solution sy to search
its neighborhood with the hope to find better solutions, particularly the local optimal solution s*.
Subsequently, s* is archived as the current best solution spes;. Then, the main loop of the ILS starts

42



4 M. Karimi-Mamaghan et al.

by performing a Perturbation(.) function over the current local optimum solution s* to help the
search process to escape from the local optimum; whereby an intermediate solution s’ is generated. The
LocalSearch(.) function is performed on the intermediate solution s’ to obtain a new local optimal
solution s* . Next, the Acceptance(s*, s*/, Spest) function is employed to check whether the new local
optimal solution s* is accepted. The Acceptance(.) function can only accept better solution (i.e.,
Only Improvement strategy) or it can even accept worse solution with a small gap (i.e., Metropolis
acceptance strategy [13]). Finally, the best solution spes: is updated. The algorithm terminates when
the termination criterion is satisfied.

Algorithm 1. Pseudo code of the ILS

get an initial solution sq

s* := LocalSearch(sg)

Spest = S~

while termination criterion not reached do
s’ := Perturbation(s*)
s*' := LocalSearch(s’)
s* = Acceptance(s",s”‘/7 Sbest)

end

return the best found solution spest

© ® N o bk W N =

3.3 The Q-learning algorithm

In RL, an agent interacts with the environment and aims to iteratively learn which action to take at a
given state of the environment to achieve a goal. At each interaction depending on the state s (s € S) the
agent takes an action a (a € A(s)) and receives a numerical feedback from the environment. Through
this process, the agent attempts to iteratively maximize the cumulative received reward. Classical RL
methods need the complete model of the environment (i.e., all possible states of the system, the set
of possible actions per state and the matrix of transition probabilities as well as the expected values
of the feedback). However, in most problems including COPs, it is not possible to have a complete
model of the environment [26]. In such cases, Monte Carlo and Temporal Differences algorithms can be
used [21]. The Q-learning algorithm [25] is a model-free RL algorithm based on temporal differences.
In Q-learning, a @Q-value is associated with each state-action pair (s,a) that represents the expected
gain of the choice of action a at state s. The Q-value of each state-action pair (s,a) is updated using
Expression (1).

Q(s,a) + Q(s,a) + afr + 7 max Q(s',a') — Q(s,a)) (1)

where r is the reward (punishment) received after performing action a in state s and v (0 <y < 1)
and a (0 < o < 1) are the discount factor and the learning rate, respectively.

One strategy to select the actions in Q-learning is to always select the action with the maximum Q-
value. In this strategy, the best state-action pairs with the maximum @-values are exploited sufficiently,
while other state-action pairs remain unexplored. To cope with this issue and to make a balance between
exploration and exploitation, the e-greedy strategy (Expression (2)) [21] is an efficient strategy that
assigns an e selection probability to other actions to give them a chance to be explored.

argmax Q(s,a)  with probability 1 —e @
a 2

a =
any other action with probability e

To move from exploration of new actions toward exploitation of the best actions, the value of €
gradually degrades throughout the search process using a parameter 5 called e-decay.
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4 Proposed Q-ILS algorithms

This section proposes two Q-ILS-1 and Q-ILS-2 algorithms and explains their corresponding operators
and properties.

4.1 Q-ILS-1 algorithm

The novelty of the proposed Q-ILS-1 algorithm is development of a new local search procedure for
ILS based on the ideas from AOS and Q-learning. The proposed local search procedure adaptively
selects appropriate operators during the search process based on the current employed operator and
operators’ history of performance. In the first step, a pool of local search operators are incorporated
into the algorithm. Then, the proposed Q-learning algorithm is integrated into AOS to select local
search operators.

General framework In Q-ILS-1, the local search operators perform a descent-based search and
continue until no more improvements are found. As the perturbation operator, we employ double-bridge
operator wherein four edges are removed from the route of the cities and sub-routes are reconnected in
another way to explore a new route [22]. The Acceptance(.) function in Q-ILS-1 applies a Metropolis
acceptance strategy [13] that accepts all improved solutions and even non-improved solutions with
a probability of exp %, where Af is the difference between the objective function before and after
applying the local search operator, and parameter T denotes the temperature. The higher the value of
T, the higher the chance to accept worse moves and vice versa.

Local search operators In Q-ILS-1, three efficient local search operators are used; the basic 2-opt
[22], a new 2-opt, and a new insertion operators. The basic 2-opt removes two edges from the route of
the cities and reconnects the sub-routes with new edges.

In this paper, we propose a new 2-opt operator based on the idea of best-move 2-opt presented in
[6]. In the best-move 2-opt, in each iteration of the local search, all the improving moves are identified
and sorted based on their improvement value, and only the best improving move is performed. In this
way, the information gathered about other improving moves is neglected and remain unused. However,
in the proposed 2-opt, the main idea is to use the gathered information about the improving moves
and to perform all possible moves simultaneously as long as they can be done independently (i.e.,
they do not share any segment of the route). In this way, in an iteration of the local search, a greater
value of improvement achieves. We call this new 2opt, the best-independent-moves 2-opt. To explain
the procedure of the proposed 2-opt, consider a simple example of Figure 1. In the first step, all the
improving moves are identified (moves 1, 2, 3, and 4 with improving values in parenthesis). Then, the
improving moves are sorted based on their improvement values in a descending order (moves 2, 4, 1, 3).
Finally, starting from the first move, all the independent moves are performed simultaneously (moves
2, 4, and 3). Indeed, move 1 cannot be applied immediately after move 4 since they share the same
segment "Q-R-A".

In addition, we propose a new insertion operators in this paper. In the new proposed insertion
operator, four types of moves are employed: forward-left, forward-right, backward-left, and backward-
right. Let’s consider two k — ¢ — [ and m — j — n segments of the route, where the first segment is
visited before the second segment. In addition, consider that two cities ¢ and j undergo the insertion
operator. The four above-mentioned insertion moves produce m — i — j - n, m — j — i — n,
k—j—1—1l and k - i — j — [, respectively. Finally, the best insertion move among all four
moves are applied to the solution.

Action, state, and reward In Q-ILS-1, the actions are the set of local search operators to be selected
and applied at each iteration and the states are the sequence of last k local search operators (k is equal
to 1). At the end of each iteration, the performance of the employed perturbation operator is evaluated.
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Fig. 1: Independent improving moves in the best-independent-moves 2-opt operator

Then, a reward or punishment is assigned to the employed operator. If the operator has been able to
improve the best found solution, it receives a reward equal to the proportional improvement of the
objective function; otherwise, it receives a punishment and is deleted from the set of available actions
for the next iteration. In some cases, where no operator is able to improve the solution and set of
available operators is empty, one operator is selected and applied randomly.

4.2 Q-ILS-2 algorithm

The novelty of the proposed Q-ILS-2 algorithm is development of a new perturbation procedure for
ILS based on the ideas from AOS and Q-learning. In this algorithm, the type of perturbation operators
and the number of times to apply them are adaptively selected based on the status of the search using
the Q-learning algorithm. The aim of the proposed perturbation procedure is to adapt the exploration
level to the status of the search. The general framework of Q-ILS-2 is the same as Q-ILS-1 except that
Q-ILS-2, employs the best-independent-moves 2-opt operator as its single local search operator.

Perturbation operators In Q-ILS-2, a pool of three different perturbation operators are employed;
the Double-bridge operator, the Shuffle-sequence operator that perturbs the solution by re-ordering a
randomly selected sequence at random, and the Reversion-sequence operator that perturbs the solution
by reversing a randomly selected sequence from the solution.

Action, state, and reward In Q-ILS-2, the actions are tuples (P, R), where P is the type of the
perturbation operator and R is the repetition number of the perturbation operator P. Each action is
given a chance of one episode equal to a fixed number of iterations to help the solution to escape from
the local optimum. Accordingly, the states are the set of S = {0,1}. s = 1 if the current perturbation
operator P with R number of repetition followed by the local search has been able to improve the best
found solution in an episode and s = 0, otherwise. After evaluation of the current action at the end of
each episode, a reward (punishment) is assigned to the corresponding action. If the operator has been
able to improve the best found solution, it receives a reward equal to the proportional improvement of
the objective function; otherwise, it receives a punishment.

5 Results and discussion

In this section, the performance of the two proposed algorithms, Q-ILS-1 and Q-ILS-2 are validated
through a set of experimental results. For this aim, the experiments are designed in Section 5.1. Next,
the numerical results are presented in Section 5.2.
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5.1 Experimental design

The performance of the proposed algorithms are validated through a set of 24 randomly selected
symmetric TSP instances from the TSPLIB library [1] with different number of cities ranging from
50 to 2150. Two different experiments are done in this paper. First, the performance of the proposed
algorithms in finding the optimal solution is investigated. Second, a comparative study is done to assess
the efficiency of employing Q-learning in AOS. For this aim, first, in order to show the effectiveness of
intelligent operator selection, Q-ILS-1 and Q-ILS-2 are compared to their corresponding Random ILS
(R-ILS) with the same set of operators selected randomly. Second, in order to show the effectiveness of
incorporating multiple operators into ILS, Q-ILS-1 and Q-ILS-2 are compared to their corresponding
S-ILS algorithms, each employing single local search and perturbation operators.

For the Q-ILS-2, the maximum number of repetitions R of double-bride, shufflie-sequence and
reversion-sequence are considered equal to 3, 1, and 1, respectively. The input parameters of the pro-
posed algorithms are tuned using Design of Experiments [17] where e = 0.8, = 0.6,y = 0.5, 5 = 0.999,
and episode = 3. Each algorithm has been executed 30 times on each instance and is stopped after
0.2N number of iterations without improvement, where N is the number of cities in each instance. All
algorithms have been coded in Python 3 and executed on an Intel Core i5 with 2.7GHz CPU and 16G
of RAM.

The performance of the algorithms is measured using two main criteria [22]:

— The solution quality represented as the Relative Percentage Deviation (RPD). The RPD is calcu-
lated as RPD = OFO;FO*F‘ x 100, where OF is the objective function (i.e., tour length) of the best
found solution by each algorithm and OF* is the objective function of the optimal solution.

— The convergence behavior of the algorithms that measures how fast (i.e., when/ at which iteration)

an algorithm converges to the best found (optimal) solution.

5.2 Numerical results

The performance of Q-ILS-1 and Q-ILS-2 in achieving the (near-) optimal solution are investigated
through Tables 1 and 2. In these tables, the columns "Best RPD" and "Best time" are the gap of the
best found solution and its corresponding CPU time, respectively and the columns "Average RPD"’
and "Average time" are the average gap and average CPU time over 30 executions.

Table 1 indicates that Q-ILS-1 is able to find optimal solution in both small- and medium-sized
instances and it is able to find near-optimal solutions with an optimality gap of 3.83% for the largest
instance with 2152 cities. By looking at the "Best RPD" and the "Average RPD" results, it can be seen
that Q-ILS-1 has produced small gaps over all 30 executions. In terms of the CPU time, the higher
the size of the instance, the higher the CPU time of the algorithm. By looking at the "Best Time" and
the "Average Time" results, it can be seen how expensive certain instances are in terms of CPU time.
For example, instance "ts225" with 225 cities is much less expensive comparing to instance "ch130"
with 130 cities. Accordingly, the number of cities is not the only factor that affects the computational
complexity of the instance, but the geographical distribution of the cities is also an important factor.

Some of the observations from Table 1 can be also generalized to the results of Table 2. Besides
the zero optimality gap for small- and medium-sized instances, Q-ILS-2 is even able to find optimal
solution for some large-sized instances up to 300 cities. For larger instances, small gaps have been also
reported with an optimality gap of 3.94% for the largest instance with 2152 cities. Similar to Q-ILS-1,
the results of "Best RPD" and "Average RPD" show that Q-ILS-2 produces small gaps over all 30
executions for almost all instances.
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Table 1: Result of the proposed Q-ILS-1 in comparison to the optimal solutions

Instance Optimal Best RPD(%) Best time (s) Average RPD(%) Average time (s)
berlin52 7542 0 0.1 0 0.7
st70 675 0 2.4 0.037 9.9
kroA100 21282 0 0.3 0.005 10.2
rd100 7910 0 9.3 0.173 25.9
lin105 14379 0 0.5 0 15.2
prl24 59030 0 4.7 0.004 34.1
ch130 6110 0.262 42.9 0.546 73.4
ch150 6528 0.077 50.5 0.465 50.8
uld9 42080 0 5.8 0 55.4
d198 15780 0.165 286.8 0.263 220.9
kroA200 29368 0.051 97.3 0.352 237.5
5225 126643 0 1.1 0 48.0
pr264 49135 0 303.5 0.402 207.1
a280 2579 0 451.8 0.587 396.8
pr299 48191 0.151 734.7 0.805 704.3
lin318 42029 0.895 737.2 1.559 688.7
417 11861 0.430 605.5 0.696 796.1
prd39 107217 0.755 840.1 2.308 778.2
pcb442 50778 1.061 T47.7 1.568 758.4
d493 35002 1.451 16.5 2.135 643.4
vm1084 239297 3.025 1461.4 4.217 2012.2
d1291 50801 3.173 782.4 4.295 1835.3
ul817 57201 4.142 254.0 4.858 664.4
u2152 64253 3.836 235.3 4.841 919.8

Table 2: Result of the proposed Q-ILS-2 in comparison to the optimal solutions

Instance Optimal Best RPD(%) Best time (s) Average RPD(%) Average time (s)
berlinb2 7542 0 0 0 0.2
st70 675 0 0.7 0.109 4.5
kroA100 21282 0 1.3 0 7.3
rd100 7910 0 3.6 0.201 14.2
lin105 14379 0 0.4 0 4.5
prl24 59030 0 1.8 0 8.7
ch130 6110 0 174 0.359 40.4
ch150 6528 0 19.8 0.374 33.2
uld9 42080 0 9.6 0.112 42.9
d198 15780 0.057 149.4 0.180 147.5
kroA200 29368 0 117.3 0.150 194.8
£5225 126643 0 56.5 0.002 108.9
pr264 49135 0 61.4 0.172 135.8
a280 2579 0 246.4 0.498 276.5
pr299 48191 0 453.1 0.274 440.7
lin318 42029 0.302 502.4 0.795 479.6
417 11861 0.211 574.5 0.339 553.0
prd39 107217 0.438 573.9 1.392 528.2

To be continued ...
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Table 2 (continued)

Instance Optimal Best RPD(%) Best time (s) Average RPD(%) Average time (s)
pcb442 50778 0.640 518.4 1.294 521.6

d493 35002 0.923 571.5 1.499 587.8

vm1084 239297 3.061 2729.6 3.717 2608.3

d1291 50801 2.281 1985.9 3.418 2060.1

ul817 57201 3.449 412.1 4.366 1416

u2152 64253 3.947 1967.5 4.531 1022.3

Table 3 shows the comparative results of Q-ILS-1 and Q-ILS-2 against R-ILS and S-ILS algorithms.
Considering Q-ILS-1 with three local search operators, there are three S-ILS; S-ILS-1 to S-ILS-3 that
stand for the use of basic 2-opt, best-independent-moves 2-opt and insertion local search operators,
respectively. Considering Q-ILS-2 with three perturbation operators, S-ILS-1 to S-ILS-3 stand for
the use of double-bridge, shuffle-sequence, and reversion-sequence operators perturbation operators
repeated only once, respectively. The values in Table 3 represent the RPD of other algorithms (i.e.,
R-ILS and S-ILS) comparing to Q-ILS-1 and Q-ILS-2 which is calculated as Equation 3:

R(S) _ Q

RPDRS) = % x 100 (3)
where OF (9 is the average tour length obtained by R-ILS (S-ILS) for each instance and OF€ is the
average tour length obtained by Q-ILS-1/Q-ILS-2. A positive RPD value for an algorithm represents
that the corresponding algorithm has a positive gap compared to the Q-ILS-1/Q-ILS-2. The RPD
values equal to 0 shows both the two algorithms have led to the same solution. It can be seen that
both R-ILS and S-ILS for almost all the instances have positive gap comparing to Q-ILS-1 and Q-ILS-2.
This highlights the outperformance of the proposed Q-ILS algorithms over R-ILS and S-ILS in terms
of the optimality gap. Investigating the results of R-ILS with positive gaps illustrates the efficiency
of integrating the knowledge from the Q-learning algorithm into the operator selection mechanism
of the ILS algorithm. Furthermore, the performance of Q-ILS algorithms are better than the S-ILS
algorithms with single local search or perturbation operators. It shows the efficiency of employing
different operators when solving TSP instances. Based on the obtained results, it can be concluded
that intelligent selection of the operators at each stage of the search process using Q-learning provides
promising results when solving TSP instances.

Table 3: The RPD (%) of R-ILS and S-ILS comparing to Q-ILS-1 and Q-ILS-2

Instance Q-ILS-1 Q-ILS-2
R-ILS S-1LS R-ILS S-1LS
1 2 3 1 2 3

berlin52  2.04 1.34 2.09 3.01 3.34 3.48 3.17 2.10
st70 1.05 1.03 1.21 1.00 1.19 1.25 0.74 0.83
kroA100 0.34 0.76 0.43 2.17 0.97 1.23 0.58 0.64
rd100 1.23 1.53 1.63 3.00 1.43 1.79 1.20 1.62
lin105 1.39 1.07 1.19 1.02 0.83 1.84 1.24 0.85
pri24 0.60 0.72 0.93 1.87 1.06 1.21 0.65 0.70
ch130 0.99 1.51 1.12 2.60 1.68 2.18 1.12 1.23
ch150 0.95 1.19 1.29 3.20 1.31 2.36 1.01 1.17
ulb9 1.78 1.44 1.26 2.28 2.28 2.99 1.28 1.74
d198 0.43 0.39 0.51 2.65 0.73 1.92 0.71 0.96

To be continued ...
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Table 3 (continued)

Instance Q-ILS-1 Q-ILS-2
R-ILS S-1LS R-ILS S-1LS
1 2 3 1 2 3

kroA200 0.53 0.31 0.37 1.07 1.33 1.91 0.60 1.02
ts225 0.72 0.81 0.97 3.67 0.72 1.54 0.74 0.80
pr264 1.00 1.15 1.22 5.05 1.67 3.39 1.12 1.14
a280 1.96 1.84 2.27 4.23 2.23 4.17 1.53 2.00
pr299 1.63 2.07 1.56 5.06 2.22 4.23 1.65 2.18
1in318 0.58 0.48 0.58 0.97 1.81 3.34 1.44 1.79
fl417 1.67 2.00 2.19 5.11 1.14 3.88 2.19 1.99
pr439 1.51 1.22 1.68 3.16 2.78 3.65 1.75 1.45
pcb442  0.77 1.34 1.40 3.36 1.26 3.16 1.66 1.97
d493 0.85 0.87 1.49 3.28 1.26 3.58 2.18 2.06
vm1084 0.67 1.01 1.44 3.58 1.33 2.74 1.40 1.89
d1291 1.15 1.08 1.74 2.82 2.06 3.33 2.30 2.62
ul817 2.19 1.35 2.82 5.17 1.57 3.18 3.14 3.24
u2152 2.45 1.26 2.46 5.59 1.75 2.72 2.43 2.52

In addition to investigating the performance of Q-ILS-1 and Q-ILS-2 over R-ILS and S-ILS in finding
(near-) optimal solutions, the algorithms are also compared based on their convergence behavior. In
this regard, the average gap to the optimal solution for the instance "d493" for different algorithms at
different stages of the search are depicted in Figure 2 for Q-ILS-1 and Figure 3 for Q-ILS-2.

— — Q-lLs-1 S-ILS-1 — S-ILS-3

0.05 4

0.0 0.2 0.4 0.6 0.8 1.0
Search process (%)

Fig. 2: Convergence behavior of Q-ILS-1 comparing to its benchmarks for instance d493

As Figures 2 and 3 illustrate, the convergence of Q-ILS-1 and Q-ILS-2 happens at earlier stages of
the search, about 40% of the search process for Q-ILS-1 and 60% of the search process for Q-ILS-2,
which leads to solutions with higher quality in both algorithms. Considering Figure 3, although R-ILS
converges at earlier stages, it is a premature convergence which cannot be improved by the end of the
search process. Considering both Figures 2 and 3, all algorithms are competitive but the Q-ILS-1 and
Q-ILS-2 always converge faster to the good solutions. The faster convergence of Q-ILS-1 and Q-ILS-2
is also observed for all the TSP instances.

Based on the obtained results, the integration of Q-learning into ILS in both levels provides promis-
ing results. Comparing the performance of the proposed Q-ILS-1 and Q-ILS-2 algorithms, it can be seen
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— — Q-LS-2 S-ILS-1 —— S-ILS-3
=== R-ILS —— S-ILS-2

0.20 1

0.15 1

Gap (%)

0.10 1

0.05 1 L‘l_‘“

0.0 0.2 0.4 0.6 0.8 1.0
Search process (%)

Fig. 3: Convergence behavior of Q-ILS-2 comparing to its benchmarks for instance d493

that Q-ILS-2 outperforms the Q-ILS-1 in all the selected instances. It can be concluded that incorpo-
rating multiple efficient perturbation operators with different characteristics into ILS and intelligently
selecting among them significantly enhances the exploration ability of the ILS.

6 Conclusion

In this paper, we have integrated the Q-learning algorithm as a machine learning technique to select the
most appropriate search operators in the ILS algorithm for solving TSP. For this aim, the Q-learning
has been integrated into the ILS algorithm in two levels: 1) selecting the appropriate local search
operators and 2) selecting the appropriate perturbation operators at each stage of the search process.
In the first integration level, a set of three local search operators including the basic 2-opt, a new
2opt, and a new insertion operator are considered. In the second integration level, the selection is done
among three perturbation operators including double-bridge, shuffle-sequence and reversion-sequence.

The performance of the proposed algorithms has been tested on a set of 24 symmetric TSP instances
from the TSPLIB library. In addition, a comparative study has been conducted to investigate the
efficiency of intelligently selecting search operators using Q-learning algorithm. The results showed
that the proposed algorithms are able to find optimal solutions for small- and medium-sized instances
and near-optimal solutions for large-sized instances with small gaps. Through the comparative analysis,
it was observed that employing several search operators provides better performance for the ILS when
solving the TSP instances. Furthermore, the impact of the Q-learning for intelligently selecting the
appropriate search operators at each stage of the search process was significant.

Finally, it was concluded that employing different perturbation operators provides better results
in comparison to employing different local search operators. Indeed, the ILS algorithm is inherently
powerful in exploitation while it gets trapped easily in local optimum. Accordingly, considering different
perturbation operators and selecting the most appropriate one at each stage of the search process helps
the ILS to escape from the local optimum. ILS with multiple perturbation operators becomes more and
more efficient when the knowledge obtained from the Q-learning algorithm is injected into its operator
selection mechanism.

Testing the performance of the proposed algorithms on TSP instances with larger sizes could be
an interesting future research direction. In addition, considering other types of local search search and
perturbation operators and testing their performance is another future research direction that is worth
of further investigation. Finally, comparing the performance of the proposed algorithms against the
benchmark algorithms in the literature and statistically checking their differences could be another
future research work.
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Abstract. We present a regression method for enhancing the predictive
power of a model by exploiting expert knowledge in the form of shape
constraints such as monotonicity or convexity constraints. Incorporating
such information is particularly beneficial when the available data sets
are sparse. We set up the regression subject to the considered shape con-
straints as a semi-infinite optimization problem and propose an efficient
adaptive solution algorithm. It turns out that, in manufacturing applica-
tions with their typically sparse data, the predictive power of the models
obtained with our method is generally superior to those obtained with
standard monotonization methods.

Keywords: shape-constrained regression - semi-infinite optimization -
informed machine learning.

1 Introduction

Conventional machine learning models are purely data-based. Accordingly, the
predictive power of such models is generally bad if the underlying training data
D = {(z1,t;) : 1 € {1,...,N}} is insufficient. Such data insufficiencies occur
quite often in applications, and they can come in one of the following forms:
on the one hand, the available data sets can be too small and have too little
variance in the input data points «1, ...,y and on the other hand, the output
data tq,...,tx can be too noisy.

Aside from potentially insufficient data, however, one often also has addi-
tional knowledge about the relation between the input variables and the re-
sponses to be learned. Such extra knowledge about the considered process is
referred to as expert knowledge in the following. Informed machine learning [1]
techniques combine data and expert knowledge to build hybrid or gray-box mod-
els predicting the responses more accurately than purely data-based models.
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An important and common type of expert knowledge is prior information
about the monotonicity behavior of the unknown functional relationship x —
y(zx) to be learned. Along with convexity constraints, monotonicity constraints
are probably the most intensively studied shape constraints in the literature
and correspondingly, there exist plenty of different approaches to incorporate
monotonicity knowledge in a machine learning model. See [2] for an extensive
overview. Very roughly, these approaches can be categorized according to when
the monotonicity knowledge is taken into account: in or only after the train-
ing phase. In this talk, we propose a novel in-training approach to monotonic
regression and compare it to the standard after-training approaches [3], [4].

2 Semi-infinite optimization for monotonic regression

In our approach to monotonic regression, multivariate polynomial models

T = Yo(x) = Z wax® € R (1)

lo|<m

are used for all input-output relationships @ — y(x) to be learned. In the
above relation (1), the sum extends over all d-dimensional multi-indices a =
(e1,...,aq) € N with degree |a| :== a1 + -+ + aq less than or equal to some
total degree m € N. Also, the terms x* := z{'---z* are the monomials in
d variables of degree less than or equal to m and the N,, numbers w, are the
model parameters to be tuned by regression. As is well-known, standard poly-
nomial regression is about solving the unconstrained optimization problem
1 2
min =Y (Guw(@) — 1) (2)

RNm 2
we m =1

or, in other words, about optimally adapting the model parameters w, € R of
the polynomial model (1) to the available data D = {(x,¢) : l € {1,...,N}}.
In general, the resulting model  — %, () will not exhibit the monotonicity
behavior an expert expects for the underlying true physical relationship x +—
y(x). In order to enforce the expected monotonicity behavior, the constraints

0j - Oz, Yw(x) >0 foralljeJand xecX (3)

are added to the unconstrained standard regression problem (2). The numbers
o; € {—1,0,1} indicate the expected monotonicity behavior for each coordinate
direction j € {1,...,d}. Also, J := {j € {1,...,d} : 0; # 0} is the set of all
directions for which a monotonicity constraint is imposed, and the input space
X = [ay,b1] X - - - x [ag, bg] is a hyperbox in R?. Since X contains infinitely many
points, the monotonic regression problem (2)-(3) takes the form

min f(w) st. gj(w,z)>0 foralljeJandxeX (4)

weRNm

of a semi-infinite optimization problem [5]. In order to solve (4), we adapt the
adaptive discretization algorithm from [6] to our specific situation.
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Algorithm 1 1. Choose a finite subset X° C X and set k= 0.
2. Solve the kth discretized upper-level problem
min f(w) st gj(w,x)>0 foraljeJ andxec XF (5)
weRNm
to obtain optimal model parameters w* € RNm,

3. Solve the (k, j)th lower-level problem minge x g;(w*, x) §;-approzimately for
every j € J to obtain Oy-approximate global minimizers x*t € X. Add
those of the points 117 for which substantial monotonicity violations oc-
cur, that is, for which g;(w, k1) < —¢€;, to the current discretization Xk
and go to Step 2 with k = k + 1. If for none of the points £t substantial
monotonicity violations occur, go to Step 4.

4. Check for monotonicity violations on a fized, fine reference discretization
Xiof C X. If there are no such violations, that is, if gj('wk,a:) > —¢; for all
Jj € J and x € Xiet, then terminate. If there are such violations, then for
every direction j with violations, add the reference grid point a:f:f'l’] with the
largest violation to X* and go to Step 2 with k =k + 1.

Clearly, the upper-level problems (5) are convex quadratic problems and the
lower-level problems are multivariate polynomial optimization problems. Since
in contrast to [6] we require only approximate solutions of the lower-level prob-
lems, we can use a wide range of global solvers, for example, global polynomial
solvers based on semidefinite relaxation hierarchies. We present convergence re-
sults for this and related adaptive discretization algorithms. We also apply the al-
gorithms to two real-world manufacturing applications, namely laser glass bend-
ing and press hardening of sheet metal. In these processes, experimental data are
fairly costly and therefore sparse (with little variance), but monotonicity expert
knowledge is available. Compared to the well-known after-training approaches to
monotonization (via rearrangement [3] or projection [4]), our in-training semi-
infinite optimization approach yields monotonic models with generally better
predictive power. Another advantage of our approach is that it directly extends
not only to convexity constraints but, in fact, to any shape constraint that can be
expressed in terms of the partial derivatives of the underlying model & — 7, ().
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Abstract. Grammatical inference is concerned with the study of algo-
rithms for learning automata and grammars from words. We focus on
learning Nondeterministic Finite Automaton of size k from samples of
words. To this end, we formulate the problem as a SAT model. The gen-
erated SAT instances being enormous, we propose some model improve-
ments, both in terms of the number of variables, the number of clauses,
and clauses size. These improvements significantly reduce the instances,
but at the cost of longer generation time. We thus try to balance instance
size vs. generation and solving time. We also achieved some experimental
comparisons and we analyzed our various model improvements.

Keywords: Constraint problem modeling - SAT - model reformulation.

1 Introduction

Grammatical inference [7] is concerned with the study of algorithms for learning
automata and grammars from words. It plays a significant role in numerous
applications, such as compiler design, bioinformatics, speech recognition, pattern
recognition, machine learning, and others. The problem we address in this paper
is learning a finite automaton from samples of words S = ST US~, which consist
of positive words (ST) that are in the language and must be accepted by the
automaton, and negative words (S7) that must be rejected by the automaton.
A non deterministic automaton (NFA) being generally a smaller description for
a language than an equivalent deterministic automaton (DFA), we focus here on
NFA inference. An NFA is represented by a 5-tuple (Q, X, A, ¢1, F)) where @ is
a finite set of states, the vocabulary X' is a finite set of symbols, the transition
function A : @ x X' — P(Q) associates a set of states to a given state and a
given symbol, ¢; € @ is the initial state, and F' C @ is the set of final states.
Not to mention DFA (e.g., [6]), the problem for NFA has been tackled from
a variety of angles. In [15] a wide panel of techniques for NFA inference is given.
Some works focus on the design of ad-hoc algorithms, such as DeLeTe2 [3] that
is based on state merging methods. More recently, a new family of algorithms
for regular languages inference was given in [14]. Some approaches are based
on metaheuristic, such as in [12] where hill-climbing is applied in the context
of regular language, or [4] which is based on genetic algorithm. In contrast to
metaheuristics, complete solvers are always able to find a solution if there exists
one, to prove the unsatisfiablility of the problem, and to find the optimal solution
in case of optimization problems. In this case, generally, the problem is modeled
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2 F. Lardeux et al.

as a Constraint Satisfaction Problem (CSP [11]). For example, in [15], an Integer
Non-Linear Programming (INLP) formulation of the problem is given. Parallel
solvers for minimizing the inferred NFA size are presented in [8,9]. The author
of [10] proposes two strategies, based on variable ordering, for solving the CSP
formulation of the problem.

In this paper, we are not interesting in designing or improving a solver, but
we focus in improving models of the problem in order to obtain faster solving
times using a standard SAT solver. Modeling is the process of translating a
problem into a CSP consisting in decision variables and constraints linking these
variables. The INLP model for NFA inference of [15] cannot be easily modified
to reduce the instances: to our knowledge, only Property 1 of our paper could be
useful for the INLP model, and we do not see any other possible improvement.
We thus start with a rather straightforward conversion of the INLP model into
the propositional satisfiablity problem (SAT [5]). This is our base SAT model to
evaluate our improvements. The model, together with a training sample, lead to
a SAT instance that we solve with a standard SAT solver. The generated SAT
instances are very huge: the order of magnitude is | S|.(|w|+1).k“! clauses, where
k is the number of states of the NFA, w is the longest word of S, and |S| is the
number of words of the training sample. We propose three main improvements to
reduce the generated SAT instances. The first one prevents generating subsumed
constraints. Based on a multiset representation of words, the second one avoid
generating some useless constraints. The last one is a weaker version of the first
one, based on prefixes of words. The first improvement returns smaller instances
than the second one, which in turn returns smaller instances than the third
one. However, the first improvement is very long and costly, whereas the third
one is rather fast. We are thus interested in balancing generation and solving
times against instance sizes. We achieved some experiments with the Glucose
solver [1] to compare the generated SAT instances. The results show that our
improvements are worth: larger instances could be solved, and faster. Generating
the smallest instances can be too costly, and the best results are obtained with
a good balance between instance sizes and generation/solving time.

This paper is organized as follows. In Section 2, we describe the problem
and we give the basic SAT model. We also evaluate the size of the generated
instances. Section 3 presents 3 model improvements, together with sketches of
algorithms to generate them. Section 4 exposes our experimental results and
some analysis. We finally conclude in Section 5.

2 Modeling the problem in SAT

The non-linear integer programming (INLP) model of [15,9] cannot be easily
improved or simplified. Indeed, the only improvement proposed in [15] and [9]
corresponds to Property 1 (given in the next section). In this section, we thus
present a SAT formulation of the NFA inference problem. This SAT model per-
mits many improvements to reduce the size of the generated SAT instances.
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Improved SAT models for NFA learning 3

The NFA inference problem Consider an alphabet X = {s1,...,s,} of n
symbols; a training sample S = ST U S, where ST (respectively S™) is a set
of positive words (respectively negative words) from X*; and an integer k. The
problem consists in building a NFA of size k which validates words of S*, and
rejects words of S7. The problem can be extended to an optimization problem:
it consists in inferring a minimal NFA for S, i.e., an NFA minimizing k. However,
we do not consider optimization in this paper.

Notations Let A = (Q,X,q,F) be a NFA with: Q = {q1,...,qr} a set of
states, X a finite alphabet (a set of symbols), ¢ the initial state, and F' the set of
final states. The symbol A represents the empty word. We denote by K the set
{1,...,k}. A transition from g; to gx with the symbol s; is denoted by 7y, 4, ¢, -
Consider the word w = wy ... w, with wi,...,w, in 2. Then, the notion of
transition is extended to w by Tw,qiy~ai,, which is a sequence of transitions
Twi gy =iy > Twa,gi, —ai,,, - L0€ set of candidate transitions for w between the
states ¢;, and ¢;, in a NFA of size k is Tu.g;, —q;, = {Tquilﬁqil | Jia,... 051 €

K, Tw,qi, i, = Twi,qi,—aiy> -+ Twigi,—1—a, 1 -

A SAT model Our base model is a conversion into SAT of the nonlinear integer
programming problem given in [15] or [9]. Consider the following variables:

— k the size of the NFA we want to build,

— F={f1,..., fx} aset of k Boolean variables determining whether states q;
to g are final or not,

—and A = {85,4,5q,|s € Y and i,j € K} a set of n.k? variables determining
whether there is or not a transition (55,%%%, i.e., a transition from state g;
to state g; with the symbol s, for each ¢;, ¢;, and s.

A transition Twl---w'rL7Qi1‘>qin+1 = Twi iy =iy -+ T i =i, 4 exists if and only

if the conjunction d = duy,q;, =g, N -+ A Owpgi, —as L, s true. We call d a

c_transition, and we say that d models T, ..w,.q;, —q;, ,, - We denote by Dy g, g,
the set of all c_transitions for the word w between states ¢; and g;.

The problem can be modeled with 3 sets of equations:

1. If the empty word X is in ST or in S~, we can determine whether the first
state is final or not:

ifxest, A (1)
ifAe ST, —f (2)

2. For each word w € S, there is at least a transition starting in ¢; and ending
in a final state g;:

V V @nrp) (3)

JEK d€Duy,qy q;
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With the Tseitin transformations [13], we create one auxiliary variable for
each combination of a word w, a state j € K, and a transition d € Dy g, q;:

QUL j.d <> AN f;

For each w, we obtain a formula in CNF:

A N [(auzygav(@dnf)) (4)

JEK dEDuy g1 q;

/\ /\ (auTw ja V dV —f;) (5)

JEK d€Duy q; .44

VoV aurega (6)

JEK d€Dy g ,q;

d is a conjunction, and thus —aux, jq V d is a conjunction of |w| binary

clauses: (m@UTw j,q4 V 6w1,qlﬁqi2) Ao A (AU ja V 6w‘“’"qi|w|*>qi\w\+1 ).
|Dugr,q;] = KI®I71 since for each symbol of w there is k possible moves
in the NFA, except for the last symbol which leads to ¢;. Thus, we have
(Jw|+1).k!"! binary clauses for Constraints (4), kIl (Jw|+2)-ary clauses for
Constraints (5), and one k!"l-ary clause for Constraints (6). We have added
kvl auxiliary variables.

3. For each w € S~ and each state g;, either there is no complete transition
from state ¢; to g;, or ¢; is not final:

-1V V @nf) (7)
JEK d€Dwy q; .4
Constraints (7) are already in CNF, and we have kIl (Jw + 1|)-ary clauses.
Thus, the constraint model M, for building a NFA of size k is:
M= A\ (WrAGAG)A A @)
weS+ weS ™
and is possibly completed by (1) or (2) if A\ € ST or A € S™.
Size of the models Considering w,, the longest word of ST, and w_, the
longest word of S—, the number of constraints in model M}, is bounded by:

— [SF].(Jwy| + 1).kl«+! binary clauses;
— [STEw+ (Jwy| + 2)-ary clauses;

— |S7*| klw+l-ary clauses;

|S— .kl (Jw_| + 1)-ary clauses.

The number of Boolean variables is bounded by:

— k variables in F' determining final states;
— n.k? variables determining existence of transitions;
— |S* k] auxiliary variables auz., j 4.

It is thus obvious that it is important to improve the model Mj.

58
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3 Improving the SAT model

We now give some properties that can be used for improving the SAT model.
By abuse of language, we will say that a model M; is smaller than a model
Ms whereas we should say that the SAT instance generated with M; and data
D is smaller than the instance generated with M, and D. A first and simple
improvement is based on the following property.

Property 1 (Empty word \). If A € S~, then each c_transition ending in ¢; does
not have to be considered when generating the constraints related to the word
weS.

Indeed, if w is positive, it cannot be accepted by a transition ending in g¢;
similarly, if w is negative, =dV —f; is always true. When A € ST, the gain is not
very interesting: f1 can be omitted in Constraints (7), (4), and (5). This does not
really reduce the instance, and a standard solver would simplify it immediately.

Whereas a transition is an ordered sequence, the order of conjuncts in a
c_transition is not relevant, and equal conjuncts can be deleted. Thus, a c_transi-
tion may model several transitions, and may correspond to several words. By
abuse of language, we say that a c_transition ends in a state g; if it corresponds
to at least a transition ending in ¢;. Thus, a c_transition may end in several
states. We consider an order on c_transitions. Let d and d” be two c_transitions.
Then, d < d” if and only if there exists a c_transition d’ such that d Ad’ = d”.
In other words, each transition variable s 4,4, appearing in d also appears in
d”. This order is used in the two first model improvements which are based on
c_transitions. The third model improvement is based on transitions. We now
consider some redundant constraints.

Property 2 (Redundant constraints). When a state ¢; cannot be reached, each
outgoing transition becomes free (it can be assigned true or false), and ¢; can be
final or not. In order to help the solver, all the corresponding variables can be
assigned an arbitrary value. For each state g;, j # 1:

( /\ /\ “0s,qiq;) = 5 A ( /\ /\ —0s,0;-a;)

i€K i#j sEX €K sEX

In CNF, these constraints generate (for all g;), (k—1).(k.n+1) redundant clauses
of size n.(k — 1) + 1.

These constraints are useful when looking for a NFA of size & when k is not
the minimal size of the NFA. Compared to SAT instance size, these redundant
constraints can be very helpful without being too heavy.

Note that in our implementation, for all the models, we always simplify in-
stances using Property 1 and removing duplicate transition variables in c_transitions
(i-e., Os,g;5q; N+ AGs g, g, is simplified into ds4, 54, A ...). Moreover, we also
generate the redundant constraints as defined in Property 2.
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Improvement based on c_transitions subsumption. This first improve-
ment consists in removing tautologies for negative words, and some constraints
and unsatisfiable disjuncts for positive words.

Property 8 (c_transition subsumption). Let v be a negative word from S—, and
—d, V —g; be a Constraint (7) generated for the c_transition d, for v ending in
state g;. We denote this constraint ¢, 4, ;- Consider a positive word w from
S*, and d,, a c_transition for w ending in gj such that d, < d,. Then, each
dw A fj will be false due to ¢, q4,,q,- Thus, Constraints (4) and (5) corresponding
to w, dy, and ¢; will force to satisfy —aux,, j 4, ; hence, they can be omitted and
UL j.4, can be removed from Constraints (7). Similarly, consider w from S—,
and d,, a c_transition for w ending in g; such that d,, < d,,. Then, Constraint (7),

—d, Vg, will always be true (due to the constraint Co,dy,q ), and can be omitted.

We can compute the size of the reduced SAT instance when the smaller word
is a prefix. Let v € S~ and w € S be words such that w = v.v/, i.e., v C w and
v is a prefix of w. Then, using Property 3: if w € S, the number of clauses
generated for w is reduced to (k—1).k"I=1 clauses of size |w +1]; if w € S*, the
number of clauses generated for w is reduced to (Jw| + 1).(k — 1).kl*I=1 binary
clauses for Constraints (4), (k—1).k"I=1 (Jw|+2)-ary clauses for Constraints (5),
and one clause of size (k —1).k“I=! for Constraint (6). The number of auxiliary
variables is reduced to (k —1).k*I=1,

Operationally, we have a two step mechanism. First, for each negative word,
each c_transition together with its ending state is generated and stored in a
database of couples (c_transition, ending state) that we call c_couple. Then,
for generating constraints for a word w, each of its c_couple is compared to
the database. If a c_transition for w ending in ¢; is smaller than a c_transition
from the database also ending in ¢;, then the corresponding constraints are not
generated, as shown above. We call M}, q;; this reduced model.

Improvement based on Multisets. Although efficient in terms of generated
instance sizes, the previous improvement is very costly in memory and time.
It becomes rapidly intractable. This second improvement also uses Property 3.
It is a weakening of the above operational mechanism that does not omit every
subsumed c_transition. This mechanism is less costly. Hence, generated instances
will be a bit larger, but the balance generation time against instance size is very
good. The idea is to order words in order to search in a very smaller database
of c_couples (c_transition, ending state) when generating constraints for a word
w. Moreover, this order will also imply the order for generating constraints.
We associate each word to a multiset which support is the vocabulary X.
The word w, is thus associated with the multiset ms(w) = {s‘lw‘s1 yen ,slrzu‘s"}
where |w|s, is the number of occurrences of the symbol s; in w. Note that several
words can have the same multiset representation. Based on multiset inclusion

({s7%, ..., 80"} Caq {s9*,...,89} & Vi, a) < a;), we can now define the notion
of word inclusion, noted C,,. Consider w and w’, two words of X*, then:

w Cp w < ms(w') Sy ms(w)
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Consider a sample S = ST U S™. Let T(S) be the multiset defined as

I+mazye(s){lwls; } I+mazyes){lwls, }
T(S):{Sl wew 1a~ Sn wels) }

and L = {s?,...,s%}. Then, T(S) represents words which are not in the sample
S, and L represents the empty word A which may be in S.

Consider the sample S = ST U S™. Let MS(S) = {ms(w)lw € ST US™} be
the set of the representations of words of S. Then, (MS(S)U{L, T(S)}, Cm)
is a lattice. Let m be a multiset of M S(S). Then, inf(m) is the set of multisets
{m' € MS(S) | m" Ca m}. This lattice of multisets defines the data structure
used for constraint generation. For generating constraint of a word w of a multiset
m, we now only compare its c_couples with the database of c_couples of words
w' € ST with w' C,, w, i.e., words represented by multisets smaller than m.

The negative words that allow to reduce the most, are the ones represented
by the smallest multiset. We thus also propose a mechanism to reduce the
database (c_transition, ending state) with the most useful c_couples, i.e., the
ones from smallest words. Let level(m) be the ”level” of the multiset defined by:
level(m) = 0 if m = L, 1+ maxpcinfm)(level(m’)) otherwise. Given a multi-
set m, and a threshold [, the base function returns all the multisets m’ of level
smaller than [, and such that m’ Cyq m: base(p,l) = {n € inf(p) | level(n) <
By (Up,emf(p) base(p',1)) if p # L, O otherwise.

Based on Property 3, c_couples of the negative words of these multisets
will be used to reduce constraint generation of the words of m. We call this
model My, ymset,i, With [ a given threshold. If base is called with the threshold
0, the database will be empty and the complete instance will be generated:
My mset,0 = My If base is called with the maximum level of the lattice, then,
the database will be the largest one built with all the smaller words, and we
will thus obtain the smallest instances with this notion of lattice. However, the
larger the threshold, the longer the generation time, and the smaller the SAT in-
stance. With the maximal threshold, the generated instances will be a bit larger
than with the previous improvement (M o1 € Mk mset,max), PUt the genera-
tion is significantly faster. For lack of space, we cannot give here the complete
algorithms for generating this improved model.

Improvements based on Prefizes. Although faster to generate, the second
model is still costly. We now propose a kind of weakening of Property 3, restrict-
ing its use to prefix.

Property 4 (Prefiz). Let w € S be a word from the sample. Consider D3 g4
the set of c_transitions defined by:

Doy =\ (( \V duA( \/ dv))>

IeK I#£] du€D} . 0 d€D} 4 .
if w = w.v, and u € S7; otherwise, D;;,qi‘qj = Duy,q;,q;- Then,

Vd € Duw.giq; \ Duv,g,.q,0 74V ~f;

w,qi,q;5°
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8 F. Lardeux et al.

Hence, this property allows us to directly generate the reduced constraints, for
negative or positive words, without comparing c_couples with a database.

Let w = u;p...u, be a word from S such that u; € S7, uj.us € S~, and
Uy ...u,—1 € S~ and for each ¢ < n, there does not exist a decomposition
w; = u.uf such that uy...u;—1.u) € S™. Then, if w € ST, using several times
Property 4, Constraints (4), (5), and (6) can be replaced by Constraints (8), (9),
and (10) where [ = ¢; and N =[1,...,n]:

A A [(mau@w gy 1, V(AL Ao Adn A F5))] (8)

{ENLER\{1;[1<j<i} €N, di€Du; 0y, .

/\ /\ (auZoy gy, 1, Vdi V...V 2dy V _‘fj) 9)

€N, ;e K\{l;]1<j<i} iGN’diEDuimrmz

\/ \/ ULy 1, ... 1, (10)

i€N, ;e K\{l;|1<j<i} iEN,d,,-,eD,“iyqliilyql

Similarly, if w € S™, using several times Property 4, Constraints (7) can be
replaced by Constraints (11):

A A (~dy V...V =dp V —f;) (11)

€N, L;EK\{l;]1<5<i} iENxdiGDuszlqu

The number of clauses and variables generated for w € St is reduced to:

— (Jw| + 1).(TT, (k — i+ 1)).kl*I=" binary clauses for Constraints (8),
— (IT (k= i+ 1)).kl"I=" (jw| + 2)-ary clauses for Constraints (9),

— one clause of size ([]!_,(k —i+ 1)) for Constraint (10),

— and the number of auxiliary variables is reduced to ([]\_,(k —i+1)).

For w € S—, Constraints (11) are already in CNF and they correspond to
(T (k—i+ 1)).k|“’|_” (|lw + 1])-ary clauses. Interestingly, these new counts
of clauses (and more especially the factor k — i + 1 with ¢ = n) also give us a
lower bound for k: k& must be greater than or equal to n, the number of nested
prefixes in a word. This new improved model, that we call My, pey, is not much
larger than My, e, but it is significantly faster to generate.

Improvement order. We have defined various models for inference of NFA of
size k that can be ordered by their sizes: My, q11 © Mg mset,l_maz S M pref S M.
Note that My meer,; Wwith { # [lmax, and My prer cannot be compared in the
general case; their sizes depend on the instance, the number and size of prefixes,
and on the given level . In the next section, we compare these models not only

in terms of instance size, but also in terms of generation and resolution time.

4 Experimental results

We suspect that, with respect to their generation time, the models are in reverse
order of the order given above. Thus, we are interested in findng the best balance
between three parameters: model size v.s. generation time + SAT solving time.
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The experiments were carried out on a computing cluster with Intel-E5-2695
CPUs and 128 GB of memory. Running times were limited to 2 hours for the
generation of SAT instances, and 3 hours to solve them. We used the Glucose [1]
SAT solver with the default options.The benchmarks are based on the training
set of the StaMinA Competition (http://stamina.chefbe.net). We selected 12
instances’ with a sparsity s € {12.5%,25%,50%,100%} and an alphabet size
|X| € {2,5,10}. For each of them, we limited the number of words to |ST| =
|S~| = 10 and 20 for a maximal size of words equal to 7 and to |[ST| = |S~| = 20
for a maximal size of words equal to 10. We generate CNF instances for different
NFA sizes (k € {3,4,5}). Consequently, we obtained 96 instances.

Table 1 presents a synthetic view of our experiments. The 4 first columns de-
tail the instances: size of the NFA (k), size of the longest word (Jw|), number of
positive (and negative) words (|ST|), and the model. The next columns provide
average values over the 12 instances for the modeling time (Thso4e1), the number
of variables (#Var), the number of clauses (#C1), the solving time (Tseiye ), and
the total modeling+solving time (Tiotq;). We do not indicate the standard devi-
ations but they are very close to zero. ”-” indicates that no result was obtained
before the time-out. From Table 1, we can draw some general conclusions about
model improvements. As expected, My, o1 always returns the smallest instances,
and also the instances that Glucose solve the fastest. However, the generation
time of these instances is very long. Thus, the total CPU time, i.e., generation
+ solving, is not the best. We can also see that when we increase the maximum
length of words, this model does not permit to generate the instances in less
than 2 hours (e.g., Table 1, for k = 4, w = 10, and |S*| = 20). This model is
thus tractable, but only for small instances, with short words and small samples.

My mset,l,,.. generates instances a bit larger than Mj, ;. Consider the nega-
tive word v = aaab, and the positive word w = ba. My, 4 uses some c_transitions
of v to ignore some clauses of w that My, yset,1,,.. Will not detect. For example,
a loop on aaa from v with the same transition in v is used in Mj, 4;; but not in
My mset 1., - However, with the multiset data structure, we obtain a much faster
generation of instances. The total time is thus more interesting with My, mset 1,0
than with My, 4. The generation time of My mset ;... 15 still very high, and its
interest is not always significant. For large instances, not presented in the table,
My mset .., could not be generated in less than 2 hours.

For My, prey, we can see that the generation time becomes reasonable, and
much smaller than with the two previous improvements. Although smaller than
with My, the instances are larger than with My, mset 1,,.. - I Various experiments,
this improvement was the best for the total time. Note also that our training
samples are not so big, and that the number of prefixes is not so important. With
larger |ST|, for a fixed k, we should obtain better performances of My pyef-

We also tried two more improvements of My, mset,; with I € {1,3}. The gen-
eration time of these models is logically faster than the ones of My imset 0. @S
planned, the SAT instances are also larger. However, we were pleasantly sur-
prised by the total time which is much better than for My mset i,,,.. The three

max

! We conserved the ”official” name used during the Stamina Competition.
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Table 1. Comparison on 96 generated instances between the models myg,qi,
Mk mset,lmaws Mk,mset,1; Mk,mset,3, and My prey. Instances are grouped by size of the
NFA (k), size of the longest word (|w|), and number of positive (and negative) words
(IST|). For each line, obtained values are average on 12 instances.

k [ fw[ [ [S7] Model Trmodel __ #Var. #Cl_ Taotve  Tiotal
mg 0.19 6742 61366 0.22 0.41

Mk, all 0.68 4310 37789 0.14 0.82

10 | MEmsetimas 0.17 4742 42020 0.14 0.31
My mset,1 0.18 5517 49484 0.16 0.34

M, mset,3 0.17 4822 42850 0.14 0.31

- M, pref 0.18 6466 58645 0.2 0.38
mp 0.48 14830 134302 1.58 2.06

Mk, all 2.62 8274 72569 1.64 4.26

3 20 | MEmsetiman 0.42 8929 79030 1.22 1.64
Mk mset,1 0.45 11179 99811 1.39 1.84

Mk, mset.3 0.46 9148 81188 1.27 1.73

Mk, pref 0.43 13689 123390 1.71 2.14

mp 11 303519 3276974 397.68 408.68

Mk, all 746.08 108417 1172093 79.98 826.06

10 | 20 | Mrmsetimas 0.87 122423 1313463  143.32  153.19
Mk, mset,1 9.04 208610 2255307 233.97 243.01

Mk, mset,3 9.06 134720 1443357 156.24 165.3

Mk, pref 8.88 281408 3040802 270.04 278.92

mi 1.46 45014 428775 10.3 11.76

Mk, all 19.42 32956 302835 5.59 25.01

10 | MEmsetimas 1.64 35362 328938 5.58 7.22
M, mset,1 1.42 39242 369600 7.12 8.54

Mk, mset,3 1.56 36048 336637 5.58 7.14

7 Mk pref 1.3 43655 414141 10.69 11.99
mg 3.93 100984 950473 83.55 87.48

Mk, all 93.48 64428 588293 74.55 168.03

4 20 | MEmsetimas 4.33 68041 628400 43.08 47.41
M. mset,1 3.65 83463 777005 32.32 35.97

Mk, mset,3 4.27 70720 653396 41.36 45.63

M pref 3.37 94829 887943 55.88 59.25

mg 187.59 4670833 53350566 2084.78 2272.37

M, all - - - - -

10| 20 | MEmsctimas | 919.56 2304788 26010946 651  1570.56
Mk, mset,1 173.82 3336332 38121787 658.7 832.52

Mk, mset,3 375.34 2345238 26693196 107.13 482.47

Mk pref 162.45 4405201 50260648 1331.92 1494.37

mp 6.61 201651 1962754 215.06 221.67

M, all 232.47 161828 1526044 51.82  284.29

10 Mk, mset,lmax 14.38 169816 1619550 171.92 186.3
Mk, mset,1 7.24 182445 1759734 180.98 188.22

ME mset,3 10.76 172660 1653301 210.1  220.86

5 7 Mk, pref 6.26 196894 1908623 176.12 182.38
mp 19.37 456976 4382919 1268.18 1287.55

Mk, all 1158.5 320689 2995308 631.14 1789.64

20 Mk mset,lmax 44.01 333799 3148787 1115.9 1159.91
Mk, mset,1 20.24 398074 3784691 1192.49 1212.73

Mk, mset,3 32.82 348339 3288509 1309.17 1341.99

Mk pref 16.54 434008 4141453 1203.36 1219.9

models My pref, Mi mset,1, and My mset 3 are very difficult to compare. Depend-
ing on the instance, on the number and size of prefixes, on multiset inclusion,
one can be better than the other. But for all the instances we tried, one of this 3
models was always the best of the 6 models, and they were better than Mj. Table
2 presents a focus on 2 specific instances (25_training and 35_training, both with
|X| = 5) with a fixed value for k, |w|, and |ST|. The columns correspond exactly
to those of Table 1. For the first instance, we clearly see the order presented in
Section 3 for instance sizes of improved models. We can also see the reverse order
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Table 2. Focus on 2 specific instances.

[k [l [IST]] Model [ Tmoder  #Var. #Cl. Tootve  Tiotal
25_training

my 16.72 378030 3748314 934.92 951.64

Mk, all 854.47 271338 2626880 841.22 1695.69

5 7 20 Mk, mset,lmax 48.71 275331 2678349 1538.06 1586.77

Mk, mset,1 14.25 280899 2733709 895.92 910.17

Mk, mset,3 23.67 277359 2696089 1147.41 1171.08

M pref 11.76 338880 3377124 687.79 699.55
35_training

my 163.10 5253332 59504339 - -

M, all - - - - -

4| 10 20 Mk, mset,lmax 676.22 4234500 47661301 2322.42 2998.64

Mk, mset,1 209.86 4969772 56092438 - -

ME pref 184.56 5253332 59504339 7145.62 7330.18

in terms of generation time. When | X| is small, the probability of having prefixes
is higher than with larger vocabularies, and for this instance, Mj, ..y returns
the best instance in terms of generation+solving time. For the second instance,
My, qu could not be generated in less than 2 hours. My, and My, mset,3 could be
generated rather quickly, but could not be solved. My, proy was even faster for
generating the SAT instance. However, we see that there was not prefix in the
training set (the size of instances of M}, and My, pre s are the same). The overhead
for taking prefixes into account is rather insignificant (12% of generation time).
Since the solving time was close to the timeout, the M}, instance did not succeed
to be solved while the M}, pres instance succeeded (the small difference of 55 s.,
i.e., less than 0,8 %, is certainly due to clause order in the SAT instance). This
instance shows that My mset.i,,.. can be the best model in terms of total time.
This is due to the fact that there is no negative word being prefix of another
word from S, and that the lattice is rather "wide”, with a long branch. Hence,
My, mset, is interesting when [ is large for this training sample.

5 Conclusion

In the context of grammatical inference, we proposeed various model improve-
ments for learning Nondeterministic Finite Automaton of size k from samples
of words. Our base model, My, is a conversion from an INLP model [15]. The
first improvement, My, 411, leads to the smallest SAT instances, which are also
solved quickly. However, generating this model is too costly. Thus, when prob-
lems grow (in terms of k, |S|, or length of words), My 4 cannot be generated
anymore. We proposed a set of improvements based on multiset representation
of words, My, mset,i- The generated SAT instances are a bit larger with the maxi-
mal level than with My, 47, but generation is still costly. We thus defined a third
improvement based on prefix. On average, the best balance between generation
and solving time is obtained with My, prer, My mset,1, OF My mset,3: the genera-
tion is rather light and the reductions are significant. The interest of our work
is that, to our knowledge, we are the only ones working on CSP model improve-
ments. It is very complicated to compare our results with previous works. Many
works on this topics are only formal and experimental results are also difficult
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to compare. For examples, the authors of [8,9] focus on a parallel solver for op-
timizing k. In [10], experiments are based on samples issued from the Waltz-DB
database [2] of amino acid sequences, i.e., all the words are of size 6, and there
cannot be any prefix word: in the tests we performed, only anagrams could be
used in multisets. Moreover, for all the 50 instances we tried issued from this
database, the M} model could be generated and solved in a reasonable time,
without need of any model improvement.

In the future, we plan to hybridize My, e, for small values of { with My, prey.
The second idea is to simplify the work of the SAT solver and of the instance
generation with simplified and incomplete training samples. We would then eval-
uate our SAT models with respect to the accurateness of the generated NFA on
test set of words.
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Abstract. Variational Auto Encoder (VAE) provide an efficient latent space representation
of complex data distributions which is learned in an unsupervised fashion. Using such a
representation as input to Reinforcement Learning (RL) approaches may reduce learning
time, enable domain transfer or improve interpretability of the model. However, current
state-of-the-art approaches that combine VAE with RL fail at learning good performing
policies on certain RL domains. Typically, the VAE is pre-trained in isolation and may
omit the embedding of task-relevant features due to insufficiencies of its loss. As a result,
the RL approach can not successfully maximize the reward on these domains. Therefore,
this paper investigates the issues of joint training approaches and explores incorporation of
policy gradients from RL into the VAE’s latent space to find a task-specific latent space
representation. We show that using pre-trained representations can lead to policies being
unable to learn any rewarding behaviour in these environments. Subsequently, we introduce
two types of models which overcome this deficiency by using policy gradients to learn the
representation. Thereby the models are able to embed features into its representation that
are crucial for performance on the RL task but would not have been learned with previous
methods.

1 Introduction

Reinforcement Learning (RL) gained much popularity in recent years by outperforming humans
in games such as Atari ([1], [2]), Go ([3], [2]) and Starcraft 2 [4]. These results were facilitated
by combining novel machine learning techniques such as deep neural networks [5] with classical
RL methods. The RL framework has shown to be quite flexible and has been applied successfully
in many further domains, for example, robotics [6], resource management [7] or physiologically
accurate locomotion [8].

The goal of representation learning is to learn a suitable representation for a given application
domain. Such a representation should contain useful information for a particular downstream task
and capture the distribution of explanatory factors [9]. Typically, the choice of a downstream task
influences the choice of method for representation learning. While Generative Adversarial Network
(GAN) are frequently used for tasks that require high-fidelity reconstructions or generation of
realistic new data, auto-encoder based methods have been more common in RL. Recently, many
such approaches employed the Variational Auto Encoder (VAE) [10] framework which aims to
learn a smooth representation of its domain. For a large number of RL environments, the usage of
VAEs as a preprocesser improved sample efficiency and performance ([11], [12]).

Many of the current methods combining RL with representation learning follow the same pat-
tern, called unsupervised pre-training [13]. First, they build a dataset of states from the RL envi-
ronment. Second, they train the VAE on this static dataset and lastly train the RL mode using
the VAE’s representation. While this procedure generates sufficiently good results for certain sce-
narios, there are some fundamental issues with this method. Such an approach assumes that it
is possible to collect enough data and observe all task-relevant states in the environment without
knowing how to act in it. As a consequence, when learning to act the agent will only have access to

This work was supported by the European Union Horizon 2020 Marie Curie Actions under Grant 813713
NeuTouch.

67



2 Lach, Korthals, Ferro, Schilling and Ritter

(a) Input frame after pre-processing (b) Reconstruction of la

Fig. 1: A frame from Atari Breakout. The original image 1a was passed through a pre-trained VAE
yielding the reconstruction 1b. Note the missing ball in the lower right hand corner.

a representation that is optimized for the known and visited states. As soon as the agent becomes
more competent, it might experience novel states that have not been visited before and for which
there is no good representation (in the sense that the experienced states are out of the original
learned distribution and the mapping is not appropriate).

Another issue arises from the manner the representation is learned. Usually, the VAE is trained
in isolation, so it decides what features are learned based on its own objective function and not
on what is helpful for the downstream task. Mostly, such a model is tuned for good reconstruc-
tion. Without the information from the RL model, such a representation does not reflect what is
important for the downstream task. As a consequence, the VAE might omit learning features that
are crucial for good performance on the task because they appear negligible with respect to recon-
struction ([14], Chapter 15, Figure 15.5). For example, small objects in pixel-space are ignored as
they affect a reconstruction based loss only marginally. Thus, any downstream task using such a
representation will have no access to information about such objects. A good example for such a
task is Atari Breakout, a common RL benchmark. Figures la and 1b show an original Breakout
frame and its reconstruction. While the original frame contains the ball in the lower right hand
corner, this crucial feature is missing completely in the reconstruction.

We approach this issue through simultaneously learning representation and RL task, that is by
combining the training of both models. As an advantage, this abolishes the need of collecting data
before knowing the environment as it combines VAE and RL objectives. In consequence the VAE
has an incentive to represent features that are relevant to the RL model. The main contributions
of this paper are as follows: First we show, that using unsupervised pre-training on environments
that have underrepresented task-relevant features fails to produce good RL policies. Second, we
show that by jointly training representation and policy leads to a model that encodes task-relevant
information and thus enabling significantly higher performing policies. This will be shown by
comparing achieved rewards and by an analysis of the trained model and its representation.

2 Related Work

[15] explored Auto Encoder (AE) ([16]; [17]; [18]) as a possible pre-processor for RL algorithms. The
main focus in their work was finding good representations for high dimensional state spaces that
enables policy learning. As input, rendered images from the commonly used grid world environment
were used. The agent had to manoeuvre through a discretized map using one of four discrete
movement actions per timestep. It received a positive reward once reaching the goal tile and
negative rewards elsewhere. The AE bottleneck consisted only of two neurons, which corresponds
to the dimensionality of the environemnt’s state. Fitted Q-Iteration (FQI) [19] was used to estimate
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the Q-function, which the agent then acted e-greedy upon. Besides RL, they also used the learned
representation to classify the agents position given an encoding using a Multi-Layer Perceptron
(MLP) [20]. For these experiments, they found that adapting the encoder using MLP gradients
lead to an accuracy of 99.46 %. However, they did not apply this approach to their RL task.

A compelling example for separate training of meaningful representation is provided by [21]
who proposed a framework called DARLA. They trained RL agents on the encoding of a (-
VAE ([22]; [23]) with the goal of zero-shot domain transfer. In their approach, 8-VAE and agent
were trained separately on a source domain and then evaluated in a target domain. Importantly,
source and target domain are similar to a certain extent and only differ in some features, e.g.
a blue object in the source domain might be red in the target domain. During training of the
B-VAE, the pixel-based reconstruction loss was replaced with a loss calculated in the latent space
of a Denoising Auto Encoder (DAE) [24]. Thereby their approach avoids missing task relevant
feature encodings at the cost of training another model. For one of their evaluation models,
they allowed the RL gradients to adapt the encoder. Their results show that subsequent en-
coder learning improves performance of Deep Q-Learning (DQN) but decreases performance of
Asynchronous Advantage Actor-Critic (A3C) [25].

[26] proposed a combination of VAE, Recurrent Neural Networks (RNN) [27] and a simple
policy as a controller. They hypothesized that by learning a good representation of the environ-
ment and having the ability to predict future states, learning the policy itself becomes a trivial
task. Like in most other models, the VAE was pre-trained on data collected by a random policy.
Only the RNN and the controller were trained online. The compressed representation from the
VAE was passed into a RNN in order to estimate a probability density for the subsequent state.
The controller was deliberately chosen as a single linear layer and could thus be optimized with
Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) [28].

This work demonstrated how a VAE can provide a versatile representation that can be utilized
in reinforcement learning. In addition, such an approach allows to predict the subsequent encoded
state. While these findings encourage the usage of VAE in conjunction with RL, this is only possible
in environments where the state space can be explored sufficiently by a random policy. However,
if the policy can only discover important features after acquiring a minimal level of skill, sampling
the state space using a random policy will not yield high-performing agents. Learning such features
would only be possible if the VAE is continuously improved during policy training.

In the work of PlaNet [29], the authors also use a VAE to learn a latent state representation of
a pixel input. Based on the learned representation, they use the Cross Entropy Method to learn
various robotics control tasks. They refine this method in their subsequent publications Dreamer
[30] and DreamerV2 [31] where the agent is trained purely on imagined trajectories from the VAE.
Their works are similar to ours to the extent that they also continuously adapt the learned latent
state representation. However their environments do not contain task relevant features that are
underrepresented, hence their focus does not lie on training them.

Another interesting combination of VAEs and RL was recently proposed by [32], with their
so called Action-Conditional Variational Auto-Encoder (AC-VAE). Their motivation for creating
this model was to train a transparent, interpretable policy network. Usually, the 5-VAEs decoder
is trained to reconstruct the input based on the representation the encoder produced. In this work
though, the decoders objective was to predict the subsequent state s;11. As input it got the latent
space vector z combined with an action-mapping-vector, which is the action vector a; with a
zero-padding to match the latent spaces dimensionality. Inspecting the decoder estimates for s;y1
when varying one dimension of the latent space showed, that each dimension encoded a possible
subsequent state that is likely to be encountered if the corresponding action from this dimension
was taken. Unfortunately, the authors did not report any rewards they achieved on Breakout, hence
it was not possible for us to compare model performances.

3 Combination of Reinforcement and Representation Learning
Objectives

In this section, we will first revisit the fundamentals of RL and VAEs and discuss their different

objective functions. Then, we propose a joint objective function that allows for joint training of
both models using gradient descent based learning methods.
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3.1 Reinforcement Learning with Policy Optimization

RL tries to optimize a Markov Decision Process (MDP) [33] that is given by the tuple (S, A, r,p, ¥).
S denotes the state space, A the action space and p: S x R x § x A — [0, 1] the environment’s
dynamics function that, provided a state-action pair, gives the state distribution for the succes-
sor state. 7 : S x A — R is the reward and v € [0,1) the scalar discount factor. The policy
mo(als) is a stochastic function that gives a probability distribution over actions for state s. 0
denotes the policy’s parameter vector which is typically subject to optimization. A trajectory
T = (80, ag, ..., ST, ar) consisting of an alternating sequence of states and actions can be sampled
in the environment, where T stands for the final timestep of the trajectory and a; ~ mg(a;|s;).

The overarching goal of RL is to find a policy that maximizes the average collected reward over
all trajectories. This can be expressed as the optimization problem max E,~p(r) [Zt r(s, a)} , which
can also be written in terms of an optimal policy parameter vector 0* = arg maxy Er~p(r) [ > (s, a)] .
When trying to optimize the policy directly be searching for 6*, policy optimization algorithms
like A3C, Actor-Critic with Experience Replay (ACER) [34], Trust Region Policy Optimization
(TRPO) [35] or Proximal Policy Optimization (PPO) [36] are commonly used. The fundamen-
tal idea behind policy optimization techniques is to calculate gradients of the RL objective with
respect to the policy parameters:

VoJ(0) = E |Vglogme(r)r(r) (1)

T~p(T)

where we defined Zfzo r(s,a) = r(7) for brevity. However, most policy optimization methods in-
troduce heavy modifications to this vanilla gradient in order to achieve more stable policy updates.
Throughout our work, we have used PPO as RL algorithm because it is quite sample efficient and
usually produces stable policy updates. For an in-depth description of PPO, we refer to our A.1
or the original work [36].

3.2 Learning Representations using Variational Auto-Encoders

[10] introduced the VAE as a method to perform Variational Inference (VI) [37] using function
approximators, e.g. deep neural networks. VI tries to approximate a distribution over the generative
factors of a dataset which would otherwise involve calculating an intractable integral. The authors
present an algorithm that utilizes the auto encoder framework, an unsupervised learning method
which learns data encodings by reconstructing its input. Therefore, the input is first compressed
until it reaches a given size and is afterwards decompressed to its original size. When using deep
neural networks, these transformations can be achieved by using for example fully connected or
convolutional layers. In order for the VAE to approximate a distribution over generative factors,
the authors used the so called ”reparametrization trick”. It allows for gradient based optimization
methods to be used in searching for the distribution parameters. For training the VAE, a gradient
based optimizer tries to minimize the following loss:

LYAE (x,9,9) = =D r(gs(z@) || p(2)) + E [logpy(w|2)]
4o (2l) 2)

with z = l(p, 0, €) and € ~ p(e)

where D, denotes the Kullback-Leibler Divergence (KL) [38] of the approximated distribution
over generative factors produced by the encoder g4(z|x) and some prior distribution p(z). The
expectation is often referred to as reconstruction loss that is typically calculated on a per-pixel basis.
Lastly, I(u, o, €) is a sampling function that is differentiable w.r.t. the distribution parameters, for
example z = u + oe.

3.3 Joint Objective Function

Combining both loss functions such that both models can be trained at the same time is rather
straight-forward. Adding both individual losses and using an optimizer such as ADAM [39] to
minimize them is sufficient to achieve joint training. During backpropagation, gradients from the
policy and the VAE are combined in the latent space. Due to different topologies of the networks,
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gradient magnitudes differ significantly. Therefore, we introduced the hyperparameter x which can
be used to either amplify or dampen the gradients and we arrive at the following loss:

£ = k LV (O, Op—1, ) + LY (2, 6,1, B) )

where £PG is some policy gradient algorithm’s objective function. As mentioned before, we used
PPO’s loss LPO (equation 4 in the appendix).

4 Experiments

In order to test our model with the combined objective function given by Equation 3, we have
used the well-known benchmark of Atari Breakout. This environment has several properties that
make it appealing to use: it is easily understandable by humans, used often as a RL task and the
conventional pre-trained methods fail at mastering it. The ball is the most important feature that
is required to be encoded in order to perform well, is heavily underrepresented (approximately
0.1% of the observation space). Therefore, the VAE’s incentive to encode it is very low whereas
our model succeeds in encoding it. In the following, we compare the pre-trained approach to two
different continuously trained models that use the loss from Equation 3.

4.1 Data Collection and Pre-Processing

The raw RGB image data produced by the environment has a dimensionality of 210 x 160 x 3
pixels. We employ a similar pre-precessing as [1], but instead of cropping the grey-scaled frames,
we simply resize them to 84 x 84 pixels. As we will first train models similar to those introduced
in previous works with a pre-trained VAE, we needed to construct a dataset containing Breakout
states. We used an already trained policy to collect a total of 25,000 frames, the approximate
equivalent of 50 episodes.
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Fig. 2: Model combining PPO and a VAE. Depending on the model configuration, the colored parts
are trained differently. X is the VAE’s input and X the reconstructions. PPO receives the mean
vectors U as input and calculates a distribution over actions 7. Note that we use capital letters in
the VAE to emphasize that we pass n frames at the same time when a policy is trained.
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4.2 Pre-training the Variational Auto-Encoder

Our first model is based on those of the previously introduced works which involve isolated pre-
training the VAE on a static dataset. Figure 2 shows the individual parts of the complete training
process. For the first model, PPO™®!  the encoder and decoder (shown in orange and red) are
pre-trained before policy training. During this phase, there is no influence from the RL loss. Once
the VAE training is finished, the decoder shown in red in Figure 2 is discarded completely. Later
during policy training, we use n instances of the same encoder with shared weights that receive a
sequence of the last n frames as input. Stacking allows us to incorporate temporal information and
for the policy to predict the ball’s trajectory. By sharing the weights, we ensure that the resulting
encodings originate from the same function. U then represents the concatenated encodings of the
sequence.

Prior to policy training, we trained the VAE on the dataset we have collected before, with
hyperparameters from Table 1. Once pre-training was finished, we discarded the decoder weights
and used the stacked encoder as input for the policy MLP. The MLP was then trained 10M steps
with hyperparameters from Table 2. During this training, the encoder weights were not changed
by gradient updates anymore but remained fixed.

The second model we introduce is called PPO*#P' which has the same structure and hyper-
parameters as the first model. For this model, we also train the VAE in isolation first, however the
encoder weights are not fixed anymore during policy training. Gradients from the RL objective are
back propagated through the encoder, allowing it to learn throughout policy training. We hypoth-
esize that features that are important for policy performance can be incorporated in an already
learned representation.

Figure 3 compares the median rewards of three rollouts with different random seeds for all
models. PPO™*d was not once able to achieve a reward of 10 or higher, while PPO*¥P* steadily
improved its performance with final rewards well over 50. The learning curve of PPO*!#Pt shows
that the model is able to learn how to act in the environment, whereas PPO™°? does not. The
non-zero rewards from PPO™? are similar to those of random agents in Breakout. From these
results, we can assume that training the VAE in isolation on a static dataset for Breakout results
in a deficient representation for RL. Therefore, using policy gradients to adapt an already learned
representation can be beneficial in environments where the VAE fails to encode task-relevant
features.

—— PPOVAE
50 — Ppoﬁxed
—— ppOadapt
= 40
-
(]
5
~ 30
o
.S
2 20
=
10
l;;,‘
0
0 2 x 106 4 %106 6 x 10° 8 x 10° 10 x 106

Steps

Fig. 3: Reward of the three proposed models across three random seeds each. PPO**d ig not able
to achieve high rewards while the other two models consistently improve their performance.
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4.3 Jointly Learning Representation and Policy

The last model we introduce, PPOYAE | combines a complete VAE with a policy MLP that receives
U, the concatenated state encodings, as input. As opposed to the first two models, all weights
are initialized randomly before policy training and the VAE is not pre-trained. For this procedure
an already trained agent that gathers a dataset for the VAE beforehand is not necessary. The
decoder is trained exactly as in the isolated setting, meaning its gradients are also only computed
using the VAE’s loss function. During backpropagation, the gradients coming from Z and hy are
added together and passed through the encoder. This model has the same network configuration
and hyperparameters as the first two, with the only difference that we also evaluated different
values for £ from the joint loss 3 (see A.3). For the results reported here, we chose k = 20. All
hyperparameters can be found in Table 3.

By simultaneously training representation and policy, we expect the VAE to learn task-relevant
features from the beginning of training. This assumption is supported by the learning curve shown
in Figure 3, which compares PPOYAE to the previous two models. The curve shows a steady
increase in reward over the course of training with PPOVAE achieving slightly higher rewards
than PPO®*P* in the beginning. This characteristic changes after less than 1M steps and from
that point on PPO*1P* consistently outperforms PPOVYAE. This difference in performance is likely
attributed to the fact, that in PPOYA® the decoder is trained throughout the complete training.
The gradients of PPO*3#P' can change the latent space without restrictions and they only optimize
the RL objective. In PPOYAE however, gradients are also produced by the decoder that presumably
do not contain information about the ball. Therefore PPOVA®’s latent space is constantly changed
by two different objectives, thus leading to lower rewards for the RL part.

4.4 Analyzing the Value Function Gradients

So far, the results imply that PPOVAE and PPO*dPt do indeed
learn encodings of the ball. One difficulty when analyzing the rep-
resentation is, that the decoder still has no incentive to reconstruct
the ball, even if it is present in the latent space. In a work that L oa=o
enhances DQN algorithm [40], the authors visualized the Jacobian _
of the value function w.r.t. the input images. These visualizations

showed which features or regions from the input space are con-
sidered as important in terms of future reward. As we also learn
a value function, we did the same and visualized what our model
considered important and what not.

In Figure 4 we illustrate a pre-processed frame and added the
values of the Jacobian to the blue channel if the were greater
than the mean value of the Jacobian. Only visualizing above-mean
Jacobian values removes some noise in the blue channel makes the
images much easier to interpret and only highlights regions of high
relevance. We can clearly see, that the Jacobian has high values Fig.4: The Jacobian of PPO’s
at missing blocks as well as around the ball, meaning that these value function. Highlighted areas
regions are considered to have high impact on future rewards. ™" high importance in ter.m S
By visualizing the Jacobian we have confirmed that the policy of future rewards. Note the high

. Jacobian values around the ball
gradients encourage the VAE to embed task-relevant features. and the blocks.

5 Conclusion

This paper focused on the issue of pre-training VAEs with the

purpose of learning a policy for a downstream task based on the VAE’s representation. In many
environments, the VAE has little to no incentive to learn task-relevant features if they are small
in observation space. Another issue arises if the observation of these features depends on policy
performance and as a result, they are underrepresented in a dataset sampled by a random agent. In
both cases, fixing encoder weights during policy training prevents the VAE to learn these important
features and policy performance will be underwhelming.
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We carried out experiments on the popular RL benchmark Atari Breakout. The goal was to
analyze whether policy gradients guide representation learning towards incorporating performance-
critic features that a VAE would not learn on a pre-recorded dataset. First experiments confirmed,
that the common pre-trained approach did not yield well-performing policies in this environment.
Allowing the policy gradients to adapt encoder weights in two different models showed significant
improvements in terms of rewards. With policy gradients guiding the learned representation, agents
consistently outperformed those that were trained on a fixed representation.

Out work verifies the fundamental issue with pre-trained representations and provides methods
that overcome this issue. Nonetheless, future work can still explore a variety of improvements
to our models. For once, training not only the encoder but also the decoder with RL gradients
can improve interpretability of the VAE and enable it to be used as a generator again that also
generates task-relevant features. Another direction is to impose further restrictions on the latent
space during joint training of VAE and policy. The goal there would be to maintain the desired
latent space characteristics of VAEs while still encoding task-relevant features.
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A Appendix

A.1 Stable Policy Learning with Proximal Policy Optimization

Most actor-critic algorithms successfully reduce the variance of the policy gradient, however they
show high variance in policy performance during learning and are at the same time very sample
inefficient. Natural gradient ([41]) methods such as TRPO from [35] greatly increase sample effi-
ciency and learning robustness. Unfortunately, they are relatively complicated to implement and
are computationally expensive as the require some second order approximations. PPO ([36]) is a
family of policy gradient methods that form pessimistic estimates of the policy performance. By
clipping and therefore restricting the policy updates, PPO prohibits too large of a policy change
as they have been found to be harmful to policy performance in practice. PPO is often combined
with another type of advantage estimation ([42]) that produces high accuracy advantage function
estimates.
We define the PPO-Clip objective is defined as

JPPO(0, 601_1) =E [min(o(G)Am”k (s,a), cnp(o(e), 1—el1+ e) AT (s, a))} W

s.t. 5MB < 5target

where 0(0) = % denotes the probability ratio of two policies.

This objective is motivated by the hard KL constraint that TRPO enforces on policy updates.
Should a policy update result in a policy that deviates too much from its predecessor, TRPO per-
forms a line search along the policy gradient direction that decreases the gradient magnitude. If the
constraint is satisfied during the line search, the policy is updated using that smaller gradient step.
Otherwise the update is rejected after a certain number of steps. This method requires to calculate
the second order derivative of the KL divergence, which is computationally costly. PPO uses its
clipping objective to implicitly constrain the deviation of consecutive policies. In some settings,
PPO still suffers from diverging policy updates ([43]), so we included a hard KL constrained on
policy updates. The constraint can be checked after each mini-batch update analytically and is
therefore not very computationally demanding.

PPO extends the policy gradient objective function from [44]. With the probability ratio o(6), we
utilize importance sampling in order to use samples collected with any policy to update our current
one. Thereby we can use samples more often than in other algorithms, making PPO more sample
efficient. Using importance sampling, we still have a correct gradient estimate. Combining the
new objective with actor-critic methods yields algorithm 1. K denotes the number of optimization
epoch per set of trajectories and B denotes the mini-batch size. In the original paper, a combined
objective function is also given with:

EPPO(Qk, 91(:—1’ ¢k) =F ClJPPO(Qk’Qk_l) — CZEVWB (¢k) + H(’/Tgk):l (5)

s.t. dum < 6target

where H(mp, ) denotes the policy entropy. Encouraging the policy entropy not to decrease too
much prohibits the policy from specializing on one action. As discussed in [43], there are two cases
for JPPO (0, 0): either the advantage function was positive or negative. In case the advantage is
positive, it can be written as:

JPPO(6,,0) = | min (0(h), (1 + €)) A™* (s, a) (6)

A™% (s,a) > 0 indicates that the action yields higher reward than other actions in this state, hence
we want its probability 7y, (a|s) to increase. This increase is clipped to (1 + €) once my, (als) >
7o, _, (a]s)(1 + €). Note however, that updates that would worsen policy performance are neither
clipped nor bound. If the the advantage is negative, it can be expressed as:

JPPO(0),60) = E | max (0(8), (1 — €)) A™x (s, a) (7)

This equation behaves conversely to 6: A™ (s,a) < 0 indicates that we chose a suboptimal action,
thus we want to decrease its probability. Once my, (a|s) < mg,_, (als)(1 — €), the max bounds the
magnitude by which the action’s probability can be decreased.
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Algorithm 1 Proximal Policy Optimisation with KL constraint

1: Initialize policy parameters 6y and value function parameters ¢o

2: for k=0,1,2,... do

3: Collect set of trajectories Dy, = {7;} with 7, and compute R,

oms < 0

for 0,1,2,...K do

for each mini-batch of size B in {7;} do

Update the policy by maximizing the PPO-Clip objective 4
Minimize £ on the mini-batch

9: end for

10: end for

11: if oMB > Jtarget then

12: 0k+1 = Gk
13: end if
14: end for

A.2 Hyperparameter Tables

Parameter ‘Value

epochs 100

batch size [128

input size |[(84,84,1)

optimizer |ADAM
learning rate|1 x 10~*

encoder |Conv2D 32 x 4 x 4 (stride 2) - 64 x 4 x 4 (stride 2) -
FC 512 (ReLU)
latents |20 (linear)
decoder |FC 512 (ReLU) - 64 x 4 x 4 (stride 2) - 32 x 4 x 4 (stride
2) Conv2D Transpose

Table 1: Hyperparameter table for VAE training on Breakout

Parameter |Value Parameter ‘Value

timesteps |1 X 107
environments|16
batch size |32

timesteps |1 x 107
environments|16
batch size |32

tmax 2048 tmax 2048
K 10 K 10
c1 1.0 c1 1.0
c2 0.5 C2 0.5
c3 0.0 c3 0.0
¥ 0.99 Y 0.99
A 0.95 A 0.95

network |FC 64 (tanh) -
FC 64 (tanh)
optimizer [ADAM
learning rate |3 x 10~*
K (1, 10, 20)
Table 3: Policy hyperparameter table of
PPOVAE

network |FC 64 (tanh) -

FC 64 (tanh)
optimizer |ADAM

learning rate [3 x 1074

Table 2: Policy hyperparameters of PPO*¢d

and PPQ?dapt
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A.3 Choosing appropriate values for

In Equation 3, we introduced the hyperparameter x to balance VAE and PPO gradients. We found
empirically, that tuning x is straight forward and requires only few trials. In order to simplify
the search for k, one can evaluate gradient magnitudes of the different losses at the point where
they are merged at U. Our experiments showed PPQO’s gradients to be significantly smaller, thus
scaling up the loss function was appropriate. This will likely differ if the networks are configured
differently. Increasing  from 1 to 10 led to considerably higher rewards, however the difference in
performance was small when increasing « further to 20. Therefore, we chose x = 20 in our reported
model performances.

50
k=1
k=10
40 K =20
o
=
= 30
9]
[
o
.8
5 20
]
p=
10
0
0 2 x 100 4 % 100 6 x 100 8 x 100 10 x 100

Steps

Fig. 5: Performance comparison of PPOYAE with different values for
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ABSTRACT

The electrical system must handle increasing production from renewable sources that are
difficult to predict, highly variable and not controllable. This shift in the electrical paradigm
makes power grid operation, and therefore the exercise of supply/demand balance,
increasingly complex. Microgrids (MG) enable a more flexible management of the grid.
These intelligent bidirectional systems allow to reach new sources of flexibility from
consumers using Demand Response (DR).

Based on Stochastic Optimization and Deep Learning approaches, we propose an optimal
demand response scheduling under load uncertainty in a residential Microgrid. Our approach
is based on load forecasting techniques, clustering and pattern recognition procedures and a
stochastic optimal power flow scheduling algorithm.

For each household in the Microgrid, we forecast the day ahead load profile and perform
pattern recognition and clustering in order to identify transferable loads and then we evaluate
household’s micro-flexibilities potential. Thus the flexibility potential of the whole Microgrid
will be the aggregation of household’s micro-flexibilities.

The Microgrid optimal schedule strategy is obtained by maximizing the Microgrid operator's
DR payoff while satisfying the load demand and user's comfort constraints. Simulation
results show that the proposed DR scheduling is beneficial to both service provider's and
prosumer.

Keywords: Microgrid ; Smartgrid ; Demand Response ; Optimal scheduling ; Load
management ; Optimization.
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Abstract. This paper considers the application of Bayesian optimi-
sation to the well-known multidimensional knapsack problem which is
strongly NP-hard. For the multidimensional knapsack problem with a
large number of items and knapsack constraints, a two-level formulation
is presented to take advantage of the global optimisation capability of the
Bayesian optimisation approach, and the efficiency of integer program-
ming solvers on small problems. The first level makes the decisions about
the optimal allocation of knapsack capacities to different item groups,
while the second level solves a multidimensional knapsack problem of re-
duced size for each item group. To accelerate the Bayesian optimisation
guided search process, various techniques are proposed including variable
domain tightening, initialisation by the Genetic Algorithm, and optimi-
sation landscape smoothing by local search. Computational experiments
are carried out on the widely used benchmark instances with up to 100
items and 30 knapsack constraints. The preliminary results demonstrate
the effectiveness of the proposed solution approach.

Keywords: Bayesian optimisation - Multidimensional knapsack prob-
lem - Meta-heuristics.

1 Introduction

The Bayesian optimisation (BO) is a powerful machine learning based method
for the optimisation of expensive black-box functions, which typically only allow
point-wise function evaluation [23,22]. Although BO has been widely used in the
experimental design community since the 1990s [15,13], it is not until the last
decade that BO has become extremely popular in the machine learning com-
munity as an efficient tool for tuning hyper-parameters in various algorithms,
e.g., deep learning [5, 7], natural language processing [29], and preference learn-
ing [10]. The BO is also embraced by new areas such as robotics [16], automatic
control [1], and pharmaceutical product development [21].

The Multidimensional Knapsack Problem (MKP) is an extension of the clas-
sic Knapsack Problem (KP). It comprises of n items and m knapsacks with
limited capacities. Each item contributes a certain amount of profit if selected
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and consumes “resources” simultaneously in each knapsack. The MKP aims for
a subset of items that achieves the highest total profit while abiding by the ca-
pacities of all knapsacks. The MKP is a well-known, and strongly NP-hard com-
binatorial optimisation problem, and has found applications in many practical
areas involving resource allocation [11,17]. In spite of the tremendous progress
made in exact solution techniques, many instances from the widely used Chu
and Beasley MKP test set [4] cannot be solved to optimality [8,12,28], espe-
cially when the number of knapsacks is large. The best known solutions on the
hard instances are all obtained by specialised meta-heuristics which require ex-
orbitant computation time [24, 25,27, 3, 6]. The simplicity of problem statement
and computational hardness makes the MKP an ideal test bed for new solution
ideas and techniques [14, 18].

The BO encounters insurmountable issues to solve the MKP. Firstly, the
BO is designed to solve problems with simple feasible set of continuous vari-
ables [9], while the MKP has only binary variables with many knapsack con-
straints. Whereas a lot of efforts have been committed to consider feasible set
with combinatorial structures, all the reported computational studies investi-
gated problems with just a few dozen categorical/integer/binary variables [2,
19]. Secondly, the BO is only efficient for low dimensional problems with less
than 20 variables, while the MKP can have hundreds of binary variables. Al-
though the BO with random embedding can solve problems with billions of
variables, it relies on the “low effective dimensionality” which can be an issue
for MKP [26]. Finally, the MKP has a linear function which is “cheap” to calcu-
late, which makes it hard for the BO to compete with other meta-heuristic and
artificial intelligence algorithms.

Based on the idea of divide and conquer, a novel two-level model for MKP
(TL-MKP) is proposed in this paper to take advantage of the special structure
of MKP, i.e., the number of items (variables) is much larger than the number
of knapsacks (constraints). In particular, the items are divided into groups, and
the knapsack capacities allocated to each group are determined by the first
level, or master problem, of the TL-MKP. With assigned knapsack capacities,
each group can be solved as a MKP of reduced size in the second-level of TL-
MKP, or subproblem. It is shown in Section 2 that the master problem has
a non-continuous, multi-modal, and expensive to evaluate objective function
with simple feasible set, which is suitable for the application of BO. Since the
subproblem has a much smaller number of binary variables, it can be efficiently
solved to optimality with commercial integer programming solvers.

It is essential to incorporate prior knowledge in the BO, which was designed
to be a black-box global optimisation method. Two novel techniques are pre-
sented in this paper to make use of the information provided by mathematical
programming solver and meta-heuristics. Indeed, when a good solution is known,
e.g., by using other meta-heuristics, an efficient heuristic is proposed in this paper
to tighten the domain bounds of the master problem in the TL-MKP. Inspired
by the simulation approach used in robotics control algorithms to initialise the
BO [20], the Genetic Algorithm (GA) is used in this paper to generate initial

82



A Bayesian Optimisation Approach for Multidimensional Knapsack Problem 3

trial points for the BO. To take advantage of the linear structure of the objective
function of MKP, the GA is run on the MKP instead of the master problem of
TL-MKP. These techniques can significantly accelerate the search process of BO
as demonstrated by the computational experiments in this paper.

The paper is organised as follows. The novel two-level model for MKP is pre-
sented with discussion of the properties of the master problem in Section 2. The
BO based optimisation approach and some acceleration techniques are described
in Section 3. The implementation details are discussed in Section 4. Computa-
tional results are presented in Section 5. The conclusion is given in Section 6.

2 Two-level Model for MKP

Given m knapsacks with capacities b;, i = 1,...,m, and a set of n items I =
{1,2,...,n}, each item j requires a resource consumption of a; ; units in the i-th
knapsack, ¢ = 1,...,m, and yields ¢; units of profit upon inclusion, j = 1,...,n.
The goal is to find a subset of items that yields maximum profit, denoted by
z*, without exceeding the knapsack capacities. The MKP can be defined by the
following integer linear programming model:

(MKP) 2* = max{c’z: Az < b,z € {0,1}"}, (1)

where ¢ = [c1, ca, . . ., ¢, is an n-dimensional vector of profits, = [z1, o, ..., z,]T

is an n-dimensional vector of 0-1 decision variables indicating whether an item is
included or not, A = [a;;],¢1=1,2,...,m, j=1,2,...,nis an m x n coefficient
matrix of resource requirements, and b = [by, ba, ..., b,]7 is an m-dimensional
vector of resource capacities. It is further assumed that all parameters are non-
negative integers.

Assume the items are divided into two groups, i.e., [ = [ UIly, and 1 NIy =
(). Each group is formulated as a MKP with profit vector ¢! = c;,, resource
requirement matrix A® = Aj,, and capacity vector b* € R™. The two groups
share the capacities of the m knapsacks, i.e.,

b+ b =0 (2)

The first level of the TL-MKP (the two-level model for MKP), or the master
problem is defined as

(L1-MKP) f*=max{f(t):t € R™,0 <t <b}, (3)

where
f(t)=21(t) +23(b—1) (4)
is calculated by solving the second level of the TL-MKP, or subproblems:

(L2-MKP)  zf(u) = max{c'z’ : Az’ <w,z' € {0,1}/51}, i=1,2 (5)
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Since each solution of the TL-MKP can be easily converted to a solution to
the MKP with the same objective value, and each solution of the MKP can be
used to define a value of ¢ for the master problem of TL-MKP (3), the following
proposition holds.

Proposition 1. (t* = Azl 2'* 22*) is an optimal solution of TL-MKP if and
only if x*, defined as x}, = ™ and Ty, = x%*, is an optimal solution of MKP.
Furthermore, f* = z*.

FEzample 1. Consider an instance of MKP with three items and one knapsack,
where ¢ = [1,2,3], A =[1,2,3], and b = 4. The two groups are Iy = {1,2} and
I, = {3}. It is straightforward to show that the first level objective function is

3 telo,1)
4 t=1
fA) =<1 te(1,2).
2 tel2,3)
3 tel3,4]

Ezample 2. Consider an instance of MKP with 20 items and two knapsacks. The
two groups have the same number of items. Fig. 1 shows the contour graph of
the first level objective function f(¢). The optimal value is equal to 75.

50 T T

T—
451 O5_ q
s ° g

[ 65
n T
35 L 3 |
= " 72 70!
L o N 4
%0 70—/
( f
& 2
72 /
25 g
s [ 2 ]

0 5 10 15 20 25 30 35 40 45 50

Fig. 1. Contour of the first level objective function f(t); t1(t2) is the capacity allocated
to group 1 from knapsack 1 (2).
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Examples (1) and (2) clearly demonstrate that the objective function of the
master problem in TL-MKP is non-continuous, and can have many local optima.
Although the subproblems have much smaller sizes, they are still more expensive
to evaluate than the linear function of MKP.

It can be observed that f(t) is not differentiable when at least one knapsack
has no slack capacity in one of the subproblems. That leads to the following
proposition,

Proposition 2. f(t) is differentiable almost everywhere in the sense of Lebesque
measure with f'(t) = 0.

Although f(t) is differentiable almost everywhere, the derivative is constantly
zero and consequently, useless for the design of optmisation algorithms.

3 Bayesian Optimisation and Acceleration

The BO is a promising option to deal with the challenges presented by the
master problem of TL-MKP such as no closed form, non-continuity, multiple
local optima, absense of useful derivatives, and high cost of function evaluation.
In this section, the basic principles of BO are described first [9], then followed
by techniques to incorporate prior knowledge to accelerate the search process.

The BO builds a probabilistic model for the unknown f(¢) of the master
problem of TL-MKP. In particular, f(¢) is assumed to be drawn from a Gaussian
process (GP), which is determined by a mean function po : R™ — R, and a
positive definite covariance function kg : R”™ x R™ — R, also known as the kernel
of the GP. The BO sequentially generates points to evaluate within the feasible
region of TL-MKP. Assume that n points have been evaluated with observations
D,, = {(t}, f(tY)), (t%, F(t?)), ..., (t", f(t"))}. Using Bayes’ rule, the conditional
distribution of f(¢) is derived as a Normal distribution:

P(f(t)|Dn,t) = N(un(t), o5 (t)) (6)
fn(t) = Zo(t, t1:n) Zo(trns trn) ~H(f (trin) — po(trn)) + po(t) (7)
o2(t) = ko(t,t) — Zo(t, t1:m) X0 (t1ms trn) ") Do (trin, 1) (8)

where f(tin) = [f(t"),- ., F(E")]T, po(tin) = [o(th), -, po(t™)]", and
ko(t,tl) -+« ko(t',t™)

Xo(trn, tim) = : :
ko(t™,tY) -+ ko(t™, ")

The BO selects the next most promising point to evaluate, i.e., "+, by opti-
mising an acquisition function, which balances exploration (uncertainty o, (1)
is large) against exploitation (objective expected value ju,, (t" 1) is large). Differ-
ent types of acquisition function have been proposed in the literature, while the
most commonly used is Fzpected Improvement (EI). The EI acquisition function
is defined as

EL,(t) = En(maz(f(t) — maxi_, f(t'),0)), 9)
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where FE,,(-) is the expectation taken under the posterior distribution (6).
The next point to evaluate is selected as

t"*! = argmax,EI, (t). (10)

With new point (¢"+1, f(t"*1)), the conditional probability of f(¢) can be up-
dated according to (6), and the iterative process stops when a sampling budget
is reached.

3.1 Variable Domain Tightening

The efficiency of BO depends on the size and dimensionality of the search space
of TL-MKP, which is defined in (3) as [0,b] C R™. If a good lower bound of
MKP fr is known, e.g., through a quick meta-heuristic, the search space can
be reduced to F = {t|f(t) > fr,t € [0,b] C R™}. However, this will make
the EI acquisition function harder to optimise in (10) since F' has no simple
representation. In this paper, an optimisation based approach is employed to
find the smallest hypercube H = [t* U] that contains F, i.e., F C H. The
upper bound of H along the i-th coordinate, t, i = 1,...,m, can be obtained
by solving

tY = max{Alz' : Tx > fr, Az < bzt =z, 2 € {0,1}"}. (11)

The lower bound of H along the i-th coordinate, t¥, il,...,m, can be obtained
by solving

th =min{A's! : T2 > fr, Az < b2’ = 21,2 € {0,1}"}. (12)

The exact solution of (11) and (12) is time-consuming. Therefore, tV (t£) can
be replaced by a upper (lower) bound of (11) ((12)), e.g., using the linear pro-
gramming relaxation by replacing = € {0,1}" with = € [0, 1]™.

3.2 Initialisation with Genetic Algorithm

The BO randomly generates the initial trial points in the search space which
can lead to slow convergence. In this paper, The GA is used to generate initial
points that have good solution quality as well as diversity in the search space. The
GA is a population based meta-heuristic which evolves by generations through
genetic operators such as cross-over and mutation. In the early stage of GA the
population has good diversity but low percentage of good solutions; while in the
later stage, the population has high percentage of good solutions but with less
diversity.

It is computationally infeasible to run GA on the TL-MKP since the objec-
tive evaluation involves solving two MIP problems and consequently expensive.
Instead, the GA is directly run on the MKP, and the population is mapped to
initialise the BO for TL-MKP. In particular, let Z be a solution from a population
of GA. The mapped solution for TL-MKP becomes

f=A'Zy,. (13)
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It is easy to see that
fl) > "z (14)

3.3 Optimisation Landscape Smoothing

At each sampling point of BO, a feasible solution to the MKP is also generated
according to Proposition 1. This solution can be improved by a local search
which is efficient to cope with large number of items and constraints. We define
the neighbourhood of a solution = as the set of solutions with at most k different
items:

Ni(z) ={y € {0,1}" : Ay < b, [[|lz — y[l, <k} (15)

For Example 1, with k = 1, the first level objective function becomes

f(t)_{él te0,2)

3 te2,4]’

which is ”"smoother” in terms of the optimisation landscape.

4 Implementation

The BO approach for the MKP (BO-MKP) can be described as in Alg. 1, and
a prototype of BO-MKP was implemented in Matlab R2020b. In Step 1 of BO-
MKP, the linear relaxation of (11) and (12) are solved to tighten the bounds of
the feasible set of TL-MKP using the function linprog in Matlab Optimization
Toolboz. Using the function ga in the Global Optimization Toolboz of Matlab,
an initial set of trial points are generated in Step 2 as input for BO according to
(13). In Step 3, the BO is implemented with the function bayesopt in the Global
Optimization Toolbox of Matlab. The acquisition function is set to “expected-
improvement”, and the maximum number of evaluation, “MaxObjectiveEvalu-
ations”, is set to IN which is a user specified parameter. The subproblems of
TL-MKP (5) are solved by the mixed integer programming solver intlinprog in
Matlab Optimization Toolbox. In Step 4, The best solution of TL-MKP found
by BO is converted to a solution of MKP with the same objective function value
according to Proposition 1.

The selection of kernel function for GP can have a strong influence on the
performance of BO. bayesopt uses the ARD Matérn 5/2 kernel

5r  5r2 NG
k(xi, xjlop, o) = 0,20(1 +—F 7) exp (—TZ)

where r = \/(x; — 2;)T(x; — ), and the parameters are estimated by Gaussian
process regression fitrgp.
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Algorithm 1: The BO approach for the MKP (BO-MKP).

Input: MKP, item groups I; and I, lower bound of MKP f7,
maximum number of evaluation NV for BO.

Output: a feasible solution of MKP.

Step 1: tighten the bounds of feasible set of TL-MKP based on fr;

Step 2: generate initial trial points using GA;

Step 3: search for the global optimum of TL-MKP using BO within a
sampling budget of N evaluations;

Step 4: convert the best solution found by BO to the solution of MKP;

return

5 Computational Experiments

All experiments are carried out on the widely used Chu and Beasley MKP test
set in [4]. The Chu and Beasley test set contains classes of randomly generated
instances for each combination of n € {100,250,500} items, m € {5,10,30}
constraints, and tightness ratios a € {0.25,0.5,0.75} with smaller « representing
tighter resource capacities. In the Chu and Beasley MKP test set, the resource
consumption values a;; are integers uniformly chosen from (0, 1000), which leads
to large values of the knapsack capacities b. Since the search space of BO for TL-
MKP is defined by b in (3), the Chu and Beasley MKP test set is an challenging
test bed for the proposed BO approach.

To show the effect of tightening bounds in section 3.1, the BO is tested on
three selected instances with n = 100, and the results are reported in Table 1.
The rows correspond to the instances with the number of knapsack constraints
m =5, 10 and 30. The optimal values of these instances are obtained by CPLEX
and reported in the column titled “Opt.” The columns are divided into two
groups for the BO results, one for the cases without bound tightening (“With-
out tightening”) and the other one for the cases with bound tightening (“With
tightening”). To have a better understanding of the convergence behavior of BO,
two values are applied for the maximum number of evaluations, i.e., N = 25, 50.
Since the BO is a stochastic algorithm, the average objective function value of 5
runs is reported for each pair of (m, N) in the columns titled “Ave.”. The rela-
tive gap for the solution found by the BO is calculated as 100 x (z* — f)/z* and
reported in the columns titled “gap(%)”. It can be seen that the performance of
BO deteriorates dramatically when m increases. When m = 30, the BO reaches
a massive relative gap of 63.8% after 50 function evaluations. This observation
is consistent with BO’s behavior for other optimisation problems. When bound
tightening technique is applied, the performance of BO is improved on all (m,
N) pairs. The improvement is more dramatic when m becomes large. For m = 10
and N = 50 the relative gap is reduced from 9.8% to 4%. However, the solution
quality for m = 30 is still not satisfactory with a large gap of 31.8%.

Table 2 presents the results of BO-MKP which initialises the BO with GA.
The initial trial points provided by the GA should be diverse enough while also
having good solution quality. Therefore, the maximum number of iterations of
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Table 1. Effects of bound tightening for BO on the TL-MKP.

Without tightening

With tightening

N =25 N =50 N=25 N =50
m Opt. Ave. gap(%) Ave. gap(%) Ave. gap(%) Ave. gap(%)
5 24381 22897 6.1 23849 2.2 23913 1.9 24017 1.5
10 23064 17145  25.7 20806 9.8 20581 10.8 22149 4.0

3021946 5710.2  74.0 7955 63.8 14659  33.2 14978  31.8

GA is limited to 55 in BO-MKP. It can be seen that the GA initialisation is not
helpful when m = 5, which suggests that the BO has strong global search capa-
bility when the dimension is low. In sharp contrast, the BO-MKP dramatically
reduces the relative gap for larger dimension. Indeed, the relative gap is just 4%
for m = 30 with 50 function evaluations.

Table 2. Effects of GA initialisation for BO on the TL-MKP.

N =25 N =50
Opt. w/o GA Ave. gap(%) w/oGA Ave. gap(%)
m=>5 24381 23913 23928 1.9 24017 24063 1.3
m =10 23064 20581 22471 2.6 22149 22396 2.9
m =30 21946 14659 20727 5.6 14978 21060 4.0

Table 3 shows the impact of employing the local search in solving the BO-
MKP. With k£ = 5 for the neighbourhood defined in (15), the three instances
with m = 5, 10 and 30 are all solved to optimality.

Table 3. Effects of local search for BO on the TL-MKP.

N =25
Opt. w/o LS with LS gap(%)
m =15 24381 23928 24381 0.0
m = 10 23064 22471 23064 0.0
m = 30 21946 20727 21946 0.0

The overall performance of BO-MKP on all the 90 instances with 100 items,
i.e., n = 100 is presented in Table 4. For the groups with m = 5 and m = 10,
we set N = 25 and k = 5. For all instances with m = 5 and 26 instances
with m = 10, the optimal solutions are obtained. The remaining 4 instances
in the group with m = 10 can also be solved to optimality by increasing NV
to 50. We set £k = 10 and N = 50 for all instances with m = 30. This group
of instances is particularly challenging to BO due to the high dimensions of
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the search space. However, with a strong local search procedure to smooth the
optimisation landscape, high quality solutions are obtained on all instances.

Table 4. Computational results for all instances with 100 items.

a=025 a=05 a=0.75
Average 24197.2 432529 60471.0
Best 24197.2 432529  60471.0
m=>5 Opt. 24197.2  43252.9  60471.0
gap % 0.0 0.0 0.0
time 146.7s 128.8s 83.3s
Average 22601.0 42660.2 59555.6
Best 22601.9  42660.6 59555.6
m =10 Opt. 22601.9  42660.6 59555.6
gap % 0.0 0.0 0.0
time 191.5s 195.3s 152.3s
Average 21638.2  41420.3 59201.8
Best 21652.9  41427.2  59201.8
m =30 Opt. 21660.4 41440.4  59201.8
gap % 0.1 0.0 0.0
time 359.0s 359.3s 311.3s

6 Conclusion and Future Work

In this paper, a two-level model is presented for the multidimensional knap-
sack problem. The master problem has much smaller dimensions, which makes
it amenable to Bayesian optimisation. Three techniques are introduced to accel-
erate the search process of BO. Preliminary test results show the effectiveness of
the proposed approach. It strongly demonstrates that incorporating prior knowl-
edge and smoothing the optimisation landscape by the local search are crucial
for the success of BO for large MKP.

Future work includes the investigation of the proper kernels in BO for combi-
natorial optimisation problems, the automatic tuning of hyper-parameters, and
comparison with other meta-heuristics. It is also interesting to extend the models
to combinatorial optimisation problems with more complex structures.
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1 Introduction

Within the Crowd for the Environment (C4E) project, several emerging information technologies are
integrated in an innovative framework to discover and monitor illegal dumping sites. Such dumps typically
contain urban or agricultural waste and often flammable materials, then they could be open-burned because
spontaneous combustion or malicious intents. In any case, the open-burnings are source of cancerogenic and
toxic substances, causing many diseases in the neighbor population. Such hazardous dumping sites, once
detected by citizens or by some technologies, must be confirmed and characterized on the field by
environmental authorities. In particular, in the C4E project, the detection of the dumping sites comes from
spontaneous reports of citizens (that use a specific mobile app), social network crawlers (that process natural
language in order to extract synthetic reports) and periodic satellite image acquisitions (artificial intelligence
extracts areas potentially affected by illegal dumping). The characterization performed by the authorities, in
terms of volume and composition, is used to assess the health risk on the neighborhood in case of fire. The
risk analysis is needed for remediation, that can be planned when the characterization of a confirmed site is
sent to the local government. The C4E project proposes to perform a risk analysis also before a site is
confirmed, in order to establish a priority for the of-field inspections. In fact, the resources that can be
deployed on the territory (men, cars, drones) are expensive and limited then they should be used in an
optimized way in order to mitigate the risk of open-fires near populated zones. The number of sites can be
very large and also the vehicles used for the inspections can be numerous, as well as heterogeneous and even
starting from different depots. Moreover, usually the patrols have to respect some time constraints
(represented by the work shift, for example), considering both the travel time and the time needed to inspect
the site, hereafter referred as “time to collect its priority”. For the above reasons, the problem of finding the
vehicles routes, in such a way that a “priority index” referred as “the overall collected priority” is maximum,
is very hard to solve, unless the sites are very few. Currently, the tours are assigned by human operators
according to their own experience but this way forward takes much effort and often underperforms.
Consequently, it is strongly desired a fast and effective algorithm capable to find at least a quasi-optimal
solution. Indeed, being the problem belonging to the class of the NP-hard problems, it cannot be solved
exactly in reasonable time, already when the dimensionality (sites number) is moderate.

In this work an approximated method from Literature [1] is properly modified and evaluated. It has
shown good accuracies ensuring, at same time, acceptable computational load, i.e. compatible with
interactions with human operators. Common requirements for the solution error and for the computation
time are approximately not greater than 20% and half an hour, respectively.

2 Problem formulation

Our problem is to maximize the priority index over n geographical points within a time deadline T,
using not more than m available vehicles, starting from the same depot. It is worth to note that both the order
of visit and the subset of nodes to be visited must be found, being often impossible to visit all of them due to
the limited available resources. Since the cardinality of the problem is usually very high (hundreds of
thousands of places to be visited), a decomposition in strategic and tactical sub-problems comes to help. In
this work, only the strategic phase is considered: the waste places are initially grouped in geographical
zones, characterized by their own centroids identifying the nodes mentioned in this work. All the priorities,
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all the trip times and all the collection times of the original places are assumed cumulated in these nodes.
Moreover, each node can be visited by one vehicle only and only once. When the strategic step is concluded,
all the places within the selected zones must be visited (the Floyd-Warshall algorithm [2] could be used to
solve the tactical phase).

Hereafter we formulate the problem for homogeneous vehicles starting from a unique depot (0)
because the general case could be decomposed in problems like this. Then, let us define a complete graph
G=[N,A] where N={0,1,...,n} is the set of nodes (centroids) and A={a;} is the set of the arcs between the i-
th and j-th nodes (i,jeN-{0}). Furthermore, we assume that D={d;}={d;i} is the “time matrix” composed by
the trip times between i-th and j-th nodes, p; is the priority of the node i-th and b; is time required to collect p;
(po=ho=0). A tour is defined as feasible through a subset of G if starts and ends in the depot, if visits each
node not more than once and if ends within the given maximum time T. Hence we must find the feasible
tours (not more than m) such that the priority index — collected over all tours — is maximized.

3 Algorithm description

The described problem of combinatorial optimization is classified as NP-hard, therefore it is
unlikely that there is an optimal polynomial algorithm for problem instances with more than a dozen of
nodes. The selected approximated algorithm is known as MAXIMP ([1]), working deterministically and
independently for each tour. Basically it relies on the idea that, in order to maximize the collected priority,
each patrol has to spend more possible time, in compliance with the time constraint. This means that the aim
of the routine is to maximize the priority in the time unit. Actually, not all the time units will be used to
collect priorities but nevertheless this approach quickly provides “good” solutions for our application.

Two different types of weights are defined, both depending on the collected priority (pi+p;) in the
elementary loop tour composed by the depot, the i-th node, the j-th node, and the depot again. They are
defined as Wy=((pi+p;)/T)ty and Wa=((pi+p;)/ti) T, where t;=do+di+dio+bi+b; is the overall travel and
collection time. These weights make us know the best pairs of nodes in terms of the largest priority collected
in the time required to be visited (t;/T) and in terms of the time needed to be collected, respectively.
Consequently, Wy;; and Wy;; will tend to select the pairs farther from and closer to the depot. Moreover, each
pair of nodes has associated a convex combination of these weights defined as Wj(a)=aW;+(1-a)Wy; and
providing the definitive ranking of the graph pairs. In its definition, a[0,1] is a tradeoff parameter,
unfortunately providing optimal results for one geometry only. As a rule of thumb, 0<0.5 should be used for
n>20. A tour is built scrolling the array composed by the Wj values and looking for additional nodes
satisfying the time constraint.

In this work some modifications to [1] are carried out, obtaining a custom MAXIMP algorithm. If
the weights’ array does not remain fully empty (very probable for large n), a brute force algorithm is applied
on the remaining nodes. Furthermore, different o parameters are used to provide different solutions to
choose from, after selecting a statistics (Maximum, Standard Deviation, RMS, etc.) of the times of the used
patrols, to be minimized or maximized in order to find a unique solution (0, 0.25 and 0.5 are used instead of
0.1). As expected, these upgrades strongly improve the optimization accuracy but require additional
computation time, therefore they can be applied only for less than about 100 nodes.

4 Performance assessment

In this section, the standard and custom MAXIMP algorithms are compared in terms of solution
accuracy and computational load. The reported assessment involves, as reference, a brute force algorithm
(i.e. based on an exhaustive evaluation of all possible tours in order to find the optimal solution).

The Monte Carlo (MC) methodology is applied in order to try filtering the effects of different graph
geometries. The parameters scattered within a session are the time matrix (D), the priorities and the
collection times (p;, b; with i=1, ..., n) of the nodes. Instead, the number of nodes (n), the numbers of patrols
(m=3) and the deadline (T=10000) are constant over the 100 simulations performed for each session. For less
than 10 nodes, the brute force can be used as reference because capable to find the optimal solution in
reasonable time. For more nodes, only some random runs can be performed and, by this way, the custom
MAXIMP performances are generalized.



In Fig. 1 the performances of the standard and custom MAXIMP are reported for few nodes. Note
that the brute force takes about 15 min already for n=9, after that it cannot be used easily (Intel® Core™ i7-
8665U CPU @ 1.90-2.11GHz, 8GB RAM). Zero error means that the set of the visited nodes is optimal but
the order of visit and/or the patrol assignment could change with respect to the exact algorithm. Indeed, the
brute force is implemented to use less time as possible, while MAXIMP tends to use the whole time span
(actually, different sets of nodes may generate the same total priority but this case is very rare). Sometimes,
for particular graph geometries, the standard MAXIMP finds a zero overall priority because, in the sorted
array of weights, there is no tour compliant with the time constraint (the custom MAXIMP overcomes this
situation). In other words, the standard MAXIMP fails more than the modified one because of the unique o
value that cannot manage all the nodes configurations. As the number of nodes increases, the standard
MAXIMP is the only tool capable to provide a solution in acceptable time (Fig. 2). A simple way to take
advantage of the very good accuracy of the custom MAXIMP is to perform an appropriate initial clustering,
generating a limited number of nodes.

MC analysis results (100 sims, m=3, T=10000) MC analysis results (MAXIMP standard, 50 sims, m=3, T=10000)
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5 Conclusions

In the field of environmental monitoring, some vehicles have to visit many critical waste sites within
a specified deadline, trying to maximize the overall priority index. Currently human operators provide
themselves these paths but this is a challenging issue, being the tour optimizations in the NP-hard class
problem. Thus, it is strongly desired to dispose of an algorithm capable to provide good solutions in
reasonable times. In this work, a multi-tour time-constrained algorithm from Literature has been applied,
also with some modifications. The reported performance evaluation confirms that the MAXIMP algorithms
are highly promising to achieve the abovementioned objective, in terms of simplicity, limited computation
time (~12 min for 500 nodes, in its standard version), and fair accuracy (~10%) regardless of geometry and
matrix time. The standard version of MAXIMP is best suited for handling hundreds of nodes and if a high
accuracy is not required. On the other hand, custom MAXIMP can be applied when, for less nodes, a quasi-
optimal solution is desired in reasonable time, also achieving high accuracy (~2%). The use of the custom
MAXIMP is facilitated applying a low dense clustering of the initial waste places, in order to obtain a graph
with a moderate number of nodes.
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1 Introduction

Nowadays, in textile industry as in other industries facing the industry 4.0 revolution, the work is
changing. This study takes place in the original factory of a famous company created in 1893, a
textile industry located in Troyes (France). This factory is facing a market trend evolution and have
to adapt his production process. The company is very known for its high quality baby’s clothing.
They also develop adults garments collection. The product diversity increases while the total
volume decreases. This allows a permanent renewal of the products displayed. Furthermore, the
development of online-business requires more and more flexibility and reactivity. This distribution
channel is more important during COVID 19 crisis context as e-business have greatly increased.
The adaptation needed is reflected in the entire process of the clothing manufacturing industry
from the knitting of the fabric to the assembling stage. Figure 1 shows the three principals stages
in textile factory.

—— > 7
=/ ‘ N 2
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Knitling Dyeing and Assembling

fabric

Fig. 1. The three fabrication stages in textile industry

This study focuses on the first production stage: the knitting workshop. This workshop needs a
new organization in this context. In the past, all machines worked at the same time. Nowadays,
only some machines work simultaneously. A rotation between the machines takes place regularly.
This work is related to a previous one [2] which focused on a dynamic layout of such as workshop.
The main subject was about the creation of groups of machines. The objective was to balance
the workload between all the operators and to propose a new implementation method. A good
workshop layout was a prerequisite before optimizing the scheduling

An other study has been conducted previously on the scheduling problem of this workshop. A
method to solve the unrelated parallel machines scheduling problem with setup time and limited
resources has been implemented on the industrial partner workshop.

In order to go further on this subject, the study propose in this study focuses on the rescheduling
of the knitting workshop. The problem tackled is to propose a method to adapt the production
scheduling when disruption occurs with a limited impact on the workshop organization and the
performance of productivity.

The rest of the study is organized as follows. Section 2 gives a description of the industrial
problem. The third section gives a literature review on this kind of problem. Section 4 provides
contribution of this study. A conclusion and future research directions end up the study in section
5.
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2 Problem description

The main objective of this study is to improve the scheduling software implemented on the knitting
workshop by proposing a rescheduling module to adapt the production scheduling to any disruption
that can occur. This, in the main objective of helping the knitting workshop manager to make better
and quicker decisions in his daily work at any time.

The workshop is composed of M unrelated parallel machines. An example of a circular knitting
machine is given in the figure 2. The machines are grouped in W areas. The notation Z;,, is used

Fig. 2. Circular knitting machine

to define the assignment of machine i to the area w. Each operator is monitoring a machine area.
The number of machines able to run at the same time in the area w is denoted by U,,. This is
the guarantee of good quality fabrics. The operators are not able to manage more machines than
a specific number due to his qualification level. The objective is to schedule a known number of
N jobs on the machines in a time horizon of H discredited in different t slots. The machines are
considered as unrelated as the processing time p;; of product j on machine i of each job are not
related neither to the machine i or the product j. Their is no relation between processing time of an
identical product on two different machines. Furthermore, this study takes into account machines
and sequence dependent setup times s;;,. The data s;;;, is the necessary time to make the transition
when the job j preceding the job k£ on the machine i. The setup adjustments are made by members
of a crew. So, this study has to consider them as limited resource. The notation B; is the number of
this resource type available at the moment ¢. This study is also tackled with a machine restriction
constraint. Only the product j with a data e;; equal to 1 can be processed by the machine 7.

An initial production planning is provided by the scheduling algorithm already implemented in
the software. However, perfect production conditions are very unrealistic, disruption can occurs
and the initial planning is no longer up to date. The different disruptions that can occurs in this
problem are:

Arrival of a new job
Deleting a job

— Machine breakdown

— Lack of human resources

The rescheduling objective is to find the best possible planning to finish all the jobs as soon as

possible by keeping stability in the planning initially provided. This is why this study is focused
on the objective of maximizing performance (min ¢,q;) while maintaining stability.
To summarize this study investigate an unrelated parallel machine rescheduling problem with se-
quence and machine dependent setup times. Machine eligibility restrictions and two different types
of common server (operators and adjusters) are included. Four different disruptions can occurs.
The objective is to minimize the maximum completion time while maintaining stability between
the initial production scheduling and the rescheduling one.
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3 State of the art

In order to position the problem regarding to the literature, a review of the parallel machines
rescheduling problem has been done. Different rescheduling approaches are proposed in the litera-
ture.

The first one is to use a standard scheduling method with the new data after disruption. This
can rich high quality solution on the performance objective. However, stability on solution are not
guarantee ([4]). On real life production, getting a totally different schedule is very unfavourable to
a good workshop organization and management.

The second one is to use a proactive scheduling. This is generated by inserting idle time between
the pre-scheduling activities, enabling the disruptions to be smoothed out through the system in
order to maintain the schedule quality ([1]). Stochastic approaches is an other way to do it.

The last one is reactive scheduling, commonly referred to as rescheduling. It is a procedure to
modify the existing schedule during processing to adapt to changes in a production or operational
environment. Kim ([3]) recently studies a rescheduling problem of unrelated parallel machines with
job-dependent setup times under forecasted machine breakdown.

On a majority of studies, two conflicting objectives are taken into consideration: performance and
stability. Multiple indicators in the literature are proposed. However, each industry has its own
characteristics that involves specific indicators.

4 Contribution

The contribution of this study is to explore different performance evaluation of rescheduling solu-
tion in the specific case of textile industry production. The resolution method is based on a genetic
algorithm developed for this specific problem. The performance measure is the minimization of
completion time (¢pqz). The stability in rescheduling is more complex to evaluate. Different indi-
cators are explored and combination of them are analysed in order to propose the most pertinent
and efficient rescheduling planning to the company. These different indicators can be compare to
a limit parameter. If the limit is crossed so the objective function will be penalized. This allows a
tolerance and plays up on the performance objective.

5 Conclusion

The originality of the problem studied in this paper is the specific application to textile industry.
New evaluation method of stability in rescheduling problem will be tested in order to propose to
the industrial partner an efficient solution. This work will be based on the previous study with
this company on the unrelated parallel machines scheduling problem with setup time and limited
resources. The continuity of this study is to allow to the company to rescheduling the workshop
production every time an unpredictable disruption occurs. It is a very import prerequisite to have
an agile and reactive production. It is also a first step on the road to the 4.0 factory transformation.
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Abstract. In this paper, we consider the one-commodity travelling sales-
man problem. One vehicle has to visit n customers to deliver small con-
tainers of ready-mixed concrete or pick them up after they have been
used. Unexpected detours to recycling centres are considered, which
makes tours uncertain beforehand and involves dealing with stochastic
and dynamic tours.

‘We propose two approaches to tackle the problem. An estimation-based
local search that generates a priori optimized tours considering potential
detours that may occur, and an online approach which starts from an
initial a priori tour and adapts it to fit the unexpected detours dynami-
cally. We provide some experimental results that show the effectiveness
of our approaches, especially when detours are more likely to occur.

Keywords: Dynamic vehicle routing - stochastic vehicle routing - local
search - pickup & delivery problems...

1 Introduction

This work is carried out in collaboration with a company which specializes in
the sale of ready-mixed concrete.

Ready-mixed concrete is normally delivered in mizer trucks. This type of truck
is heavy, cumbersome, expensive, and can be disproportionate in some cases,
especially when delivering small quantities of concrete.

Therefore, the company wants to propose a new delivery method using small
containers (500 litre bins) to reduce delivery costs and deal more effectively with
orders of small quantities. This new method is a two-step process. A vehicle
delivers a number of bins of concrete to the customer, then, returns the next day
to pick them up after they have been emptied by the customer.

To ensure the profitability of this method, the company needs a decision support
system that can generate efficient pickup & delivery tours taking into account
the vehicle capacity constraint and recycling constraint. Thus, if a bin is
empty and clean when it is picked up from a customer, it could be directly
supplied to another customer. Otherwise, it must be immediately routed to a
recycling centre before it can be delivered again (unconsumed concrete is then
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recycled and the bin cleaned). Knowing that the state of a bin is uncertain before
the vehicle arrives at the customer’s location, the a priori planned vehicle route
may change during the time to include recycling centres whenever necessary.
This uncertainty involves dealing with stochastic vehicle routing.

This paper aims to provide efficient approaches to build pickup & delivery tours
minimizing the total travel distance by minimizing the loss of quality caused by
potential detours to recycling centres.

The paper is structured as follows. Section 2 provides a description of pickup
& delivery and stochastic/dynamic vehicle routing problems. Section 3 gives a
formulation for the problem tackled in this work. In section 4, we present our
first heuristic which is an estimation-based local search that provides a priori
optimized tours. Section 5 describes our dynamic online algorithm that provides
a priori optimized tours that can be dynamically adjusted to fit recycling centres
detours. Section 6 proposes some experimental results, and section 7 concludes
the paper.

2 Literature Review

We consider the One-Commodity pickup & delivery travelling salesman problem
in a dynamic context.

2.1 Pickup & Delivery Problems

There are three main classes of pickup & delivery problem in the literature :

One-to-One Problems One or more vehicles have to carry n commodities,
where each commodity has an origin and a destination. One of the best known
examples of this class is the Dial-a-ride problem which consists of transporting
people from an origin to a destination.

One-to-Many-to-One Problems Commodities are divided into ”delivery com-
modities” and ”pickup commodities”. One or more vehicles have to carry the
delivery commodities from the depot to the customers and the pickup com-
modities from the customers to the depot. Assuming that n, is a set of pickup
customers, and ng a set of delivery customers, two cases have been distinguished
for these problems : single demands, where n, Nng = @, and combined demands,
where n, Nng # 0. Several heuristics have been proposed for both single and
multi-vehicle cases [10, 5]...

Many-to-Many Problems One or more vehicles have to transport goods be-
tween customers knowing that each customer can be a source or a destination of
any type of good. Among the problems of this class, the One-Commodity pickup
and delivery travelling salesman problem was introduced in [8]. A single vehicle
with a known and finite capacity has to carry a single commodity between pickup

100



A stochastic and dynamic approach for the 1-PDTSP 3

customers and delivery customers. Picked up commodities can be supplied to de-
livery customers. This problem is known to be NP-Hard. Moreover, checking the
existence of a feasible solution is an NP-Complete problem [7]. Studies on such
problems are relatively scarce. A branch and cut algorithm has been proposed
in [8] for small instances, and two heuristics have been developed in [9] to tackle
larger instances.

For a detailed survey on pickup and delivery problems, we refer the reader to

[1].

2.2 Stochastic/Dynamic Vehicle Routing Problems

Vehicle routing problems can be classified according to the information quality
and evolution. Thus, an input information can be deterministic or stochastic,
and it can be known in advance or revealed during the tour.

A taxonomy of vehicle routing problems based on these two dimensions is pro-
posed by [12]. Four types of vehicle routing problems are then distinguished

Static and Deterministic Problems Input is known in advance and doesn’t
change over time. This is the most studied type of problem, but it gener-
ally doesn’t fit with real-world applications, where some information cannot be
known beforehand.

Static and Stochastic Problems Here, some information is a stochastic vari-
able which is revealed gradually during the execution of the tour. However, the
a priori planned routes cannot change during the execution of the tour except in
some special cases. For example, if the stochastic variable considered is the cus-
tomer’s request, or in other words, if customers may request a visit with a certain
probability, the a priori planned route may change only to skip customers that
do not require a visit. Several types of stochastic variables have been studied in
the literature : stochastic travel times [11], where travel times between customers
is a random variable, stochastic customers, where customers may request a visit
with a certain probability [3]...

Dynamic and Deterministic Problems Some information is totally un-
known beforehand and is revealed only during the execution of the tour. Vehicle
tours are then changed in real time, during the execution of the tour according
to new information.

Dynamic and Stochastic Problems This type of problem is a combination
of the latter two types described above. Some information is a stochastic variable
that can be used to build a priori tours taking into account possible future events,
and routes are adapted in real time according to information changes.

For more details on stochastic and dynamic vehicle routing problems, we refer
the reader to the surveys of [12] and [13].
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2.3 Stochastic/Dynamic Pickup & Delivery Problems

Most studies tackling pickup & delivery problems consider the static case in
which all information is known beforehand and does not change during the time.
However, some papers deal with the dynamic case where some information is only
revealed during the tour and the a priori tour is adapted progressively in real
time. A few of these works exploit stochastic information to anticipate future
events, [2] present some of these papers. However, to the best of our knowledge,
there is no work dealing with the one-commodity travelling salesman problem
in a stochastic case.

The problem considered in this paper can be classified as a stochastic one-
commodity travelling salesman problem. It is stochastic because we have proba-
bilistic information through historical data about potential future detours. It is a
one-commodity travelling salesman problem because a single vehicle has to carry
one commodity from a set of pickup customers to a set of delivery customers.

3 Problem Formulation

The pickup & delivery travelling salesman problem(1-PDTSP) can be defined
on a complete graph G = (V, E) as follows :

-V ={0,1,....,n} is a set of n + 1 nodes representing the n customers (n =
ng + ny, where ng is the number of delivery customers and n,, the number
of pickup customers). Node 0 represents the depot ;

— E={(i,4),4,j € V,i # j} is a set of edges representing connections between
customers ;

— C ={¢, (i,j) € E} represents the travel distance between customer ¢ and
customer j (¢; ; = ¢;j,;,Y(4,7) € E) ;

— D ={d;,i € V} is a set of customers’ demands (|d;| is the number of bins
to deliver to / pick up from a customer 4, d; < 0 for delivery customers and
> 0 for pickup customers ) ;

Given a vehicle with a known and finite maximum capacity @), and assuming
that :

— x;,; is a boolean variable such that z; ; = 1 if customer j is visited immedi-
ately after customer j, 0 otherwise ;
— @; the number of bins in the vehicle after his visit to the customer .

Our objective is to find a Hamiltonian cycle that minimizes the total travel
distance, i.e. :

n n
min Zmeci_j (1)

i=0 j=0
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Subject to :

dwig=1 Vie {D}UN (2)

JEN
Z‘Ti’j =1 Vj S {Dl} UN (3)

iEN
> iy =1 Vi e {Dy} UNy (4)

JENg
> vii=1 ¥j € {D2} UN, (5)

1€ENy
T p, =0 Vie {D;}UN (6)
Tp,s =0 ViG{Dl}UN (7)
Yij = 0 \V/Z,j S {Dl} U Np (8)
2 (¢ +d; —q;) =0 Vi,j € {D1}UN (9)
¢ <Q Vie{Di}UN (10)
¢ >0 Vie {D,}UN (11)
4D, = Qinit (12)

Constraints (2) and (3) ensure that each customer is visited exactly once, while
constraints (4) and (5) relate to vehicle capacity.

Picked up bins can be supplied to a delivery customer if necessary. However,
if a bin is not totally clean and empty when it is picked up from a customer,
it must be firstly routed to one of the R available recycling centres around
the customer’s location before it can be supplied again. We can consider the R
available recycling centres as a ”priority customer” that may require a visit after
each of the n,, pickup customers.

Thus, we define for each customer 7 :

— w; such that w; = 1 if a detour is required immediately after i, 0 otherwise
(note that the value of w; is unknown beforehand) ;

— p;, the probability to require a detour immediately after customer i, or, in
other words, the probability that w; = 1 (note that p; = 0 for all delivery
customers).

4 A priori Optimization Approach

To tackle the 1-PDTSP described above, we first propose an a priori optimization
approach which considers potential detours to recycling centres to build static
vehicle tours. The proposed algorithm is an estimation-based heuristic adapted
from the approach presented in [4] for the probabilistic travelling salesman prob-
lem.

This approach is based on a local search method which starts from an initial
feasible solution S, and tries to improve it by moving to S’, a feasible neigh-
bouring solution of S, such that f(S") < f(S). The process is repeated until no
improvement can be found.
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4.1 Neighbourhood Structure

We use the 1-shift algorithm introduced in [3] to generate the neighbourhood of
a given solution S. This method consists in changing the position of a customer
in a tour from 7 to j. Customers who are in positions i + 1,7+ 2, ..., j of the tour
are then shifted backwards (see Fig. 1).

4.2 Feasibility Checking

For each generated solution, we ensure that capacity constraints described in
section 3 are respected. A feasible solution is a tour in which the number of bins
loaded on the vehicle never exceeds the maximum capacity @ of the vehicle, and
is never negative. Assuming that ¢; is the number of bins in the vehicle after
visiting customer ¢, Fig.1 presents an example of a feasible and an infeasible
solution.

Given a feasible solution S and a 1-shift neighbouring solution S’ of S obtained

1-Shift neighbouring
solution

i=3 =5

A feasible solution S An unfeasible neighbouring solution of S

Fig. 1. 1-Shift algorithm

by shifting a customer from position i to 7. It can easily be shown that S’ is
feasible if and only if the partial tour from customer i to customer j is feasible.
Indeed, to check the feasibility of a neighbouring solution, we only check the
feasibility of the tour between position ¢ and position j.

4.3 Objective Function

In our case, the objective function f to minimize is the total travel distance of
the vehicle. However, since we cannot know in advance the travel distance of
an a priori solution S due to potential detours to recycling centres (see Fig. 2),
we use the following unbiased estimator of f(S) as a criterion to move from a
solution to another one :

R 1 M
fur(8) = 57 > f(S,w)
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This estimator was proposed by [4] for the probabilistic travelling salesman prob-
lem. The idea is to estimate the quality of an a priori solution S from a set of M
simulations of possible a posteriori solutions. An a posteriori solution is obtained
by associating a binary vector w with the a priori solution such that w[i] = 1 if
a detour to a recycling centre is required immediately after visiting a customer
i, 0 otherwise (see the vector w in Fig. 2).

Thus, given an a priori solution S (that does not include recycling detours) :

1. M possible a posteriori solutions (including potential detours) are generated
by associating M vectors w with the a priori solution S
2. For each generated a posteriori solution, f(S,w;), the travel distance of the
a posteriori solution given by w; is calculated. f(S,w;) = f(S) + TDL —
n n
Z Z WiZi,5C4.5, where :
i=1j=1
— f(S) is the travel distance of the a priori solution S (without detours) ;
— TDL is the Total Detour Length of the a posteriori solution (see the
example in Fig. 2).

. M
3. fu(S) =3 3 f(S,w,) is calculated and considered as an estimator of f(5).
r=1

A priori solution A posteriori solution

Q@

Realization

I:>

«  [1]0[0o[1]0]

f(S.w)=f(8)+(4+3+2+4) -(5+2)
=23+13-7=29

f(S)=3+5+2+7+2+4= 23

Fig. 2. A priori solution VS a posteriori solution

Note that w is generated according to the set P = {p;,i € V} of probabilities
of requiring detour after visiting customer i. Therefore, w[i] = 0 for all delivery
customers because detours may occur only when picking up bins.

4.4 Recycling Centre Choice

Since we consider R available recycling centres in our problem, each time a
detour to recycling centre is required, we must choose among the R possibilities
we have. Therefore, we calculate the travel distance caused by the detour to each
of the R available recycling centres to choose the one that minimizes the detour
length.
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5 Online Optimization Approach

The second proposed approach is a dynamic algorithm that starts from an initial
a priori optimized tour and adjusts it during the time whenever it is necessary
(before each detour).

Algorithm 1 Dynamic routing algorithm

1: InitialSolution < Generatelntial Solution()

2: // generate an initial optimized a priori solution including the n customers
3: S + LocalSearch(Initial Solution)

4: // during the tour, at each customer’s location...

5: for (i € S) do

6:  //if a detour is required...

7:  if (w; = 1) then

8: BestSubSolution < nil

9: // for each available recycling centre...

10: for R; € R do

11: // extract the sub-tour S; that has not been travelled yet (from i+ 1 to n)
12: S; < SubSolution(i + 1,n)

13: // add R; at the beginning of S;

14: Add(S;, Ry)

15: // start a local search with S; as an nitial solution

16: S; < LocalSearch(Sj)

17: if BestSubSolution = nil OR f(S;) < f(BestSubSolution) then
18: BestSubSolution < S;

19: end if
20: end for
21: // replace the sub-tour i + 1...n by BestSubSolution
22: Replace(SubSolution(i + 1,n), BestSubSolution)
23:  end if
24: end for

As it is described in Algorithm 1, we start by generating an initial a pri-
ori optimized tour using the local search described in section 4. Then, at each
customer’s location, we check if a detour is needed. If so, the algorithm has to
choose one recycling centre among the R available. To this end, a local search is
performed to find an efficient sub-tour including all customers that do not have
been visited yet with each of the available recycling centres. The best sub-tour
obtained by the R local searches is chosen to replace the current sub-tour. An
example is illustrated in Fig. 3.

6 Computational Results

The two approaches described above were implemented in Java, and executed
on AMD A10-7700K Radeon R7, 3.40 GHz With 8 GB RAM.

106



A stochastic and dynamic approach for the 1-PDTSP 9

Computed beforehand Computed during the tour

)

The vehicle arrives at customer 1 The vehicle arrives at customer 3
@ >@ location : detour is not required location : detour is required

A priori optimized solution

R2 has been chosen The vehicle has to choose between
2 recycling centres (R1 et R2)

Fig. 3. Dynamic routing example

We tested the performance of our algorithms on the Euclidian PDTSP instances
generated by [6]. The number of customers in these instances varies between
25 and 200. The first four customers of each instance have been chosen to be
the recycling centres, the remaining nodes are assumed to be the customers.
For each customer i, we determined whether a recycling detour is required af-
ter visiting 7 or not (we determined an ”effective scenario” for each instance).
The boolean variables were generated according to a fixed probability P. We
generated scenarios for P € {0.1,0.3,0.5,0.7,0.9}. Then, our algorithms were
evaluated according to the fixed scenarios.

Furthermore, the first approach (a priori optimization) was tested with different
values for the parameter M, the number of simulated a posteriori solutions (see
section 4.3). Note that for M = 0, the algorithm doesn’t simulate a posteriori
solutions. It is then equivalent to a classic local search which ignores stochastic
information.

Table 1 shows the average solution cost obtained by the a priori optimization
approach for the instances described above (we fixed the neighbourhood size to
200).

First, we observe that, for each class of instances, solution costs increase as
the parameter p increases. This is due to the fact that a higher probability p
involves a greater risk of requiring detours and thus, a greater risk of increasing
the solution cost. However, we can see that this increase is smaller as the number
of a posteriori solutions generated (M) is greater.

Fig. 4 shows the percentage of travel distance due to detours when p = {0.1,0.3,0.5,0.7,0.9},
and for M = {0, 25,50,100}. The results show the effectiveness of our approach
in minimizing the detours’ impact on the solution cost, especially when p > 0, 5.
Indeed, the objective of our estimation-based local search is to anticipate pos-
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Table 1. A priori optimization solutions for the Euclidian PDTSP instances

Number of sample solutions M

Probability Number of customers 0 25 50 100
p=0.1 25 544,26 555.9 551,5 565,4
50 843,33 895 893.1 860.6
75 1121,1 1119 1138,66 1111,5
100 1414,56 1432,5 1494 1457,5
150 2007,07 2017 2013 1993,3
200 2603,73 2601.1 2496 2489,16
p=20.3 25 618,5 596 574,26 577,3
50 1020,03 1018,2 1051,3 1001,1
75 1446.,9 1474,4 1398,12 1392,8
100 1874,26 1862,2 1813.7 1841,1
150 2673,83 2641,14 2594 2569,4
200 3592,26 3617,14 3504,2 3495,6
p=20.5 25 706,66 688,3 681.13 680,6
50 1281,33 1210,15 1187 1161,7
75 1848,86 1817,21 1832,2 1804,4
100 2233,96 2214,1 2157 2149,4
150 3416,86 3411,14 3378,9 3386.6
200 4445,53 4431,37 4376,1 4348,4
p=0.7 25 782,06 771 734,3 746,2
50 1480,83 1535,2 1457,5 1447,3
75 2172 2267,3 2169 2125,2
100 2666,5 2517,3 2500,1 2491,7
150 4047,16 4006,7 4011,6 3992,8
200 5490,2 5397,3 5325,8 5332,3
p=20.9 25 867,8 804,4 786,4 799,1
50 1682,06 1633,9 1526,1 1589,1
75 2472 2480,4 2366,5 2306,2
100 3108,8 3116,5 2915,2 2903
150 4741,8 4886,3 4605,36 4552,52
200 6457,8 6384,8 6376,6 6301,1

sible detours and take them into account when generating a priori solutions.
Therefore, the more detours may occur during a tour, the more interesting our
approach is. In other words, and as we can observe in Table 1, our estimation-
based heuristic always obtains the best solutions in comparison with the classic
local search (the one with M = 0) when p > 0, 1. Moreover, the results are gen-
erally better when M = 100. Thus, more a posteriori simulations gives generally
a more accurate evaluation of an a priori solution.

Table 2 shows a comparison between the a priori approach and the online ap-
proach (for the first approach, we fixed M = 100 since Table 1 shows better
results for M = 100).

The online optimization heuristic (OOH) clearly outperforms the a priori op-
timization heuristic (APOH), regardless of the detour probability considered.
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70
50
50
0
30

20

M=0 M =25 M =50 M = 100

—=#=ep=01 —W—p=03 =4 =p=05 =—ll=p=07 =E= p=02

Fig. 4. Detour travel distance / Total travel distance (%)

Thus, among all the instances tested, the OOH obtained better results than
APOH in 80% of the cases, and in 100% of the cases for large instances (n > 75).
This is due to the flexibility of this approach which actually changes the tour to
include the recycling centres, contrary to APOH which only tries to anticipate
future detours and minimize their impact.

7 Conclusions

We presented in this paper two approaches to tackle a stochastic one-commodity
pickup & delivery travelling salesman problem. The first approach is an a pri-
ori optimization heuristic. It is an estimation-based local search which exploits
probabilistic information about possible detours that may occur during a tour
to build static vehicle tours that minimize the total travel distance by minimiz-
ing the impact of these unexpected detours. The second approach is an online
optimization heuristic which starts with an initial a priori tour and updates it
dynamically during the tour, whenever it is necessary, to minimize the total
travel distance.

We tested our algorithms on the Euclidian PDTSP instances proposed in [6]. We
adapted the instances to fit our constraints and collected the results considering
different parameter values. The experiments show the effectiveness of our ap-
proaches in minimizing the loss of quality due to unexpected detours, especially
when detours are more likely to occur.

Future works will be devoted to the development of other approaches exploit-
ing other types of metaheuristics, and including other constraints such as time
windows, multiple vehicles...
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Table 2. A priori optimization VS Online optimization

Probability Number of customers A priori optimization Online optimization

p=01 25 565,4 533,16
50 860,6 803
75 1111,5 1043,6
100 14575 1218.36
150 1993,3 1613,86
200 2489,16 2091,16
p=03 25 577,3 619,6
50 1001,1 1051,5
75 1392,8 1310,16
100 1841,1 1686,46
150 2569,4 2381,63
200 3495.6 3004,4
p=05 25 680,6 699,43
50 1161,7 1245,4
75 1804,4 1678,7
100 21494 2146
150 3386.6 3017,73
200 4348 4 4050,2
p=0.7 25 746,2 766,83
50 1447,3 1414,93
75 2125,2 2038,33
100 2491,7 2486,8
150 3992,8 3709,5
200 5332,3 5013,5
p=0.9 25 799,1 864,16
50 1589,1 1578,4
75 2306,2 2287,23
100 2903 2887,73
150 4552,52 4472,4
200 6301,1 6015,7
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Abstract. An increased use of renewable energy could significantly re-
duce greenhouse gas emissions but is difficult to realize since most renew-
able energy sources underlie volatile availability. Making use of storage
devices and scheduling consumers to times when energy is available al-
lows to increase the amount of renewable energy that can be used. For
this purpose, adequate models for forecasting the energy generated and
consumed as well as for the behavior of storage devices are essential.
Many data-based modeling approaches are computationally costly and
therefore difficult to apply in real-world systems. Hence we present a
computationally efficient modeling approach using a least-squares regres-
sion. Besides, we propose to use a hybrid model approach and evaluate
it on real-world data at the examples of modeling the state of charge of
a battery storage and the temperature inside a milk cooling tank. The
experiments indicate that the hybrid approach leads to better forecast-
ing results, especially for modeling more complicated behavior. Also, it is
investigated if the behavior of the models is qualitatively realistic and we
find that the battery model fulfills this requirement and is thus suitable
for the application in a smart energy management system. Even though
forecasts for the hybrid milk cooling model have even lower error values
than the ones for the battery storage, further steps need to be taken to
avoid undesired effects when using this model in such a sophisticated
system.

Keywords: Data-based modeling - Least-squares regression - Hybrid
models - Multiple models

1 Introduction

Even though its greenhouse gas emissions are decreasing, the energy supply
sector is still the sector causing most of these environmentally hazardous emis-
sions [1]. Increased use of renewable energy sources could reduce those emissions
and thus allow climate change to decelerate. However, most of these sources
have volatile availability. On the one hand, there are times where the demand

* This research is based on a project funded by the Federal Ministry for Economic
Affairs and Energy of Germany (project title SmartFarm, project number 0325927).
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is higher than the availability, on the other hand, if the demand is low at times
of high availability, the grid stability might be in danger. To still allow increas-
ing the use of renewable energy sources, the installation of storage devices can
help to absorb this undesired behavior. In this context, storage devices are not
limited to electrical storages but could also include devices that can be used as
thermal storage such as cooling systems or heat pumps. Locally installed smart
energy management systems can now allow using such storage devices in an op-
timal way. For this purpose, models that forecast the local energy generation
and consumption as well as the behavior of storage devices are essential.

Modeling approaches are usually classified into two groups: Physics-based
and data-based modeling [2, 3]. The first aims at finding a model by analyzing
the underlying physical laws and requires a deep understanding of the depen-
dencies in the system while the latter determines a model by data for input and
output values that is recorded during a training horizon and highly depends on
the quality of this data. Their biggest advantage is that they are transferable
to many different devices. For data-based approaches, it is often distinguished
between models based on statistical methods and techniques using artificial intel-
ligence (AI) [4]. AI techniques include fuzzy regression models, artificial neural
networks and support vector machines while examples for statistical methods
are (linear) regression models and autoregressive and moving average models.
All these techniques are often used to model energy generation, consumption or
storage behavior. In [5] and [6], for instance, forecasts for the energy generation
are made by applying regression methods and a neural network, respectively.
In [7-9], models for batteries’ states of charge are determined with a neural net-
work together with a Kalman filter, using a neuro-fuzzy inference system and a
resistor-capacitor model.

In this work, we extend the data-based technique used in [10-12] such that
the model can forecast complex behavior better. To achieve that, a data-based
method based on a least-squares regression is combined with a hybrid model
approach as introduced in [13] allowing multiple models for one device, each
identified on and valid for a subset of the data. This paper investigates the
application of these approaches on real-world data and evaluates if hybrid models
are likely to be more plausible, i.e. to show more realistic qualitative model
behavior.

In Section 2 the modeling approach is presented and the extension to hy-
brid models is explained. The subsequent section deals with numerical results
of applying this modeling approach to real-world data using the examples of a
battery storage and the temperature inside a milk cooling tank. In Section 4 this
work is closed with a conclusion and possible future work is outlined.

2 Data-based Modeling Approach

One approach to data-based modeling is to fit the data by applying a least-
squares regression. This method has two advantages over other data-based tech-
niques. First, it allows fast computation of models even for large data sets which
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is very convenient in case calculations need to be done on locally installed hard-
ware with little computational power. Second, the method can be extended to
include an even more efficient adaptation of the models to new data without
recalculating the model on the entire data set, but only on the newly acquired
data. This method will only be sketched here since it is frequently applied e.g.
in [14] where it is also explained in more detail. In [11] and [10], this method is
applied to a similar problem where it is extended to determining probabilistic
forecasts and analyzing the capability of adapting to new data as well as im-
proving forecasts by taking very recent data into account. In contrast to that,
the focus in this paper is on a hybrid model approach that is explained in this
section.

2.1 Data-based Modeling with Least-squares Regression

When identifying data-based models using a least-squares regression, we want
to find a model f : IR™ — IR that best fits to a given data set with output data

yi € R, i € {1,...,n}, measured at n different points in time, and input data
z; € R™, i € {1,...,n} measured at the same time points from m different
inputs z!,...,2™.

According to Taylor’s Theorem, such a function f can be approximated
around a point zop € IR™ by its derivatives at that point if it is sufficiently
smooth. Since the function is not given, the derivatives which determine the
coefficients of the polynomial are not available. Nevertheless, assuming a nor-
mally distributed error, the coefficients can be determined as minimizers of the
mean-square deviation between the model f(z;) and the measured output y; at
all times. This problem can be reformulated as a linear least-squares problem
which can be solved by QR-decomposition very efficiently even for large data
sets [15].

2.2 Introducing Hybrid Models

In [10], it is found that high polynomial degrees often result in an overfitted
model, i.e. one that fits very well to the training data but does not generalize
well. It is also mentioned that if the model might be extrapolated to a bigger
data range, a polynomial degree of one is best to use. However, a low polynomial
degree does often not allow to model complex behavior. Using hybrid models is
a possible approach to reduce the chance of overfitting but still allow modeling
complex dependencies. For more details on this, we refer to [13].

Since the behavior of the device to be modeled might be very different in
different phases, i.e. in k € IN different subsets of the data set, we want to
identify s different models on the respective subsets, each valid only for these
data subsets. If we denote the k disjoint data subsets as Xi,..., Xy, then we
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can write our model as

fl(l‘z) if xT; € Xkl
f(xz) _ fg(l‘z) if l‘i' c Xk2

fn(xz) if x; € ch,‘--

There exist many different approaches for choosing these subsets (see [13])
and it can be expected that the modeling results are sensitive to the data par-
titioning strategy, although the investigation of the effects is not part of this
paper. Our choice in the following is to divide the data into subsets depending
on the value of one integer input x having x different values. This input can be
measured data, obtained by a classification algorithm or be generated by hand.
When calculating a forecast for time 4, it is determined to which subset X} the
point x; belongs and the corresponding function f; is chosen for calculating the
forecasted model value at time ¢, that means f(x;) = fx(z;) if z; € Xk.

3 Experimental Results Comparing Non-hybrid and
Hybrid Models on Real-world Data

3.1 Setup and Data

The modeling approaches are now evaluated on real-world data at the example
of the state of charge of a battery storage and the temperature of a milk cooling
tank. The data was recorded by a measurement system comprised of one- and
three-phase smart meters, current terminals and 1-wire temperature sensors on
two demonstration sites in Lower Saxony, Germany within the scope of a research
project aiming at developing an energy management system that controls storage
devices and shiftable consumers such that the use of self-produced energy is
maximized.

At both demonstration sites, a photovoltaic plant produces energy that can
either be locally used or exported to the grid. One of the sites is a four-person
household in which a lithium-ion battery storage with a capacity of 106 Ah, a
usable energy of 5.0kW h and a one-phase inverter with a maximum apparent
power flow of 6 kV A is installed. Internal values from the inverter can be accessed
via a modbus interface and are also used. On the other site, a milk farm, a milk
cooling tank with an energy consumption of up to 13kW is installed which can
be used as thermal storage by cooling the milk to a lower temperature within
constraints that guarantee no quality loss.

The data used for the battery storage was recorded on 37 days in April and
May 2017 and interpolated to 30 minutes with a moving average filter to reduce
noise in the measurements. The first 20 days of data are used for training a
model while all other data is used for validating that model. For modeling the
milk cooling tank temperature, active power and temperature data measured
between February 18, 2018 and April 10, 2018 is used and interpolated to five
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minutes again using a moving average filter. Here, further preprocessing was
required since up to eight values per day (i.e. from 1440 values) exceeded all
other values by several orders of magnitude. They were replaced by the value
measured before that value since the data does often not change within a minute.
The 52 days of data are again divided into a training period and a validation
period where the first comprises the first 20 days of that set.

Within that setup, we now want to determine non-hybrid and hybrid models
for the state of charge of the battery and the temperature inside the milk cooling
tank. Both values show a dynamic behavior and depend on the state of charge
or the temperature that was measured before as well as the active power which
is available as a forecast in the energy management system. In the experiments,
the actual measurements of the active power will be used since the quality of the
power forecasts could influence the results. Also, the state of charge or temper-
ature measured one time step before will be used as an input to the model. In
addition to that, setpoints for the milk cooling tank would be determined in an
energy management system indicating whether the cooling is on or off. These
were reconstructed from the power data and are also used in the experiments.

Within the energy management system in which the models presented here
will be applied, forecasts for 24 hours are required. Since the models use the state
of charge or temperature measured one step earlier which is not available at time
points in the future, we evaluate the models iteratively to simulate the models’
predictions within that energy management system. This means for a forecast
starting at time ¢y that is one step into the future, we use the state of charge or
temperature measured one step ago which is available. For the next time step
t1 we do not have a measurement at the time tg to use, but instead calculate
the output value at time ¢; using the forecasted value at time to. This value is
then used as an input to forecasting the output at time to. This procedure is
continued until the end of the forecast horizon, e.g. until values for 24 hours into
the future are calculated.

Naturally, those forecasts will be more accurate during the beginning of the
forecast horizon since small deviations from the data within the first hours can
propagate and lead to huge differences in the last hours. Thus, the energy man-
agement system requests forecasts minutely and recalculates the optimal oper-
ation schedule to reduce this effect. However, in the following evaluations, we
will consider forecasts for 24 hours since these are of interest to the energy man-
agement system. To allow clear depictions, we will simulate that forecasts are
requested only at midnight.

To evaluate the quality of a model, the deviation between the forecast by
a model and the actual measurements is considered during the training and
the validation period separately. To measure this deviation, we calculate the
normalized root-mean-square deviation (NnRSMD) which is the root-mean-square
deviation (RSMD) (often also referred to as root-mean-square error (RSME))
normalized to the biggest value ymax measured for the output y, i.e.

ARSMD — — \/Z?ﬂ (vi — f(ffz‘))z.

ym ax n
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3.2 Comparing Non-Hybrid and Hybrid Models on Real-world
Data

Forecasting the State of Charge of a Battery Storage To identify the
parameters of not only a non-hybrid, but also a hybrid model, the data for the
battery storage device as mentioned above needs to be divided into subsets that
show similar behavior. For this division, we add an input 2™*! to the data that
indicates whether the battery storage is charged or not, i.e. kK = 2 and

m+1 _
X, =

1 if the battery storage is charged at time ¢
0 otherwise.

Based on this data, one non-hybrid and one hybrid model for the state of
charge of a battery storage device are determined and forecasts are calculated. An
excerpt of the results is depicted in Figure 1 and shows five days at the beginning
of the validation period. It can be observed that on some days the forecast
calculated using the hybrid model (green) is closer to the measured data (purple)
than the one with the non-hybrid model (blue) and on other days they are very
similar. For both models, the forecasts do usually not reach the maximum state
of charge of 90 %. This behavior can similarly be observed on the other days of
the validation period indicating that the model predicts the charging process to
be slower than in the measurements. The discharging, however, can be predicted
better. In total, forecasts from both models are close to the measurements while
the hybrid model seems to yield better predictions than the non-hybrid one.

100

Measurements
» Non-hybrid model
Hybrid model

80

60 -

40 |

State of charge (%)

20ty

0 1 i 1 i i i i 1 i
May 12 May 12 May 13 May 13 May 14 May 14 May 15 May 15 May 16 May 16 May 17
00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

Time

Fig. 1. Model for the state of charge of a battery storage during five days from the
validation data. Measurements are depicted in purple, the results of the iteratively
computed forecast by the non-hybrid model in blue and the ones obtained by the
hybrid model in green.

This can also be observed in the error values of both models. The nRSMD for
the non-hybrid model is 8.6 % during the training period and 6.9 % during the
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validation period. This indicates that the model is not overfitted to the training
data but generalizes well. The error values for the hybrid model are 8.0 % on the
training data and 6.0 % on the validation data indicating that the hybrid model
has the potential to improve forecasts even for devices in which a non-hybrid
approach already leads to good models. Regarding the fact that the iterative
forecast calculation is determined for a horizon of 24 hours, the error values here
are comparable to the results of other works, e.g. [9] in which the state of charge
of batteries is forecasted with an error of less than 5 %.

Forecasting the Temperature Inside a Milk Cooling Tank To forecast
the temperature in the milk cooling tank, it is interesting to know the general
behavior of the temperature. In the measurements, it can be observed that there
is a pattern that repeats with a periodicity of two days. In Figure 2, the mea-
surements, depicted in purple, are often constantly at about 5°C which is the
temperature at which the milk is stored. In the power data, it can be seen that
the isolation of the tank allows it to keep that temperature constant without
cooling after it is reached. Twice a day, pre-cooled milk is added to the tank
raising the temperature to about 8 °C depending on the amount of milk in the
tank. Every other day the tank is emptied and cleaned with warm water re-
sulting in temperatures of up to 53 °C. After that, no cooling is activated and
the tank is left open until the next milking. The first milking after the cleaning
procedure occurs while the tank still has a temperature of about 15 °C.

From this knowledge an additional input ™! is added to the data set
indicating whether it is cleaned, milk is added or none of these, i.e. kK = 3 and

1 if milk is added to the tank at time ¢

xr_n—}—l _ -1

i if the milk tank is cleaned at time i

0 otherwise

while the cleaning process is considered to start once the tank is cleaned with hot
water and ends when the subsequent milking starts. An addition of milk occurs
when a rise in temperature can be observed even though the power indicates
that the cooling is active.

Based on this indicator vector for the hybrid model, again a non-hybrid and
a hybrid model for the temperature inside the milk cooling tank are determined
based on temperature data from one time step earlier, active power data and
reconstructed setpoints. These results are depicted in Figure 2 which shows four
days from the validation period. First, it can be observed that the non-hybrid
model (blue) is neither close to the measurements (purple) nor able to predict
the behavior. It shows a periodicity of two days but the predicted temperature
decreases when the one in the measurement increases and vice versa.

In contrast, the hybrid model is much closer to the measurements. During
the cleaning process, i.e. when temperatures are above 10 °C, it fails to forecast
the decrease in the data but instead predicts a constant temperature of about
25°C. This could be since the model calculated during cleaning times is — as
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Fig. 2. Model for the temperature inside a milk cooling tank during five days of the
validation data. Measurements are depicted in purple, the results of the iteratively
computed forecast by the non-hybrid model in blue and the ones obtained by the
hybrid model in green.

all models — linear in its inputs and can thus not model the decrease in the
data but chooses an average temperature. At all other times it can be observed
that the forecast qualitatively behaves as the measurement: At times where
the measurement is constant, the hybrid model forecasts constant behavior at
the correct temperature and at times where the temperature is changing, this
change is also visible in the forecasts even though the temperature is often lower
than the measurements and decreases to a constant value later than the actual
measurement does.

The hybrid model outperforms the non-hybrid one also when regarding the
error values. The error (nRSMD) of the non-hybrid model during the training
period is 10.6 % which does not seem to be very high. However, during the
validation period, the error is 16.0 % which is much higher and indicates that
this model does not generalize well. The error values of the hybrid model are
much lower, being 4.9% on the training data and 6.4 % on the validation data.
In [12], the error for the temperature of a milk cooling model is calculated with
an error of 11 % indicating that the hybrid model is not only an improvement
over the non-hybrid model but also better than what other approaches have
achieved.

3.3 Checking the Models’ Plausibility

After finding that the non-hybrid and hybrid models are mostly close to the
actual measurements, it is of interest if they could be used in a smart energy
management system. That requires that the models behave logically correct even
if the storage device is operated differently than in the measurements, e.g. the
battery storage could be charged or discharged at different times than in the
measurement. In case of the milk cooling, a smart system could decide to cool it
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to a slightly lower temperature at times of an energy surplus, such that during
the next milking less energy needs to be used for cooling. To check whether the
models identified above could be used in such a context, we now simulate their
qualitative behavior on artificial data.

For the battery storage, it is checked how the non-hybrid and hybrid model
forecast the state of charge during one day for given power values. For that, the
power is set to 0 W during the first quarter of the forecast horizon, then charging
at constant 200 W is simulated during the second quarter, followed by a quarter
where the active power is —200 W which means that the battery is discharged.
In the last quarter of the forecast horizon, the power is again set to 0 W. This
power curve (black) is depicted in Figure 3 together with the forecasts generated
by the non-hybrid (blue) and hybrid (green) model. Discharging and charging
can be observed in the forecasts as expected. Furthermore, when the simulated
active power is 0 W the state of charge also decreases, but slower than at a
power of —200 W. This passive discharging, i.e. the process of slowly decreasing
the state of charge even though no energy is actively used, matches the actual
behavior of all battery storages. The hybrid model forecasts a slightly slower
passive discharging than the non-hybrid one. The biggest difference between
the non-hybrid and the hybrid model can be observed during the charging in
the second quarter where both models show an increase in the state of charge
which is realistic. However, the hybrid model reaches much higher states of
charge, but since the constant charging with 200 W for a longer time cannot be
found in the measurements, it cannot be assessed which of the models is more
realistic. Nevertheless, the fact that the hybrid model forecasts higher states of
charge after a charging period could explain why in Figure 1 forecasts by the
hybrid model were closer to the measurements than the ones by the non-hybrid
model. In summary, both models show realistic behavior here and could thus
be applied in an energy management system where they would be suitable to
forecast behavior that has not occurred in the data.

For the temperature inside a milk cooling tank, we simulate an additional
cooling period at noon after the temperature has been constant for several hours
to check if the models would predict a decrease in the temperature and stay
at that lower temperature once the cooling is turned off. For simulating the
additional cooling process, we set the active power to 11850 W, the average
power measured during all cooling processes, and adjust the setpoints to indicate
cooling. The non-hybrid model predicts a decrease in temperature, but is, as in
Figure 2, not able to predict the constant temperature. For the hybrid model, the
simulated additional cooling leads to a rise in temperature once the cooling starts
and the temperature falls to the constant temperature of 5°C once the process
stops. Thus both models are not able to predict an additional cooling process
qualitatively correct and also other choices of the additional input z™*! do not
lead to better qualitative behavior. This might be since the training data does
not include temperatures below 5°C. Another explanation is that the models
learn that the temperature rises once the cooling starts since at the beginning
of each cooling warm milk is added. Adding data from a flow sensor as an input
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Fig. 3. Model for the state of charge of a battery storage evaluated on data simulating
an active power profile as depicted by the black line. The forecast by the non-hybrid
model is depicted in blue and the one obtained by the hybrid model in green.

could thus be interesting. Also, other data, such as the amount of milk inside the
tank might improve the models. Furthermore, it would be interesting to choose
the subsets for the hybrid model in a more sophisticated way, e.g. by a clustering
approach, or to generate data containing additional cooling periods.

4 Conclusion

In this work it is evaluated to which extent computationally efficient data-based
models can be applied to forecast the behavior of storage devices. The modeling
approach uses a least-squares regression and is extended to hybrid models, where
each submodel is trained on a subset of the data. The division into subsets is
based on integer-valued indicator vectors that are added to the data manually.
These two approaches are evaluated at the examples of the state of charge of
a battery storage and the temperature inside a milk cooling tank. For both
devices, two different models, a non-hybrid and a hybrid one, are calculated
and compared to the actual measurements. It is found that the hybrid model
is closer to the measurements in both cases. For the battery storage device,
the error values of the models are not too far apart, but for the milk cooling
tank, the non-hybrid model fails to forecast the temperature inside the tank
while the hybrid model’s prediction is close to the measurements. Additionally,
it is investigated whether the models show plausible behavior which would be
essential for their application in an energy management system. It is found that
both battery models show realistic behavior while the hybrid model predicts a
higher state of charge after a period of charging. In contrast, the models for the
milk cooling tank both do not show plausible behavior. This can be explained
by the fact that the data might lack information such as the flow of milk into
the tank that influences the temperature heavily or the fact that the model is
extended to data not contained in the training data.
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To tackle this, adding further data would be interesting as well as a repetition
of the experiments once data is available where the milk cooling tank is controlled
and thus includes behavior that could not be predicted in the experiments in this
paper. Additionally, it would be very interesting to evaluate if other divisions
of the data into subsets lead to better results, e.g., if the data is divided into
subsets by a clustering approach.

In summary, we show on real-world data that a hybrid data-based modeling
approach can indeed improve forecasts calculated by models identified using
least-squares regression. However, even though the hybrid models are much closer
to the actual measurements, when applying them in a smart energy management
system it must be carefully checked if their qualitative behavior is plausible.
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Abstract. The 3 stage reducer problem is a point of interest for many researchers. In this
paper, this problem is reformulated to a bi-objective problem with additional constraints to
meet the ISO mechanical standards. Those additional constraints increase the complexity of
the problem, such that, NSGAII performance is not sufficient. To overcome this, we propose
to use BnB-NSGAII [10] method - a hybrid multi-criteria branch and bound with NSGAII
- to initialize NSGAII before solving the problem, seeking for a better initial population. A
new feature is also proposed to enhance BnB-NSGAII method, called the legacy feature. The
legacy feature permits the inheritance of the elite individuals between - branch and bound -
parent and children nodes. NSGAII and BnB-NSGAII with and without the legacy feature
are tested on the 3 stage reducer problem. Results demonstrate the competitive performance
of BnB-NSGALII with the legacy feature.

Keywords: NSGAII - multi-objective + MINLP - branch-and-bound - 3-stage reducer.

1 Introduction

In [3], the design of the 3 Stage Reducer (3SR) optimization problem has been introduced to
illustrate the optimal design framework of the power transmission mechanism. This problem has
been a point of interest for many researchers in different domains. Engineering researchers enhance
the problem for mechanical engineering applications. In [4], the problem is extended to a mixed
variables optimization problem. And recently a similar problem is stated in [5] to illustrate the
optimization of the volume and layout design of 3SR. Due to the problem complexity, optimization
researchers are interested to test optimization methods on it. In [14], the authors use the 3SR
problem to examine the performance of the constraint propagation method.

In this paper, the 3SR problem is reformulated to a bi-objective problem with additional con-
straints to meet the ISO mechanical standards. Those additional constraints increase the complexity
of the problem, such that, the well-known Non-Dominated Sorting Genetic Algorithm 2 (NSGAII)
[1] performance is not sufficient.

In [10], the authors enhance the performance of NSGAII by hybridizing it with the multi-
criteria branch and bound method [12], the proposed method is called BnB-NSGAII. In this paper,
we propose to use the BnB-NSGAII method to initialize NSGAII before solving the 3SR problem,
seeking a better initial population. The initial population seeding phase is the first phase of any

* Supported by organization ERDF, Grand Est and Lebanese University
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genetic algorithm application. It generates a set of solutions randomly or by heuristic initialization
as input for the algorithm. Although the initial population seeding phase is executed only once, it
has an important role to improve the genetic algorithm performance [2].

Furthermore, we propose a new feature to enhance the BnB-NSGAII method, called the legacy
feature. The legacy feature permits the inheritance of elite genes between branch-and-bound nodes.

The rest is organized as follows. Section 2 presents the 3SR problem and its complexity. The
proposed BnB-NSGAII legacy feature is explained in section 3. The computational results are
reported in section 4. Finally, an overall conclusion is drawn in section 5.

2 3 Stage Reducer Problem

The design problem consists in finding dimensions of main components (pinions, wheels and shafts)
of the 3 stage reducer (figure 1) to minimize the following bi-objective problem :

1. The volume of all the components of the reducer :

s=3 s=3 2
m
fl(w) =T (Z lasra,sz + Z |:b92ns(Z9271 + Z?,Q):|> (1)
s=0 s=1

2. The gap between the required reduction ratio @ and the ratio of the reducer (tolerance):

U — ,u>1 (2)

fao(z) =

The problem is designed assuming the following are known:

— The power to be transmitted, P, and the speed rotation of input shaft N..

— The total speed rotation reduction ratio u, the position of the output shaft from the input shaft
position (figure 2).

— The dimension of the casing box.

Fig. 1. Front and back view of a 3 stage reducer with closure.

The 3SR problem is formulated with 2 objective functions, 41 constraints (presented in Appendix
A), 3 categorical variables (gears modules), 6 integer variables (number of teeth), and 11 continuous
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Fig. 2. Detailed view of the 3 stage reducer.

variables. Gears modules have 41 possibilities, pinion number of teeth ranges from 14 to 30 and
wheel number of teeth ranges from 14 to 150. Hence, the combinatorial space of the 3SR problem
consists in 41% 4 (30 — 14)% + (150 — 14)3 ~ 8.7 x 10'%. Thus, the problem is considered a mid-sized
problem concerning the number of variables and constraints, but, huge combinatorial space.

The additional constraints increase the complexity of the problem. This is noticed by solving
the problem using NSGAII with different initial conditions as follows. In first hand, NSGAII is
initialized with 1 feasible individual. On the other hand, NSGAII is randomly initialized. Each was
run 10 times with the same parameters shown in Table 1. Figure 3(a) shows how many run each
method converged to a feasible solution out of 10. Figures 3(a) and 3(b) show that if the initial
population contains at least 1 feasible individual, NSGAII converges to a good approximated Pareto
front every time. Whilst, if NSGAII is initialized with a random population, NSGAII either fails to
converge to a feasible solution, or it converges to a low-quality Pareto front.

Table 1. Parameters used for NSGAII algorithm

Parameters Value

Cross over probability 0.8

Mutation Probability 0.9

Population size 200

Allowable generations 500

Constraint handling Legacy method [1]

Crossover operator  Simulated Binary crossover (SBX) [11]

ETAC 100
Mutation operator Partially-mapped crossover (PMX) [11]
ETAM 10
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Fig. 3. Results of 3SR problem solved by NSGAII with (blue) and without (red) initial feasible seed.

Figure 4 shows part of the domain of the 3SR problem explored by NSGAII with feasible initial
population. The explored domain shows the complexity of the problem, where both feasible and
infeasible solutions share the same domain on the projected objective domain. Moreover, all the
feasible solutions are too near to the infeasible ones.
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A Approximated Pareto Front

Tolerance [ul]
o o
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Fig. 4. Explored portion of the domain, showing the 3SR problem complexity.

To enhance the quality of the solution of this problem - and accordingly any similar problem -
where feasible solutions are not known, our proposal is first to use BnB-NSGAII proposed in [10] to

search for feasible individuals. These individuals are then injected in the random initial population
of NSGAII.
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3 BnB-NSGAII

In [10] the authors proposed the BnB-NSGAII approach. In this approach, Multi-Criteria Branch
and Bound (MCBB) [13] is used to enhance the exploration force of NSGAII by investigating the
mixed-integer domain space through branching it to subdomains, then NSGAII bounds each one.
In this way, MCBB guides the search using the lower bounds obtained by NSGAII. Our proposal
is to furthermore enhance the exploration potential of BnB-NSGAII by adding the legacy feature.

3.1 General Concept of BnB-NSGAII
The general multi-Objective MINLP problem ( PyoainLe ) is written as

rm%lleze f(w7y) :fl(w7y)77fp(w:y)

subject to
ci(x,y) <0,j=1,...m (3)
e X, X € R"
yey, Y € N,

where p and m are the number of objectives and constraints respectively. X and Y denote the set
of feasible solutions of the problem for n. continuous and n; integer variables respectively.

Prmo-miNLp 18 complex and expensive to solve. The general idea is thus to solve several sim-
pler problems instead. BnB-NSGAII divides Puo-minLp by constructing a combinatorial tree
that aim to partition the root node problem - Pyo.minLp - into a finite number of subproblems
Pry,...,Pr;,...,Pr,. Where i and n are the current node and the total number of nodes respec-
tively. Each Pr; is considered a node. Each node is then solved by NSGAII. Solving a node is to
determine its lower and upper bounds. The upper bound of a node P} is the Pareto front captured
by NSGAII, which is then stored in an incumbent list PY. Whilst the lower bound is the ideal
point P! of the current node.

P! =min fy(xi,y:); k=1,....p. (4)
By solving Pr;, one of the following is revealed:

e Pr; is infeasible, means that NSGAII didn’t find any solution that satisfies all constraints.
Hence, Pr; is pruned (fathomed) by infeasibility.
e Pr; is feasible, but, the current lower bound P! is dominated by a previously found upper
bound PY. Therefore, Pr; is fathomed by optimality.
e Pr; is feasible, and, P} is not dominated by PV, Pf < PN. PV is then updated by adding P
to it.
In the 3" case, the combinatorial tree is furtherly branched by dividing Pr; into farther subprob-
lems, called children nodes. If a node cannot be divided anymore, it is called a leaf node. Leaves are

the simplest nodes, since all integer variables are fixed such that y = y. NSGAII then solve leaves
as Multi-Objective continuous Non-Linear problem ( Pypo.nLp ):

minimize  f(x,y) = fi(z,¥),..., [p(T,Y)

subject to (5)
¢;(@,§) <0,j=1,.ym
T € Xi,
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where X; denotes the set of feasible solutions of the current node. PiN of each leaf is then added
to PY. The overall Pareto front is obtained by removing the dominated elements from PY.

3.2 BnB Legacy Feature

In NSGAII, the best population is that found in the last generation, since it contains the elite
individuals among all the previous generations. In BnB-NSGAII, each node is solved independently.
The output of each node is the captured Pareto front only. The last population in the node is thus
discarded, although it might be valuable to other nodes.

We propose to permit the legacy between nodes. Where each child node inherits the last popu-
lation from its parent node. The child node then initializes NSGAII by this population.

The children nodes are subproblems of their parent node. Thus, the boundary of parent node
is different than that for the children nodes, Yyqrent # Yenid- Hence, the population is rebounded
before initializing NSGAIIL. Rebounding the population may lead to the loss of the elite individuals,
though some of the elite genes are still conserved.

3.3 An Application of BnB-NSGAII

BnB-NSGAII is characterized by high exploration potential. Thus, in this paper, BnB-NSGAII is
used to search for at least one feasible solution for the 3SR problem. For this aim, BnB-NSGAII
is properly modified to 1) continue enumeration of the combinatorial tree even if the root node is
infeasible. 2) stop whenever a feasible solution(s) is found. Then, NSGAII is called to solve the 3SR
problem by initializing it with the feasible solution(s) found as shown in Figure 5.

Start

A

Solve node with |

NSGAII

AT q Feasible All integer .
Inmahz_e NSGAIl with ¢ Ye: Solution NO 3 ELERES NO 3 Add children vnodes to

feasible seed(s) 5 node list

Found are fixed
]
Yis
v A
Solve 3SR problem BnB-NSGAI fails to Node List is Select node from
«— NO———»
with NSGAIl find feasible solution Yes empty o node list —

Fig. 5. Flowchart of BnB-NSGAII application.
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7

NSGAII and BnB-NSGAII with and without the legacy feature were tested on the 3SR problem.
Each method was run 10 times. The test was done using the same parameters for the 3 solvers.
Table 1 shows the parameters used in this experiment.

4.1 Results and Discussion

In this experiment, the evaluation of the performance of each method is limited to how many times
the method finds at least 1 feasible solution over the 10 runs. Figure 6(a) shows the number of times
each method succeeded the test. It can be obviously concluded that BnB-NSGAII legacy method
overcomes the performances of NSGAII and BnB-NSGAII. It should be noted that the computa-
tional effort is not regarded since all the runs converge within 30 minutes. Which is considered an

acceptable time for such a problem.

Nb. of
T

I I I
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and infeasible individuals are plotted in green and red respectively.
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Figure 6(b) shows that NSGAII explored local space of the domain depending on the initial
population. While Figure 6(c) shows that BnB-NSGAII explored random spaces of the domain.
Figure 6(d) shows that the legacy feature guides the exploration force of BnB-NSGAII towards the
feasible solutions.

5 Conclusion

The 3 stage reducer problem is a point of interest of many researchers, either to use/ enhance it
for engineering applications, or to examine the performance of optimization methods. The 3SR
problem is desirable for such experiments for its complexity.

The 3SR problem was reformulated to a bi-objective problem in this paper to demonstrate
a proposed application of BnB-NSGAII. The proposed application is to use BnB-NSGAII as an
initiator of NSGAII, where BnB-NSGAII initially seeks feasible individuals before injecting them
into the initial population of NSGAIIL.

BnB-NSGAII was enhanced by adding the legacy feature. The legacy feature is a generic feature
that can be implemented in any branch and bound algorithm. Any parameter that is tuned during
the node solving process could be the legacy. In this paper, the legacy was the last population in
the father node in BnB-NSGAII. The latter was then used to initialize the child node.

The performances of NSGAII and BnB-NSGAII with and without the legacy feature were tested
on the bi-objective version of the 3SR problem. Results show that the legacy feature guides the
exploration force of BnB-NSGAII leading it to a better solution than that obtained by NSGAII
and BnB-NSGAIL.
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A 3SR Problem Constraints

A.1 Closure condition

Interference and fitting constraints are adopted from [5]. In [4], the closure condition was expressed
with the distance between the terminal point O3 shown in Figure 2 and required position of the
center of the output shaft. The coordinate of O3 can be easily compute with the center distance of
each stage and the angle &1, & and &3. But, if we consider that center distance of each stage allow
this closure condition, we can compute the value of & and &3. By this way can reduce he number
of variables in the optimization problem.

For a given value of {; and 71,1, r1,2, center distance of each stage allow a closure if we have :
10105 < 0102 + [ 0205

Assuming the previous condition is true, we can compute the two intersection of circle of center Oy
of ||O103|| radius and circle of center O3 of ||O203]| radius.

With ag = ||010,]| and a3 = |[|0203]| we have :

assinoy —agsinag =0
ag cos o + ag cos ag = ||O10s]|

which give :
OH . a% — a% + (0103)2
0,0, 2a20,03

cos | =
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Fig. 7.

Knowing a1, computation of coordinate of Oy and O/2 is straightforward. if the two position Os
and O, allow the wheel of the 2nd stage to fit in the casing box, then O, is preferred for lubrication
reason.

A.2 Mechanical constraint for one stage of the mechanism

Constraints related to the gear pair Following the recommendation from International Stan-
dard ISO 6336, [6],[7],[8] we can calculate, knowing the geometry of gear pair, the material and the
working conditions the contact and oy the bending stress op in the gear pair. These stresses must
be less of equal to the respective permissible value ogp and opp, depending on the material and
the working conditions.

From [8] the bending stress o is given by (1 for the pinion and 2 for the wheel)::

or(1,2) = 00 (KA Ky KraKrp)
with opg(1,2), the nominal tooth stress :

F.
OFo(1,2) = ﬁ (YrYsYpYsYpT)

where :

— [} : is the tangential load from [6].
— b : is the facewidth.
— my : is the normal module.

Factors Ka, Kv, Kra, Krp are related to dynamic ad loading conditions in the gear. Factors
Yr, Ys, Y3, YB, Ypr are related to the geometry effect on stress.
From [8], the permissible bending stress opp is given by :

OFLim
OFp = (YsrYnrYsrerrYarer Yx)

Fmin

with oppLim is the nominal stress number (bending) from reference test gears [9] and Spmin the
minimal required safety factor. Factors Yst, YT, YsrelT, YRrelT, Yx are related to the reference test
gears and the geometry and material conditions of the gear pair.
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From [7] the contact stress is given by (1 for the pinion and 2 for the wheel):

ou(1,2) = ZB,0)0H0V Ka KvEKna Kng

with oyg is the nominal contact stress :

Ft u + 1

ono = (ZuZgZ.7 —

Ho = (ZnZpZ-Zp) b, w

Factors Zu, Zg ,Z., Z are related to the Hertzian theory of contact, and take into account geometry
and material in the gear pair.

From [7] the permissible contact stress oyp is :

OHLim

OHP = (ZnrZ1,2v Zw Zw Zx)

Hmin
with oyrim is the allowable contact stress number and Sy, is the minimum required safety factor
for surface durability. Factors Znrt, Z1, Zv, Zr ,Zw, Zx are related to lubrication conditions,
surface roughness and hardened conditions and size of the tooth.
So to respect the requirement specification of a given power to be transmitted, the gear pair
must respect :

OF(1,2) < OFP
oH(1,2) < OHP
Considering that oy is proportional to F; and oy is proportional to v/F; for a given gear pair, we
can rewrite these 2 conditions with P; the power to be transmitted :
OFP
OF(1,2)

2
< JHP ) P> P
OH(1,2)

P> P

Usually, some factors are slightly for the pinion and the wheel so transmitted power is different for
the pinion (1) and the wheel (2). We will keep the minimal value.
So finally, for the stage number s on the reducer, the following conditions must be fulfilled :

min(gFPs >Pt2Pt (6)
OF(1,2)s
o 2
min (H) P> P 7)
OH(1,2)s

Following condition must be respected :

— For the transverse contact ratio : €, > 1.3.
— For the minimal face width : b > 0.1ds
— For the maximal face width : b < d;

In order to use pinion with at least Z,;, = 14 teeth, the value of the profile shift coefficient
must be adjusted to avoid gear meshing with the relation :

2(1—a1) sin o2

Zmin Z = I Z 1- ZminTn = I 2 0.1812

sin o
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Constraint related to shaft’s reducer In each of the 4 shafts of the mechanism, the transmitted
torque produce shear stress. This stress must not exceed the allowable shear of the material of shafts
Tmax- We assume here that all the shaft are using the same steel and that all shaft can be consider
as beam. So, with 7, ¢, the radius of input shaft, and rq s, s = 1...3 the radius of output shaft of
the three stages, we have :

20,

TTa,s

Te = 7 < Tmax for s=1...3 (8)

C; is the output torque of each stage and C. the torque on the input shaft, where Z; ; and Z; 5 are
the number of teeth for pinion (1) and wheel (3) of stage number i:

=5 7

. i,2

s =Ce H Zin

=1 ’

For the input shaft we have :
2C,

= < Tmax 9
[ )

The total rotation angle between the initial section of the input shaft and the final section of the
output shaft is :

5=3
20,140 20,1
0 — ela, sta,s
Grreo® + ; Grre,s®

For some reasons (dynamic behaviour of the reducer, ...) this total rotation angle should be limited
by a maximal value 0,ax.

0 < Omax (10)
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1 Background

In recent years, machine learning (ML) has proved super-human capabilities in speech recogni-
tion, language translations and image classifications, to name a few [1]. Lately, more and more
combinatorial optimization (CO) problems have been studied under the lens of machine learning
[16]. Among CO problems, NP-hard problems are particularly interesting because solving them to
optimality (via the so-called exact methods) takes exponential time. Smart decisions during the
branch-and-bound process (or other exact methods) could reduce the computation time drastically
([4],[5],[6]). Nonetheless, even a state-of-the-art fine-tuned exact method could take too much time
to output the optimal solution; for this reason, sometimes we need to resort to heuristics. Heuristics
have the disadvantage to not return a guaranteed optimal solution (or to return it in infinite time),
but they have the critical advantage to be extremely fast with respect to exact methods. Even in
the field of heuristics, machine learning has brought new insights and novel ideas ([2],[3]).

When ML is used to quickly generate a single solution from an input instance it is often
called an ‘end-to-end’ method. Among all the machine learning methods to solve for combinatorial
problems end-to-end, deep reinforcement learning (RL) seems to be the most promising one so
far [7]. The general idea behind reinforcement learning (for more details see [8]) is that an agent
interacts with an environment in order to learn a policy according to which it will behave during
the evaluation phase. At each time step (at least in the discrete case), an agent observes the state
of the environment and performs an action. Based on the internal dynamics of the environment
and the action of the agent, the environment will change state and the agent will observe a reward.
The goal of the agent is to maximize its reward. Usually, the agent is modelled by a neural network
(NN) which extrapolates features from a state in order to associate the state with a set of values
(one value for each possible action); then, the evaluation policy is to choose the action which will
lead to states with the highest values.

For large or even medium sized instances of many classes of CO problems, we can obtain good
solutions in reasonable time only with heuristics. This is the case for most vehicle routing problems
(VRPs). In general, VRPs are a class of problems where a set of vehicles has to visit a set of clients
while minimizing the total travelled distance and satisfying capacity, timing and flow constraints.
Among VRPs, we want to talk in more details about the travelling salesman problem (TPS), the
capacitated vehicle routing problem (CVRP) and the pick-up and delivery problem (PDP).

The TSP is probably the most studied problem in CO [9] and it was among the first ones to
be tackled via RL [10]. In the TSP, a single vehicle has to visit a set of clients on a fully connected
Euclidean graph, where capacity and time constraints are never binding. End-to-end methods can
quickly (after training) return high quality solutions for the TSP on medium sized graphs, but
they cannot yet generalise to large graphs [11].

The CVRP is an interesting and practical problem where a set of homogeneous vehicles, all
parked in a depot, has to visit a set of clients, each of which has a demand to be delivered. Clients
may have time windows and the visits to the clients gradually consume the capacity of the vehicles.
To the best of our knowledge, the state-of-the-art for solving the CVRP via RL is detailed in [12].
Their implementation is based on an actor-critic (AC) network with convolutional and recurring
neural networks (CNN and RNN). An AC is a method where a neural network is used to determine
the value of a state (critic) and another neural network is used to determine which action to take
(actor). CNNs are a type of NN able to extrapolate local features based on the values and position
of the elements of a state and RNNs are a type of NN developed to process sequences of inputs.
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Finally, the PDP is a VRP problem where on a graph (G = (N, A)) a set of homogeneous
vehicles (V') has to visit a set of clients (C') subject to time windows and capacity constraints. The
main novelty being that, in the PDP, clients are determined by pairs of node; one pick-up node
and one delivery. The same vehicle has to visit (in order) both the pick-up and the delivery node
which both have time windows. To the best of our knowledge, there are yet no RL algorithms to
solve the PDP.

These recent advancements in the field of ML for CO has shown that end-to-end methods can be
(after training) as performing and fast as state-of-the-art heuristics; which raises the fundamental
question: will ML based methods outperform conventional heuristics in the future?

Our opinion is that ML based methods will indeed outperform conventional heuristic and this
research focuses its effort in proposing a quite general method for solving the PDP. As said by
[12] while talking about possible extension of their algorithm from the CVRP to more complex
VRPs: ‘..designing such a scheme might be a challenging task, possibly harder than solving the
optimization problem itself’. We decided to investigate the design of such a novel scheme and we
chose the PDP because it is one of the most rich and constrained VRP. Our hope is that, if our
proposed approach works on the PDP, it will most likely work on many other VRPs.

2 Approach

Most end-to-end approaches for CO problems involve CNNs, RNNs or a combination of the two.
We conjecture that, for the PDP, these are not needed or, equivalently, the effectiveness of an
algorithm does not lie within those structures.

Although CNNs are an excellent tool to extract local features [13], they are useful when there
is a clear ordered object structure (for instances, pixels in an image). In the PDP, and in most CO
problems, there is no clear ordered object structure. Even if we introduce an arbitrary order in the
sets of vehicles and customers, the problem would be permutation invariant. In fact, a permutation
of the elements of either set would not change the optimal solution of the problem or its structure.
In theory, local features could be extracted from the graph itself (where a structure is indeed
present), but this is not a standard practice and it is not clear how graph features would propagate
into solutions features.

The idea behind RNNs is to sequentially embed a sequence of inputs, where the output of
an input depends also on the sequence of inputs before it. This is very useful when there is an
underlying sequentiality of the problem as, for instance, in a written text [14]. It is possible to argue
that in end-to-end problems there is often sequentiality. Indeed, the most commonly used method
relies on choosing one action at a time, update the state, and repeat until the end of the task.
Nevertheless, the majority of problems satisfy the Markov property; i.e. the distribution of future
states depends only on the current state and not on past ones. For example, given a vehicle at any
time instant, to choose the next node to visit, it does not matter the order in which other clients
were visited previously. What matters is the vehicles current position, its remaining capacity, the
unvisited clients and the set of clients required to be visited (consequences of pick-ups), all of which
can be modelled into the current state. This memoryless property makes the problem Markovian;
hence, we conjecture that RNNs would not increase the performance of our algorithm.

Thus, given the Markovian property of our problem and the absence of an underlying ordered
structure, we decide to base our implementation on a variation of the transformer [15] without
relying on CNNs or RNNs as the previous methods. The transformer, which in turn is based on
the self-attention mechanism, has the property of being permutation invariant and is not sensitive
to the input dimension (except for the softmax operation). The transformer is a fundamental object
in the state-of-the-art language translation and has proven its effectiveness in many other fields.
The transformer is composed by a series of multi-head attention mechanisms in a layer structure.
In ML, attention is a powerful mechanism that allows to look at the input and generate a context
vector based on how much each part of the input is relevant for the output. Doing so, the algorithm
learns to isolate from a set of input features the one(s) relevant for that particular state.

We plan to implement and test a double Q-learning (DQN) algorithm [17] able to solve the PDP
in a very short time (after training), where the deep layers are mostly based on the transformer
architecture. We hypothesise that this algorithm will be competitive with state-of-the-art ones
both for time and solution quality.
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3 Conclusion

More and more CO problems are being tackled via ML techniques, and RL seems to be the most
effective end-to-end method. We want to give our contribution to this field by solving the PDP,
which is a complex NP-hard problem. Due to the PDP richness, we hope that a method for the
PDP could quite easily generalized to other VRPs (where the Markovian property holds). Given
the Markov property of the problem and the absence of an underline ordered object structure, our
implementation will be based on a DQN framework with a transformer-based NN as the main deep
component.
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Abstract. Boolean Networks (BNs) are a simple formalism used to
study complex biological systems when the prediction of exact reaction
times is not of interest. They play a key role to understand the dynamics
of the studied systems and to predict their disruption in case of complex
human diseases. BNs are generally built from experimental data and
knowledge from the literature, either manually or with the aid of programs.
The automatic synthesis of BNs is still a challenge for which several
approaches have been proposed. In this paper, we propose ASKeD-BN,
a new approach based on Answer-Set Programming to synthesise BNs
constrained in their structure and dynamics. By applying our method on
several well-known biological systems, we provide empirical evidence that
our approach can construct BNs in line with the provided constraints. We
compare our approach with three existing methods (REVEAL, Best-Fit
and caspo-TS) and show that our approach synthesises a small number of
BNs which are covering a good proportion of the dynamical constraints,
and that the variance of this coverage is low.

Keywords: Boolean Network Synthesis - Answer-Set Programming.

1 Introduction

Models of biological systems are important to understand the underlying pro-
cesses in living organisms [10]. Once built, the model is an artefact that can be
used to study a system through simulation. Several formalisms have been pro-
posed to model biological systems [11], and they all have their own strengths and
weaknesses. The choice of a formalism is guided by the question at hand: the best
formalism is the most abstract formalism which can answer the question [3]. For
example, differential equations are a formalism suited to run detailed dynamic
simulations because they contain information on kinetic parameters. However,
they do not scale to large systems.

Boolean Networks (BNs) are a formalism used to study complex biological
systems where prediction of exact reaction times is not of interest [1]. They
play a key role to understand the dynamics of biological systems and predict
their disruption in case of complex human diseases [2]. The key notions of BNs
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are presented in Section 2.2. BNs are built from available knowledge about the
structure of the system and data about the behaviour of its components (Sec-
tion 2.3). The knowledge and data are used as constraints for the BN synthesis.
The automatic synthesis of BNs from biological data and knowledge is still a
challenge for which several methods have been developed. In Section 3, we review
three state-of-the-art approaches: REVEAL, Best-Fit and caspo-TS.

In Section 4, we present ASKeD-BN, a new automatic approach for the synthesis
of BNs constrained in their structure and dynamics. We rely on the Answer-Set
Programming framework to generate non-redundant BNs fulfilling the given con-
straints. We compare the performances of our approach with REVEAL, Best-Fit
and caspo-TS on several biological systems with experimental and synthetic
data (Section 5). Finally, we discuss the results and conclude.

2 Boolean Networks and their Synthesis

2.1 Prior Knowledge Network (PKN)

Part of the knowledge one has about a biological system is the list of components
(genes, proteins. .. ) constituting the system and how these components influence
each other. Influences have a polarity: activation (polarity “+”) or inhibition
(polarity “—"). The parents of a component X are the components which
influence X. A Prior Knowledge Network (PKN) encodes this knowledge.
The nodes of the network are the components of the system. The edges are
directed from parent components to child components and labelled “4+” or “—”
according to the polarity of the influences. Fig. 1 shows an example PKN for a
system of three components. In this PKN, C and A are the parents of C.

+
— “A activates C” @\_/y -
— “B interacts with itself” T
— “C activates A” +
— “C interacts with B”

. . . +
— “C inhibits itself”

Fig. 1. PKN example of a three-components system.

2.2 Boolean Networks (BNs)

BNs were introduced by Kauffman [7] to model genetic regulatory networks.
Concepts used in BNs are described in a recent review [17]. Two examples of
BNs are given in Fig. 2.

The components of a BN are the components of the considered biological
system. For example, a BN modelling a system of three proteins called A, B
and C has three components named A, B and C. A configuration of a BN

140



Automatic Synthesis of Boolean Networks 3

fa:=C fai=0
Bi=1{fsB:=BA-C Bs={ fs:=(BA-C)V(-BACQC)
fo:=-C fo:=A
(a) Transition functions of By (b) Transition functions of Ba

& s O
o

@

(c) Interaction graph of B; (d) Interaction graph of Ba

(e) Synchronous (left) and asynchronous|(f) Synchronous (left) and asynchronous
(right) state transition graphs of B; (right) state transition graphs of B

Fig. 2. The transition functions, derived interaction graph, and state transition graphs
according to synchronous and asynchronous update schemes of two BNs.

is a vector which associates a Boolean value (1/active or 0/inactive) to each
component of the BN. A BN with n components has 2™ possible configurations.
For example, the 23 = 8 possible configurations of a BN with 3 components are:
000, 001, 010, 011, 100, 101, 110 and 111.

Each component has an associated transition function (B"™ — B) which
maps the configurations of the BN to the next value of the component. The
transition functions are usually written as Boolean expressions. In this paper,
these expressions are in Disjunctive Normal Form (DNF), i.e., disjunctions of
conjunctions. The conjunctions are satisfiable, which means they do not contain
a literal and its contrary. The operators =, A, V represent respectively negation,
conjunction and disjunction. Figs. 2a and 2b show examples of transition func-
tions. The transition function associated with B in By states that the value of B
will be 1 if either the value of B or of C was 1 in the previous configuration.

Like for the PKN, the structure of a BN is defined in terms of parent-child
relationships between the components. A component P which appears in the
transition function of a component X is called a parent of X. If the parent
is negated in the DNF, we say that the polarity of the influence of P on X is
negative. Conversely, if the parent is not negated, the polarity is positive. The
Interaction Graph (IG) summarises these relationships as a directed graph.
The directed edge P — X is labelled with “+” or “—” depending on the polarity
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of the influence P has on X. For example, the IG of B; contains B 5 B and

C — B because B appears positively and C appears negatively in the transition
function associated with B. As we will see in Section 2.3, the PKN will act as a
hard constraint on the IG of the BNs we want to synthesise.

The BN dynamics is obtained by applying iteratively the transition func-
tions starting from each possible configuration. The order of application of
the transition functions is defined by the update scheme. The synchronous,
asynchronous and mixed update schemes are the most commonly used. In
the synchronous update scheme, the transition functions are applied all at once,
while in the asynchronous scheme, they are applied one by one. In the mixed
update scheme, any number of components can be updated at each step. Thus,
the update possibilities from both the synchronous and asynchronous update
schemes are included in this third update scheme.

The State Transition Graph (STGQG) is a directed graph whose nodes are
the 2™ possible configurations of the BN. In this graph, there is a directed
edge from c to ¢ if ¢’ is the result of applying to ¢ the transition function(s)
according to the chosen update scheme. Fig. 2 shows examples of synchronous and
asynchronous STGs. Later, we discuss how dynamical constraints are enforced in
the STGs, and how we use the mixed STG to quantify how well the synthesised
BNs match the dynamical constraints.

2.3 Synthesis of BNs from PKN and Multivariate TS

In general, BNs that model biological systems have to satisfy two categories of
constraints. On one hand, the BNs have to comply with a PKN. The PKN
constrains the structure of the synthesised BNs by defining which components
can appear as variables in each transition function and the polarity of those
variables. Hence, a component P is allowed to appear in the transition function
of a component X with a polarity s if the PKN contains an edge P =+ X. Formally,
a BN is compatible with a PKN if its IG is a spanning subgraph of the PKN.
In other words, the IG of a BN compatible with a given PKN is formed from
the vertices and a subset of the edges of the PKN. For example, the two BNs
presented in Figs. 2a and 2b are compatible with the PKN given in Fig. 1. On
the contrary, a BN containing the transition function fa := B is not, since the

IG of this BN contains the edge B X A, which is not in the PKN. A BN
having fa := —C is also incompatible: despite C being a possible parent of A,
the negative polarity is not allowed, since the PKN does not contain the edge
C — A

On the other hand, the synthesised BNs are expected to reproduce as well as
possible the sequence of configurations extracted from an observed continuous
multivariate Time Series (T'S) of the concentration of the components over time.
An example of a multivariate TS is given in Table 1. Various strategies for
extracting the sequence of configurations and fitting the transition functions
to the observations have been proposed in the literature, but they all roughly
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result in enforcing the STG of the synthesised BNs to contain specific edges,
corresponding to specific transitions of configuration.

We focus here on the automatic synthesis of BNs that respect the structure of a
given PKN and are designed to reproduce as well as possible the observations from
one given multivariate TS. For each synthesised BN, this ability of reproducing
the observations is measured in terms of coverage proportion, i.e., the proportion
of transitions observed in the multivariate TS that are retrieved by the BN
when computing its STG according to the mixed update scheme. Ideally, an
identification method would only return BNs with a perfect coverage proportion
(i.e., 1).

Table 1. Multivariate TS of the three-components system given as example. The
continuous concentrations of the components have been sampled for 20 time steps. Here,
all the observations range from 0 to 100. The value resulting from the binarisation
with a threshold of 50 is indicated by the colour of the cells: green if the result of the
binarisation is 1 and red if 0. The resulting binary vectors are the configurations. Here
there are four configurations (010, 011, 100 and 001) lasting respectively 4, 3, 3 and 10
time steps. Vertical bars indicate a change of configuration.

configurations sequence:
010 — 011 — 100 — 001
time 1 2 3 4|5 6 7[8 9 10/11 12 13 14 15 16 17 18 19 20
AT 0 3 7 13[20 30 49/ 61100 63]36 25 2 3 1 1 3 0 0 O
B 100 86 64 57| 54 53 51/ 49 45 3733 28 22 19 14 12 9 5 2 0
C | 0 27 36 42|60 75 54| 44 38 48| 60 72 88 90 100 100 100 100 100 100

3 State-of-the-Art Methods of BN Synthesis from PKN
and TS

Several studies have been dedicated to the automatic synthesis of BNs from
PKNs and observed multivariate T'S. Here, we review three main state-of-the-art
approaches: REVEAL [12], Best-Fit [9] and caspo-TS [16].

For each component of the system, REVEAL tests all the possible combinations
of its parent nodes, and attempts to find the functions that explain all the obser-
vations of the binarised TS. For example with the multivariate TS from Table 1:
REVEAL tries to explain 010 — 010 — 010 — 010 — 011 — 011 — 011 — 100 —

... Hence, it cannot handle inconsistencies—such as a configuration being as-
sociated to distinct successor configurations. Such inconsistencies are frequent
when sampling concentrations along time, because the processes involved can
have different speeds. In the example (Table 1), observing both 010 — 010 and
010 — 011 is an inconsistency which causes the failure of REVEAL. Furthermore,
REVEAL cannot use the influence signs from the PKN, and since it uses an already
binarised TS, it is possibly biased by the chosen binarisation.
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Like REVEAL, Best-Fit tests every possible combination of the parent nodes
of each component. It cannot use the influence signs and works on the binarised
TS as well. Unlike REVEAL it can manage inconsistencies from the TS since it
returns the functions that explain the maximal number of time steps. In Table 1,
since 010 — 010 is observed three times and 010 — 011 only once, Best-Fit will
focus on explaining the former instead of the latter.

caspo-TS was designed to manage several multivariate T'S, corresponding to
several experiments where the system is perturbed (forced activation or inhibition
of some components), and where some measurements are potentially missing.
Unlike REVEAL and Best-Fit, caspo-TS takes the influence signs into account,
but it can only generate locally monotonous BNs, i.e., BNs for which a parent of
a component cannot be both its activator and its inhibitor. By is an example of
a BN caspo-TS cannot generate because it is not locally monotonic. Indeed, in
fB, the components B and C act both as activator and inhibitor of B. caspo-TS
works as the following: first, it derives the set of BNs that are compatible with
the given PKN and an over-approximation of the dynamics of the TS, using
the so-called most-permissive semantics [4]. Because of this over-approximation,
the result can contain many false positive BNs, i.e., BNs optimising the cost
function used under the hood of caspo-TS, while their asynchronous dynamics is
not able to reproduce the configurations sequence of the multivariate TS. These
false positive BNs are subsequently ruled out using exact model checking. This
filtering is PSPACE-hard, but thanks to the first step, a large set of BNs has
already been excluded.

4  Our Approach: ASKeD-BN

4.1 Detalils of the Approach

We propose an approach for the Automatic Synthesis of Boolean Networks from
Knowledge and Data (ASKeD-BN). It computes a non-redundant set of BNs
complying with a given PKN and one observed multivariate TS. Unlike REVEAL
and Best-Fit, ASKeD-BN is capable of using the influence signs provided in
the given Prior Knowledge Network (PKN) and the raw values of the input
multivariate Time-Series (TS). Unlike caspo-TS, ASKeD-BN directly fits the
behaviour of each component with the T'S. Also, it is not limited to the synthesis
of locally-monotonous BNs.

For each component of the studied system, our approach searches among all
possible transition functions. All the transition functions that do not respect the
given PKN are ruled out. Then, every remaining candidate is evaluated on the
basis of both their simplicity and their ability to reproduce the given observations.
The candidate transition functions for the component X might not be able to
explain all the binary state transitions happening at time ¢t — /. The set of
unexplained ¢’ is denoted U. Every time step ¢’ in U is associated with a measure
stating “how far” the continuous value X} is from the binarisation threshold #:
|0 — X}|. These spotted errors are then averaged on the T time steps of the TS

144



Automatic Synthesis of Boolean Networks 7

through the Mean Absolute Error (MAE):

= Zt'eu |‘9 - Xt’|

MAEx T

Among the candidates having the smallest MAE, we select the ones that has
the smallest number of influences. Finally, we create all the possible BNs by
generating all the combinations of the selected functions.

We implemented our approach using Python and the Answer-Set Program-
ming framework (ASP) with the system clingo [6]. ASP is a declarative pro-
gramming language oriented towards difficult (NP-hard) search problems. The
possible solutions of a problem are described with the constraints they must ful-
fill. These constraints are written as a logic program. The ASP solver is tasked
with finding the solutions of the program. To do so, it uses a Conflict-Driven
Clause Learning (CDCL) algorithm inspired by SAT solvers. In our case, the
CDCL algorithm avoids the evaluation of all the possible transition functions
by learning from conflicts: whenever it finds that a candidate is in conflict with
the constraints, it creates a new constraint that explains the conflict. These
learned constraints subsequently eliminate other conflicting candidates, pruning
the search space. Thanks to these pruning heuristics, our approach is efficient.
ASP and in particular clingo, have already been used in similar contexts including
caspo-TS.

4.2 TIllustration on the Toy Example

Let us illustrate our approach on the toy example consisting of the PKN in Fig. 1
and the multivariate TS in Table 1.

When no PKN is available, the default PKN is a complete graph assuming
that each component can inhibit / activate all the others (including itself). In
this setup, a component with n parents have 22" possible transition functions.
In the toy example, each component can be explained by 22° = 256 distinct func-
tions, which correspond to 16 777 216 potential BNs (formed by all the possible
combinations of all the candidates of each component). Thanks to the available
PKN, the number of candidate functions for each components A, B and C falls
respectively to 3, 16 and 6. Besides the CDCL pruning, ASKeD-BN virtually
evaluates all the candidates, but for illustration purpose we will focus on the two
that are present in B; and By (Figs. 2a and 2b).

For the component A, the candidate fa := 0 does not contain any literal and
it cannot explain the transition of configuration for A at t; — tg. Hence, the set
U of unexplained time steps is {tg}. The concentration of A at time tg is 61, and
the candidate’s MAE is thus |50 —61]/20 = 0.55. The candidate fa := C involves
one literal (which is C). This candidate can explain all transitions. Hence, U = ()
and the MAE associated with this candidate is 0. Despite requiring more literals,
fa := C is a better candidate than fa := 0 because its MAE is smaller. The
comparisons of the candidates proposed for the components B and C in B; and
By are summarised in Table 2.
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For the toy example, our approach returns 3; as the only solution. It retrieves
the 3 configuration transitions extracted from the binarised TS, thus its coverage
proportion is 1. REVEAL does not find any BN, and the BN returned by Best-Fit
does not comply with the PKN. caspo-TS finds 5 BNs with coverage proportions
ranging from 0.33 to 1 (standard deviation of 0.25).

Table 2. Number of influences and MAE for the candidate functions in By (Fig. 2a)
and By (Fig. 2b). A checkmark indicates the candidate selected by our approach, and
the best for each criterion: (1) minimal MAE and (2) minimal number of influences.

candidate ‘fB::B/\ﬁC‘/‘fB =(BA-C)V(-BAC) ‘fc::ﬁC\/‘ fci=A

MAE (/) 0 v 0 (0) v o vios {is))
# influences 2 v 1 4 1 v 1 1 v

5 Datasets and Procedure for the Comparative
Evaluation

5.1 Datasets

In order to compare our approach with REVEAL, Best-Fit and caspo-TS, we
used eight biological systems. For two of these systems (yeast’s cell cycle and
A. thaliana’s circadian clock), their PKN and experimental multivariate TS are
taken from [13] and [18] respectively. These two systems are summarised in Table
3. They respectively involve 4 and 5 components.

Table 3. Summary of two biological systems and their corresponding datasets

System Genes PKN TS Source
yeast Fkh2, Swib, Sicl does not influence 14 time steps (18]
(cell cycle) Sicl & Clbl itself nor Fkh2 6 transitions

+
A. thaliana LHY, PRR7, (:) \ - @ 50 time steps
circadian clock) TOC1, X & Y ' 11 transitions
( ) +m

(13]

For the six other systems®, we conducted our experiments on multivariate
TS that we simulated from existing BNs taken from the repository of example
BNs of the package PyBoolNet [8]. For these systems, the number of components

3raf, randomnet n7k3, =xiao_wntba, arellano_rootstem, davidich_yeast and

faure_cellcycle
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ranges from 3 to 10. For each system, the used PKN is the IG of the associated
BN. As for the generation of the multivariate TS, three parameters are taken
into consideration: the update scheme (in {synchronous, asynchronous}), the
maximum number of introduced repetitions of each configuration (in {1,4}) and
the standard deviation of the added noise (in {0,0.1}). For each setting of
these parameters, we follow a procedure similar to what is implemented in the
generateTimeSeries function of the R package BoolNet [15]:

1. choose randomly a configuration of the considered BN,

2. on this configuration, apply the update function(s) 20 times w.r.t the chosen
update scheme,

3. duplicate randomly each configuration in the obtained sequence
(added in contrast to generateTimeSeries),

4. add a Gaussian noise with a standard deviation of N.

For a given setting of the 3 parameters and a given system, we run the
procedure 7 times (with different random seeds). In the following, we denote
ARN the setting with the Asynchronous update scheme, Repetitions (of 4) and
Noise (of 0.1). We believe that this setting allows us to obtain multivariate T'S
which are quite close to real TS.

We illustrate here how to generate a synthetic multivariate T'S in the ARN
setting for By (Fig. 2a). We would start from a random configuration. Let
it be 010. Then we apply 20 times the transition functions of B; with the
asynchronous update scheme. This process is not deterministic as any path
from Fig. 2e (right) starting from 010 and of length 20 is valid. Let’s say we
obtain a path starting with 010 — 011 — 010 — 011 — 111 — 101 — ... Then
we add a random number of duplications (in bold). The beginning of the sequence
could for example look like 010 — 011 — 011— 010 — 011 — 011— 011—
111 — 101 — 101— 101— 101— ... Finally, we add a random Gaussian noise
with a standard deviation of 0.1. The synthetic multivariate TS could now start
with (0.02;0.92; —0.16) — (0.04;0.8;0.7) — (—0.05;1.06;0.7) — ...

5.2 Details on the Evaluation Procedure

For REVEAL and Best-Fit we use the implementation from the R package
BoolNet [15]. caspo-TS is ran with the option mincard, that asks for BNs
with functions minimising the number of influences. Note that this is also what
our method optimises.

In the following, we define an experiment as a BN identification method
applied on a system with one multivariate TS. The unicity of the multivariate
TS makes the problem under-specified and allows us to evaluate the performances
of the different approaches in this context.

REVEAL, Best-Fit and our approach need the binarised multivariate TS in
their inputs. We use a simple form of binarisation: the binarisation threshold
is defined as min + (max —min)/2. All values from the multivariate TS greater
or equal to the threshold are binarised to 1, and to 0 otherwise. For the two
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systems with real TS, the theoretic range of the values is not know in advance,
so the binarisation threshold is determined component-wise: the components
are binarised taking into account their observed minimum and maximum. For
the six systems with the synthetic multivariate TS, we know a priori that the
values of all the components are between 0 and 1 (+ the noise). In case of noisy
data, the fluctuations of a constant component are interpreted as state changes
when using a threshold computed component-wise. However, the identification
methods are not capable to detect these spurious transitions in the binarised TS.
Hence, we compute the binarisation threshold globally, on all the observations
of all the components.

In order to have a fair comparison of the methods, and since caspo-TS is
making the binarisation itself and is not aware that the theoretical minimum and
maximum of the components are 0 and 1 (£ the noise), we correct a posteriori
the transition functions it returned. The value of the constant is set to the
binarised value that is the most present in the binarised TS of the component
concerned. Also, since caspo-TS does not return a function for the components
without parents in the PKN nor for the components that it founds constant for
all the TS (in the case where no noise is involved), we use the same technique to
set the transition functions to their correct values. We also added a step to filter
out BNs returned by REVEAL and Best-Fit which do not respect the polarities
given in the PKN.

For all the BNs returned by the four methods (and after the PKN-based
filtering for REVEAL and Best-Fit), we use PyBoolNet [8] to compute the STG
of each retrieved BN according to the mixed update scheme. Finally, we evaluate
the results of each experience according to three criteria:

— the number of BNs returned;
— the median of the coverage ratios: the proportion of configuration transitions
extracted from the input TS that are present in the mixed STG;
— the standard deviation of the coverage ratios.
All data and programs needed to reproduce the presented results are accessible
at https://gitlab.inria.fr/avaginay/0LA2021.

6 Results

6.1 Results on Systems with Real PKN and Experimental
Multivariate TS

Yeast (Fig. 3 left). For this system caspo-TS find 61 BNs while Best-Fit and
ASKeD-BN both find 16 BNs. As for REVEAL, due to inconsistencies in the TS, it
does not return any BN. Concerning the coverage, on the 7 transitions observed
in the TS, the BNs synthesised by Best-Fit recover 4 and the BNs synthesised by
ASKeD-BN recover five. The best coverage ratio (6 retrieved transitions over 7) is
obtained for 8 BNs synthesised by caspo-TS (among the total of 61). Nevertheless,
as the box plot shows, the BNs synthesised by caspo-TS present a large variance
in their coverage.
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A. thaliana (Fig. 3 right). For this system, REVEAL returns no BN. The only BN
returned by Best-Fit has all the components set to 1 and recovers 5 transitions
over the 10 observed. ASKeD-BN also returns a single BN with a perfect coverage
since the BN recovers all the 10 transitions. As for the 5 BNs synthesised by
caspo-TS, we can make the same observation as before: they present a variability
in their coverage. The best coverage obtained by caspo-TS are from 2 different
BNs including the one synthesised by ASKeD-BN.
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Fig. 3. Number of transitions retrieved by the BNs synthesised using the different
methods on the systems yeast (left) and A. thaliana (right). The blue dashed line
indicates the number of transitions that were observed in the multivariate T'S.

To sum up, the results on these two real examples show that:

— REVEAL constantly fails to return any BN. At the opposite, caspo-TS returns
more BNs than the other methods;

— the coverage of the BNs returned by both our approach and caspo-TS are
better than for Best-Fit;

— caspo-TS presents worse variability in the coverage ratio of its BNs compared
to our approach.

6.2 Results on Systems with Generated Multivariate TS

Number of Synthesised BNs: The total number of BNs returned on the synthetic
datasets and the number of times the identification methods failed returning any
BNs are reported in Table 4. The table shows that a large proportion of BNs
generated by REVEAL and Best-Fit were not complying with the influence signs
from the input PKN. The following reported results do not take into account these
non-compliant BNs. REVEAL is the method which returns the smallest number
of BNs, in particular in the ARN setting. This is due to the inconsistencies in
the TS, which are frequent in the ARN setting (as in real T'S). On the opposite,
caspo-TS is the method that returned the largest number of BNs. Moreover,
when considering all experiments, there are 18 experiments for which caspo-TS
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generated more than 100 BNs. In these cases, we stopped the enumeration and
analysed the 100 first BNs caspo-TS returned. Despite this limit, caspo-TS
returned between 5 and 7 times more BNs than our method.

Table 4. Number of experiments for which each method failed to return any BN,
number of BNs returned over all 336 experiments with synthetic TS and number of
BNs returned over the 42 experiments with the ARN setting. The labels“before” and
“after” refers to the filtering step which rules out the BNs not respecting the signs of
the given PKN (see Section 5.2).

measure REVEAL Best-Fit

(setting) before |after| before |after caspo—TS‘ASKeD—BN
# failing experiments (all) 230 240 0 64 20 0
# BNs returned (all) |100677500| 406 100678 198| 724 | 8481 1210
# BNs returned (ARN) 3 3 51 35 720 85

From here on, we focus on the results of the experiments corresponding to the
ARN setting (Asynchronous update scheme, random Repetition of configurations,
and Noise addition) after having remove the BNs from REVEAL and Best-Fit
which does not respect the given PKN.

Coverage ratio: To assess the coverage ratio criterion, instead of plotting the
boxplots for the 42 experiments of this setting (6 systems times 7 replicates), we
summarised them in Fig. 4. In the scatter plot, each experiment is represented by
a point whose coordinates are the coverage ratio median of the synthesised BNs
and the associated standard deviation (std). The more top-right a point is, the
better the corresponding identification method is (i.e., it produces BNs with high
coverage ratio and low std). We can see that for the few experiments for which
REVEAL was able to return BNs, the median coverage is actually excellent. The
median coverage of the BNs returned by Best-Fit is almost uniform: Best-Fit
lacks regularity in finding BNs with good coverage. But the high pick around
0 on the plot of std distribution shows that for a given experiment, the BNs
returned by Best-Fit have similar coverage rates. caspo-TS and our approach
have a very similar distribution of median coverage. They are both good at
finding BNs with very good coverage. But here again, for a given experiment,
the BNs synthesised by caspo-TS present a bigger variation of their coverage
proportions than the ones synthesised by our approach.

7 Conclusion and Perspectives

We presented ASKeD-BN, a novel method to create BNs from a PKN and a
multivariate TS. The results on 8 biological systems showed that our approach
has the best trade-off on the evaluation criteria: it returns a small set of BNs
with a high coverage median and low variance. Our results actually confirm
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Fig. 4. On the scatter plot, each point represents an experiment in the ARN condition
for which a given method potentially returned several BNs with different coverage
ratios. The horizontal coordinate of the point is the median of these ratios. The
vertical coordinate is their standard deviation (std). For a better visualisation, the
coordinates have been jittered with a variance of 0.1 on both axes. The curves on the
top (resp. on the left) of the scatter plot are the probability densities of the median
(resp. the std) of the points in the scatter plots. The densities have been estimated from
the non-jittered coordinates of the points with the Gaussian kernel density estimation
method. The smoothing parameter of the estimator was determined automatically
(with the Scott method). The areas under all these curves are 1, and the picks show
where the points are the most concentrated.

that although caspo-TS finds good BNs, too many sub-optimal BNs are also
retrieved. Indeed a new version of caspo-TS was recently proposed to tackle this
problem [5].

We now present two perspectives to improve our approach and the study.
First of all, real datasets may contain outlier measurements which could mislead
the computation procedure of the binarisation thresholds we used in this paper.
It would be interesting to see how such cases impact the performances of the
identification methods and to propose a better binarisation procedure with prior
outliers detection for instance. Second, contrarily to REVEAL, Best-Fit and
caspo-TS, our approach does not handle multiple multivariate T'S. However,
biologists often have several multivariate TS generated with perturbations forcing
some components to stay either active or inactive. However, exploiting such
supplementary data gives more information about the behaviour of the studied
system in specific conditions (e.g., pathological states). This knowledge allows
to constrain even more the space of solutions.
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Finally, we are currently working on an automatic pipeline for BN synthesis

from a curated mathematical model repository, namely BioModels [14]. This
requires (i) automatic extraction of the PKN from the model structure encoded
in the SBML* file format and (ii) generation of a multivariate TS by simulation
of these models.
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Abstract. Metaheuristic and swarm intelligence approaches require de-
vising optimisation algorithms with operators to let produce neighbour-
ing solutions to conduct a move. The efficiency of algorithms using sin-
gle operator remains recessive in comparison with those with multiple
operators. However, use of multiple operators require a selection mecha-
nism, which may not be always as productive as expected; therefore an
adaptive selection scheme is always needed. In this study, an experience-
based, reinforcement learning algorithm has been used to build an adap-
tive selection scheme implemented to work with a binary artificial bee
colony algorithm in which the selection mechanism learns when and sub-
ject to which circumstances an operator can help produce better and
worse neighbours. The implementations have been tested with commonly
used benchmarks of uncapacitated facility location problem. The results
demonstrates that the selection scheme developed based on reinforcement
learning, which can also be named as smart selection scheme, performs
much better that state-of-art adaptive selection schemes.

Keywords: Adaptive Operator Selection - Reinforcement learning - Ar-
tificial Bee Colony - Uncapacitated Facility Location Problem (UFLP).

1 Introduction

Metaheuristic and swarm intelligence algorithms have gained a deserved popu-
larity through the success accomplished over last few decades. Although they do
not guarantee globally optimal solutions within a reasonable time, the success
in offering useful near-optimum solutions within an affordable time has helped
gain such credit. This does not mean that metaheuristic and swarm intelligence
algorithms can be seamlessly implemented for a productive algorithmic solu-
tion. The main shortcoming arises in handling local optima capabilities, which
enforces researchers to build a balance in exploration for new and fresh solutions
while exploiting the gained success level within the search space. That is known
as Exploration versus Exploitation (FvE) rate in the literature [5]. EvE rate
guides to search through as many neighbourhoods as possible while retaining
exploitation of achieved success and gained experience for a better performance,
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where weaker exploration causes falling in local optima while weaker exploitation
would cause higher fluctuations in performance [13].

Metaheuristic approaches, especially population-based ones, use neighbour-
hood functions, also known as operators, to let the search process identify next
solutions to move to. It is conceivable that search with single operators would
have higher likelihood to stick in a local optima than multiple operators. Many
hybridisation approaches and memetic algorithms have been designed to help di-
versify the search through a balanced EvFE, which usually appear in the form of
using multiple operators subject to a selection scheme. The idea an operator to
apply after another would prevent the search falling in local optima contributing
to diversification of the search. It appears that the nature of the operators to be
applied in an order and the order managed in use play very important role in the
success level of the algorithms. Adaptive operator selection schemes have been
studied for a while to achieve a useful balance in FvE and level of diversification
in search [12].

Adaptive operator selection is a process of two phases; (i) credit assignment in
which the selected operators are credited based on the level of success measured,
or (ii) operator selection in which an operator is identified to run based on
the credit level in order to produce a neighbour [11]. The amount of credit to
assign is decided using either the positive difference achieved in fitness values
or the categories of success or fail [10]. Credit assignment phase also covers the
calculation of the time window in which the amount of credit to assign to selected
operators is estimated [4]. On the other hand, operator selection phase imposes
prioritisation/rank of operators within a pool of functions/operators. Probability
Matching (PM), Adaptive Pursuit (AP) and Upper Confidence Bound (UCB)
are known to be among state-of-art operators selection schemes [4].

Adaptive operator selection schemes have been used in the literature with
evolutionary algorithms and swarm intelligence. Failho et. al [9] uses a multi-
armed bandits approach with genetic algorithms, while Durgut and Aydin [7]
comparatively studied the success of PM, AP, and UCB schemes to supply a
binary artificial bee colony algorithm. Yue et. al. [19] proposes a self-adaptive
particle swarm optimisation algorithm adaptively selecting among 5 operators
to solve large scale feature selection problems.

Adaptive operator selection schemes estimate likelihood of each operator
within the pool relying on credits gained to the time. The selection happens
through the estimated likelihoods irrespective of the problem state in hand. It is
clear that the success of selected operator is not sensitive to the problem state;
whether it is in a harsh neighbourhood or trapped in a difficult local optima or
not. Reinforcement learning (RL) gains more and more popularity day-by-day
to solve dynamic problems progressively, gaining experiences through problems
solving process [3,17]. There are renown powerful RL algorithms let map in-
put sets to outputs through experiencing the the problems states and collecting
environmental responses to the actions taken [20].

In this study, an artificial bee colony (ABC) algorithm has been implemented
for solving uncapacitated facility location problems (UFLP) represented in bi-
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nary form. ABC algorithms have been implemented to solve many real-world
engineering problems. Among them are combinatorial optimisation problems,
which formulated as binary optimisation problems. ABC can be viewed as multi-
start hill-climbing algorithms in optimisation, where new neighbouring solutions
are generated with operators as discussed above. In this study, the ABC algo-
rithm is furnished with multiple operators selected with reinforcement learning-
based selection scheme.

The rest of this paper is organised as follows; Adaptive operator selection
schemes are introduced in Section 2, the operator selection scheme developed
based on reinforcement algorithm is explained in Section 3. Experimentation and
results are presented and discussed in Section 4 while conclusions are briefed in
Section 5.

2 Adaptive Operator Selection

One of the common problem of heuristic-based optimisation algorithms is that
search is inevitably driven into local optima, which sometimes remains as the
offered final solution. The aim of use multiple operator is to help rescue the
search from local optima by the means of diversifying search using different
neighbourhood functions/operators interchangeably or systematically. Operator
selection schemes are used for this purpose.

Operator selection is not necessarily to be adaptive by nature, but, most of
recent studies have been developed as adaptive to insert smartness in the process
of selection. Metaheuristic and evolutionary approaches can come up with self-
imposing operator selection. Evolutionary algorithms such as genetic algorithms
and genetic programming have self-contained probabilistic operator selection
while metaheuristics such as variable neighbourhood search imposes a system-
atic count-based operator change mechanism to achieve diversity in search and
manage neighbourhood change. Operator selection built-in algorithms do not
offer much flexibility in working with multiple operators, while memetic algo-
rithms, hill-climbing style heuristic algorithms and modern swarm intelligence
algorithms allow customising operator selection mechanism to engineer bespoke
efficient optimisation algorithms.

Adaptive operator selection is the process of prioritisation of the operators
based on merits, which can be imported in the algorithms via crediting each
operator based on achievements gained. Although there are a number of adaptive
operator selection schemes studied, the general mechanism is depicted in Fig. 1 in
which a two phase process is run; (i) operator selection and (ii) credit assignment.
As suggested, the pool of operators holds a finite number of operators to select
an operator from in order to produce neighbours to move to, while the selected
operators is credited upon its action and success level it achieves in producing
new solutions. The credit level to assign to the selected operator is estimated
based on preferred rules.
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Fig. 1. General overview of adaptive operator selection process with support of popu-
lation and pool of operators

Operator Pool

2.1 Operator Selection

The first phase of operator selection process is to execute the selection rule im-
posed by operator selection scheme in order to produce neighbouring solutions
to move to. The main aim is to keep a EvE rate as balanced as possible so
that the search to be intensified within the neighbourhood as long as it produces
positively and to be diversified as soon as it turns to negative productivity. Liter-
ature reports a number of operator selection schemes; random selection, merit-
based selection, probability matching, adaptive pursuit and multi-arm bandit
approaches, e.g. upper confidence bound (UCB). Random selection chooses an
operator from the pool completely randomly, Roulette-wheel takes the success
counts of each operator into account to calculate a probability-based prioritisa-
tion, while probability matching (PM) approach accounts the success as merits
and lets to increase the selectability of non-chosen operators using the following

rule: .
Pit = Prin + (1= Kpmin) —oot—,  i=1,2.K (1)

Zj:l 4j.t
where K is the number of operators in the pool, pyin € [0,1] represents the
minimum probability of being selected, and ¢; + is the credit level/value of op-
eration i at time t. Both PM and AP use p.,i, to set a base probability for
each operator, which would help address the EvE dilemma with allocating a
minimum chance to every operators to be selected. PM imposes to calculate
the probabilities of being selected per operation, while AP uses the strategy of
?winner takes all” approach that credits more to promising options. adaptive
pursuit (AP) calculates the probabilities with Eq. 2.
Py = Pit—1 + B(Pmaz — Pig—1), ifi=ipx @)
vt Dit—1 + B(Pmin — Pit—1), otherwise

Both of PM and AP impose higher dominance for exploitation, which is
aimed to decrease by UCB using the following rule, which selects the operator

with highest probability.
pit = {1 Dmin * (K —1) ifi= zt.* 3)

Drmin s otherwise
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where K is the number of operators in the pool, ppin € [0,1] represents the
minimum (base) probability for being selected, i;* is calculated with 4.

K
2log > i 1 nje
Tt

ipx = arg max {g;; + C X } (4)
i=1,., K

where op; represents the selected operator, C' works as a scaling factor, n is

number of times the operator selected while ¢; ; and n;; on the right-hand-side

of equation help control FvE dilemma, respectively.

2.2 Credit Assignment

The next phase of adaptive operator selection process is to estimate a credit to
be assigned to the operator just used. This involves how to estimate the amount
of reward to assign and what to be the base for estimate of a credit. Literature
suggests that mainly two classes of approaches have been implemented; whether
a success has been achieved or not, or how much positive difference accomplished.
The former approach considers if the result is ”success” or ”fail”, while the latter
processes the amount of achievement in quantity to estimate the level of reward
to assign.

The process of credit assignment entails clarifying the time window with
which the reward level is to be estimated. The time window can span from last
single step to a pre-defined number of previous steps in which the credit level
and/or the achievement level can be averaged. This reveals that a credit can be
decided as instant credit, an averaged credit or the mazimum credit.

3 Proposed Approach: Adaptive selection with
Reinforced-Clusters

Operator selection adaptively developed and used for higher efficiency in diver-
sification of search process. The operator selection schemes, even the adaptive
ones, propose choosing an operator based on credits gained over the success
counts through out the search, but, regardless of the input sets, the problem
state, and search circumstances. The merit-based schemes usually select opera-
tors through a blind process, where the total gained credit is relied on regardless
of the status of search etc. It is known that operators do not always produce suc-
cess due to their limitations; each performs better under some circumstances,
while does worse in other circumstances. Once the fruitful circumstances are
ascertained for each operator, a complementary policy can be customised for
deliberative selection to achieve success.

This study aims to propose a more conscious selection process developed
based on reinforcement learning approach implemented into a distance-based
clustering algorithm in which the distance in between the input set and the
fine-tuned cluster centres is estimated and made reference index in operator se-
lection. The idea of setting up a selection scheme based on clusters is discussed
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and implemented in machine learning studies. Reinforcement learning is known
to be very useful in handling dynamically changing environment and for solving
dynamic problems, particularly for operating within unknown dynamic environ-
ments. One of earlier studies proposes embedding reinforcement learning in a
distance-based clustering algorithm, namely hard-c-means algorithm, to train
agents to select the best scheduling operator subject to dynamic production en-
vironments to solve dynamic scheduling problems [2]. Inspiring of this study, a
reinforced-clustering algorithm is put together to optimise the cluster centres
so that the problem states can be classified with optimised clusters, where each
cluster will correspond to an operator. The algorithm will impose selecting the
cluster centre, operator, closer to the input set in distance. This will facilitates
a selection scheme conscious with problem state.

Operators are selected based on probabilities, p;;, calculated as in Eq. 3,
where the best operator is determined using Eq. 5. The other operators are also
prioritised based on the distance in between the problem state at time f, X,
and the cluster centres, c¢ - corresponding to the operators. Here, the distance
metric used in this study is hamming distance due to the binary representation
of the problem and the operators.

ik = arg i:qli.?}{{ﬁqiyt +vei(we)} (5)

where ¢; ¢ is the credit level /value of operation ¢ at time ¢, while e;(z;) = ||x¢ —
¢i||, the estimated distance between an input set and cluster ¢;, 8 and + are
coefficients to balance between credit and distance metrics. Note that unlike
other methods, the reward value of good solutions is reflected as negative.

4 Experimental Results

The reinforced-clustering-based operator selection scheme has been tested with a
binary ABC algorithm to solve uncapacitated facility location problem (UFLP)
instances, which is one of well-known NP-Hard combinatorial problem. The de-
tails of UFLP benchmarking instances taken form OR-Library can be found in
many articles [1, 8].

The problem solving algorithm to use reinforced-clustering-based operator
selection scheme is chosen as the standard artificial bee colony (ABC) algo-
rithm reported in [14]. The standard ABC is designed for continuous numerical
optimisation problems, while UFLP is a combinatorial optimisation problem rep-
resented in binary form [18]. The algorithm has been rearranged to work with
state-of-art binary operators; binABC' [16] and ibinABC [6] work on the basis of
XOR logical operator and disABC [15] uses a hamming distance-based binary
logic.

Algorithm 1 presents a pseudo code of ABC algorithm embedded with reinforced-
cluster-based operator selection scheme implemented for UFL problems. As seen,
ABC imposes a three-phase process to evolve a swarm (population) of solutions.
The first phase exploits employed bees to generate new solutions with selected
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Algorithm 1 The pseudo code of binary ABC embedded with reinforced-cluster
based operator selection scheme

1: Initialisation phase:

2: Set algorithm parameters

3: Create initial population

4: while Termination criteria is not met do

5: Employed bee phase:

6: Select operators and assign to bees

7 for i=1 to N do

8: Select neighbour, apply operator and obtain candidate solution (v;)
9: if f(v;) is better than f(z;) then

10: Replace v; with z;

11: Get reward and add to 7,p,: and update centroid of cop ¢
12: Reset trial counter

13: else

14: Increment trial counter

15: end if

16: end for
17: Onlooker bee phase:

18: Calculate probabilities for food sources

19: Select operators and assign to bees

20: Increment operator counter, t=0

21: for i=1 to N do

22: Determine current solution according to probability
23: Select neighbour food source

24: Apply operator and obtain candidate solution (v.)
25: if f(vc) is better than f(z.) then

26: Replace v. with z.

27: Get reward and add to 7,p,; and update centroid of cop ¢
28: Reset trial counter

29: else

30: Increment trial counter

31: end if

32: end for
33: Update Phase:

34: Credit assignment

35: Memorisation

36: Scout bee phase:

37: if Limit is exceed for any bee then

38: Create random solution for the first exceeding bee and evaluate it
39: end if

40: end while

binary operators applying to the materials taken from a selected solutions and
one of its neighbours. The generated solution is added to the swarm if it is
better than the parents, the amount of reward to allocate to the operators is es-
timated and the position of centre for selected and used operator is updated. If
the the generated new solution is not better than the parent solution no reward
is generated and the trail counter is incremented.

The onlooker bees conduct the second phase of ABC in which the solutions
are selected with a probabilistic approach to let randomness contribute the di-
versity of the swarm. Similar to the first phase, the operator selection, the reward
estimation and crediting are performed and the corresponding cluster centres are
updated. The scout bees follow up the onlookers to replace from non-improvable
solutions with randomly generated ones to keep the swarm further divers.

The experimentation has started with parametric study to fine-tune param-
eters used in both the algorithm and within the mechanics of the operator se-
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lection scheme. The experimentation for parametric study has been conducted
using the hardest benchmarking instance of UFL problem, which is known as
CapC. The parameters configured for best fit are tabulated in Table 4 and av-
eraged over 30 repetitions.

Table 1. Parameter configurations tested

Parameter Values

Reward Inst| Avrg| Max
Prnin 0.10| 0.20| 0.30
w 10.00|25.00{50.00
B 0.01| 0.05| 0.10
v 0.10| 0.50| 0.90

Table 2 presents the hit metric, which is the number of trails attained the
optimum. The best performance so far is 25 hits out of 30 trails, where v = 0.5,
B = 0.01 and P,,;, = 0.1 are found and setup. Next, the reward estimation
across a time/iteration window is fine-tuned, where the parametric study results
obtained for average and extreme rewards are tabulated in Table 3. The best hit
values are obtained 25 and 27 out of 30 trails for average and extreme reward
cases. respectively.

Table 2. Parameter tuning for Instant reward measured with hit metric

Prmin
01 | 02 0.3

B B B
0.01 0.05 0.1]0.01 0.05 0.1]0.01 0.05 0.1
0.1]24 16 20 (18 24 24 (24 24 24
0.5|25 21 19|19 19 21 (24 19 14
09|16 21 14|21 21 14 (17 21 17

The window size (W) of 25 and 50 produce best results, while all trails are
tested with P, = 0.1, 8 = 0.05 and v = 0.1. The averaged achievements
conclude that W = 25 produces the best configuration.

The best configuration concluded out of parametric study has been run with
hardest benchmark instances, CapC, to trace the operator selection through
timeline, where the progress of operation selection is plotted in Fig. 2. The
plot demonstrates that disABC operates best over the first 200 iterations and
then binABC takes over the best delivery. binABC doesn’t perform well in
comparison to other two as suggested in the plot.

The results by the proposed approach have been tabulated in Table 4 along-
side of other adaptive operator selection methods explained above for compara-
tive purposes. As seen, all adaptive methods embedded in binary ABC algorithm
have assisted solve all UFLP benchmark instances with 100% success except
CapC, where the Gap and St. Dev metrics are 0 and the hit measure is 30 out
of 30 for all instances except CapC. It is paramount to define the gap as the av-
erage difference in between the optimum value and the fitness/cost value found,
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Fig. 2. Operator usage rates through search process

Table 3. Parametric fine-tuning results in hit metric for both average and extreme
rewards

Average | Extreme Average | Extreme
Reward Reward Reward Reward
0l v 0d v

W | Ppin |8 0.1 0.3 0.9/0.1 0.3 0.9[|W |Ppin|B 0.1 0.3 0.9/0.1 0.3 0.9
0.01(16 21 16 (24 25 24 0.01(22 20 22 (22 23 24

0.1 0.05(23 19 17|23 24 23 0.1 0.05[25 17 19 |27 21 23
0.1 (21 19 18 (23 24 19 0.1 (24 21 18 |22 19 21

0.01[24 21 23 |19 19 23 0.01(23 21 21 |17 25 23

5 10.2 0.05(22 20 18 (21 19 17 ||25(0.2 0.05(15 19 21 (21 22 22
0.1 (20 21 19 (19 18 19 0.1 (22 20 21 |17 25 23

0.01[20 21 23 [19 18 20 0.01[21 20 20 [20 16 26
0.3 0.05(20 23 20 (21 20 19 0.3 0.05(20 18 18|22 23 17
0.1 (22 15 18 |21 16 19 0.1 (21 18 19 (25 22 16

0.01(25 21 24 (22 16 25 0.01(23 19 19 (21 18 19

0.1 0.05(21 23 20 (20 18 22 0.1 0.05(21 22 19 (27 21 19
0.1 (24 15 23 (22 19 22 0.1 |20 20 18 |21 18 23

0.01(25 19 20 (21 18 13 0.01(18 20 25 (21 22 19

10(0.2 0.05(21 22 20 (14 23 17 ||50(0.2 0.05(19 21 19 |21 18 18
0.1 (24 21 20 (15 21 21 0.1 (23 14 22 (22 17 19

0.01(24 20 20 (24 20 19 0.01(16 25 20 (21 18 20

0.3 0.05(21 14 16 (20 24 19 0.3 0.05(22 17 21 (22 16 20
0.1 (23 21 19 (20 20 22 0.1 (16 19 16 |21 14 18

while St. Dev. is the standard deviation calculated over 30 repeated trails. CapC
seems to be the hardest benchmark instance, which helps fine-tuning the hyper
parameters and comparing the results produced by each rival approaches. The
proposed method, labelled as ”C-BABC” in the tables, produces the lowest gap
and st. dev and the highest hit in comparisons to "PM-BABC”, "AP-BABC”
and "UCB-BABC”, which are the binary ABC algorithms embedded with PM,
AP and UCB as explained above.
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Table 4. The comparative results obtained; the proposed operator selection scheme
vs alternatives

Benchmarks PM-ABC AP-BABC UCB-BABC C-BABC

Gap Std. Dev. Hit|Gap Std. Dev. Hit|Gap Std. Dev. Hit|Gap Std. Dev. Hit
Cap71 0 0 30 0 0 30 0 0 30 0 0 30
Cap72 0 0 30 0 0 30 0 0 30 0 0 30
Cap73 0 0 30 0 0 30 0 0 30 0 0 30
Cap74 0 0 30 0 0 30 0 0 30 0 0 30
Capl01 0 0 30 0 0 30 0 0 30 0 0 30
Capl102 0 0 30 0 0 30 0 0 30 0 0. 30
Capl03 0 0 30 0 0 30 0 0 30 0 0 30
Capl04 0 0 30 0 0 30 0 0 30 0 0 30
Capl31 0 0 30 0 0 30 0 0 30 0 0 30
Capl32 0 0 30 0 0 30 0 0 30 0 0 30
Capl33 0 0 30 0 0 30 0 0 30 0 0 30
Capl34 0 0 30 0 0 30 0 0 30 0 0 30
CapA 0 0 30 0 0 30 0 0 30 0 0 30
CapB 0 0 30 0 0 30 0 0 30 0 0 30
CapC 0.0055 1428.003 25|0.0043 1302.539 26(0.0087 1694.457 22/0.0033 1149.5 27

The success of proposed method has been comparatively tested with a num-
ber of recently published studies, which can be considered as state-of-art works.
The comparative results have been picked up form corresponding articles [1]
and tabulated with the results produced by the proposed approach. As clearly
seen on Table 5, the proposed method, C-BABC, outperforms all the algorithms
known to be the state-of-the-art with a 100% success of solving all benchmark
instances except CapC, which is solved with the highest score, while binAAA
and JayaX solve all instances except CapB and CapC. Due to level of hardness
in solving CapB and CapC approaches are tested with, so is the proposed ap-
proach in comparative way. The difference between the results by the proposed
approach and other competitor algorithms have been tested statistically with
Wilcoxon signed rank and the results are presented in Table 6, where C-BABC,
the proposed method is significantly performed better.

Table 5. Comparative results; The proposed method (C-BABC) versus some state-of-
art approaches

Benchmark GA-SP BPSO binAAA JayaX C-BABC

Gap Std. Dev. Hit|Gap Std. Dev. Hit|Gap Std. Dev. Hit|Gap Std. Dev. Hit|Gap Std. Dev. Hit
CapT71 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30
Cap72 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30
Cap73 0.066 899.65 19| 0.024 634.625 26 0 0 30 0 0 30 0 0 30
Cap74 0 0 30| 0.0088 500.272 29 0 0 30 0 0 30 0 0 30
Capl01 0.068 421.655 11| 0.0432 428.658 18 0 0 30 0 0 30 0 0 30
Capl02 0 0 30(0.00989 321.588 28 0 0 30 0 0 30 0 0 30
Capl03 0.063 505.036 6]0.04939 521.237 14 0 0 30 0 0 30 0 0 30
Capl04 0 0 30| 0.040 1432.239 28 0 0 30 0 0 30 0 0 30
Capl31l 0.068 720.877 16| 0.171 1505.749 10 0 0 30 0 0 30 0 0 30
Capl32 0 0 30| 0.058 1055.238 21 0 0 30 0 0 30 0 0 30
Capl33 0.091 685.076 10| 0.082 690.192 10 0 0 30 0 0 30 0 0 30
Capl34 0 0 30| 0.195 2594.211 18 0 0 30 0 0 30 0 0 30
CapA 0.046 22451.21 24 1.69 319855.4 8 0 0 30 0 0 30 0 0 30
CapB 0.58 66658.65 9 1.40 135326.7 5|0.24 39224.74 15| 0.07 27033.02 26 0 0 30
CapC 0.70 51848.28 2 1.62 115156.4 1]0.29 29766.31 1]0.021 5455.94 17|0.0033 1149.5 27
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Table 6. Statistical test results for state-of-art methods compared with proposed ap-
proach

binAAA | JayaX BPSO GA-SP
Benchmarks|p-value H|p-value H|p-value H|p-value H
Cap71 10 10 10 10
CapT72 10 10 10 10
Cap73 10 1 0| 1.E-01 0| 1.E-03 1
CapT74 10 1 0| 3.E-06 1| 4.E-08 1
Capl01 10 1 0| 2.E-01 0| 4.E-04 1
Capl102 10 1 0| 5.E-01 0 10
Capl03 10 1 0| 1.E-06 1| 1.E-06 1
Capl04 10 1 0| 5.E-01 0 10
Capl31 10 1 0| 1.E-06 1| 1.E-06 1
Capl132 10 1 0/1.E400 0| 4.E-08 1
Capl133 10 1 0| 2.E-06 1| 1.E-06 1
Capl34 10 1 0| 5.E-04 1 10
CapA 10 1 0| 5.E-05 1| 1.E-01 0
CapB 6.E-05 1| 2.E-07 1| 2.E-06 1| 2.E-06 1
CapC 4.E-06 1| 1.E-04 1| 3.E-06 1| 4.E-06 1

5 Conclusion

This study has been done to investigate how machine learning can help adapt a
dynamically updating scheme for operator selection within ABC algorithms as
one of recently developed swarm intelligence approaches in solving binary prob-
lems. The research has been done embedding an online learning mechanism into
binary ABC to learn which operator performs better in given circumstances.
The main contribution of this research is that the adaptive operator selection
has been achieved through reinforcement learning which is implemented with
Hard-C-means clustering algorithm converted its unsupervised nature into rein-
forcement learning. Unlike the previously suggested adaptive selection schemes,
this approach maps the binary input set into corresponding operators, hence,
each time the hamming distance between both binary sets is used to make the
selection, while the centres of the clusters are optimised/fine-tuned with es-
timated rewards per operator selection. The optimised cluster centres remain
as the basis of operator selection. The proposed algorithm is tested with solv-
ing UFL problems, and statistically verified that the proposed approach signif-
icantly outperforms the state-of-art approaches in solving the same benchmark
instances. It is also demonstrated that other existing adaptive approaches are
also outperformed.
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1 Introduction

In this period of economic recession [1] coupled with growing environmental concerns, the
development of effective policies and tools remains crucial to tackle current and future challenges. In response,
governments has been implementing energy taxes and/or subsidies to reduce energy consumption and
greenhouse gases (GHG) emission. Consequently, the industrial sector has been adapting to the newest
regulations and energy prices increase while maintaining competitiveness. This past decade, the impact of
energy awareness in the supply chain have been widely studied [2].

Energy sobriety is beneficial for both economic and environmental reasons. First, energy cost is a
shortfall for heavy energy-using industry as the energy supplies are getting expensive. For that purpose, energy
providers have designed preferential tariffs rate such as TOU, real-time or critical peak pricing. TOU rate
incite manufacturers to shift their production to cheaper off-peak hours. Second, depending on the energy mix
used (e.g. coal or gas based), reducing energy consumption or costs is a direct way to reduce GHG emission

[3].

Early industry focused on mass production with high volumes of few products. Yet, these past decades,
major changes in industry have been occurring [4]. Product variety and demand for tailor-made products force
manufacturers to make a compromise between their available production capacity and their generated profit.
This global tendency appears in a plethora of manufacturing sectors and Order Acceptance Scheduling (OAS)
is an abstraction to model this particular trend. OAS is a particular scheduling problem where the decision
covers the selection of a subset of n orders and their sequencing in a capacity-constrained production system
with the objective of maximizing total profit. Literature on OAS considering energy aspects is very sparse. In
fact, only three papers have been reported [5]-{7].

In this vein, this paper investigates a single machine OAS problem with release date and sequence
dependent setup-times under TOU tariffs and taxed carbon emission with the objective of maximizing total
profit. Chen et al. are the first to introduce [5] this problem while proposing a disjunctive Mixed Integer Linear
Program (MILP). Bouzid et al. consider [6] an arc-time-indexed (ATI) MILP to cope with the high complexity
of this NP-hard problem and successfully solve some large instances. Without sequence-dependent setup-
times, time-indexed formulations described in [8] are shown to be outperforming a classical MILP. Based on
this, an adaptation of these formulations is undertaken in order to solve the considered OAS problem.
Performances of the formulations against existing models in the literature are shown and discussed in terms
of solving time, average gap and optimal solutions found. Spatial complexity of each model is also provided
in order to grasp the behavior of the proposed models.

2 Problem statement

The OAS with sequence-dependent setup-times, release date under TOU costs and taxed carbon periods
is investigated. In this problem, the objective is to maximize the revenues minus tardiness penalties and energy
costs. Each order j = 1,...,n is completely defined by its processing time p;, release date r;j, due date d;,
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deadline d;, revenue e;, power consumption ; and tardiness penalties w;. In  Revenue
addition, a sequence dependent setup-time s;; is defined between any pair of
orders i and j. A dummy order 0 is introduced in order to start the sequence,
each of its properties are set to zero except its setup-time s,; between any
order j. An order j is accepted when it is sequenced in the span ranging from
its release date 7; to its deadline cfj and rejected otherwise. A proportional
tardiness penalty w; is subtracted to an order revenue e; when the planning
exceeds its due date d; (Figure 1).

€ ——

| |

| |

1 |

1 I

I |

I |

1 L > > Time
Tj d; d;

Figure 1 Revenue minus tardiness
Moreover, the planning horizon is divided into periods of fluctuating  calculation of an order j adapted
TOU tariffs and CO, emission, characterized by an electricity cost, an from [13]
amount of CO; per kg and a tax per emitted kg of carbon.

3 Solution approach

The mathematical formulations provided in this work are time-indexed, i.e. they both rely on the
discretization of the time horizon into unitary slots ¢ = 0, ..., T. Since the setup-times are sequence dependent,
the binary decision variables v;; are employed in each model for any pair of order i and j to determine the
sequencing. The binary variable u;; takes value 1 if and only if order i precedes directly order j in the sequence,
0 otherwise.

An example is given in order to better understand the proposed formulations. Table 1 and Table 2
presents the optimal solution of an example with n = 3 orders with their processing times p = [5,3,2], release
dates r =[1,2,1], due dates d = [6,5,12], deadlines d =[9,10,14], revenuese = [10,10,6], power
consumption Q = [1,2,1] and weight penalties w = [2,1,3]. The horizon is T = 14. The setup-times between
orders are defined by s = [[0,1,2,3], [0,0,3,2],[0,1,0,3], [0,1,1,0]]. Finally, the starting times of TOU and
carbon emission intervals b = g = [0,5,8], the electricity price EC = [2,10,2] and the amount of CO, emitted
q = [4,1,4] are defined.

3.1. On/off formulation

Each binary decision variable x;, = 1 indicates whether the order j is processed at time t = ;, ..., d;, or
not x;, = 0. In the same way, the binary decision variables y;, = 1 corresponds to a unit of processed setup of
anorderj=1,..,nattimet =r,...,d;. Finally, for any order j = 0, ..., n, the binary decision variable q; takes
value 1 if order j is accepted, O otherwise.

Table 1 Example of an integral solution represented by the values of the decision variables x;., sequence is 0 — 3 — 2
and order 1 is rejected.

j/t [o[1]2[3]a[5]6]7[8]9]10][11[12]13] 14
0 [1]o]ofofolo]ofolo]ojo[0[0[0]0
1 |o]ojolo]oolo]ojofo[o0 0000
2 |ojofofofofofofof1[1[1 ][0 0[O0 0
3 [oJofofol1[1][ofolo]ojlo[0 [0 0] 0

An accepted order j is produced during the totality of its processing time, counting the number of x;,
variables in the range of its release date 7; to its deadline Jj. Non-preemption is guaranteed by forcing the
contiguity of the x;; variables. Units of setup operations are denoted by the y;, variables and in the same
manner as the x;; variables, they must be adjacent. Finally, the y;; variables shall appear before the processing
of an order j, observing the sequencing determined by the u;; variables and the right amount of setup-times.

167



3.2. Pulse formulation

The decision variables z;, refer to the possible instants t = 7y, ..., cfj —pj+ 1lwhentheorderj =1,...,n
starts. Meaning that z;, = 1 if and only if order j begins its production at time period ¢, and 0 otherwise.

Table 2 Example of an optimal solution represented by the values of the decision variables z;,

j/t 1011]2|3]4[|5]|6(7|8]|9]10|11|12]13]|14
0 (1|0|0(0O|0O|OfO|O|O|O|O]jO|O|O]|O
1 |0(0|0|0O|O|O|O|O|O|O|O|0O0|0O0]|0O]O
2 (0|0|j0OfO|0O|OfO|O|2|O|O]jO|O|O]|O
3 |(0|0|OfO|1|0fO|O|O|O|O|jO|O|O]|O

| So3 | P3 | |S32 | P2 |

01234567 8910 11 12 13 14
Figure 2 Corresponding Gantt diagram relative to the example.

In the pulse model, an order j is accepted if it starts between its release date and its deadline, meaning
that a single z;.variable is expected between 7; and Jj —pj + 1 if the order is processed. A precedence
constraint guarantees that if an order j is processed after an order i, the order j shall starts at least after its
release date, its setup operation and the production of order i.

4. Conclusion and perspectives

In this paper the OAS problem under energy aspects is studied. Two distinct time-indexed
formulations are used to solve this NP-hard problem. Since the objective is the maximization of total profit
with energy costs and tardiness penalties, these formulations exploit to their benefits the strong time-
dependency of the investigated problem. The under-going work is dedicated to the development of fix-and-
relax heuristics on these models with various approximation strategies including setup-times and variable
relaxation. This solution approach and its preliminaries results will be presented on this occasion.
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Abstract. The problem addressed in this paper was motivated by a real case optimization
problem of the supply chain of the hospital center of Troyes (HCT). The HCT is currently
involved in the review and improvement of its logistics processes, and in the implementation
of operational research techniques in order to provide effective solutions to better optimize the
activities of its logistics chain. In this work, the considered problem focuses on the catering
component of hospital logistics. A new mathematical model and different metaheuristics for
the production scheduling of multi-products and multi-stages food processes are developed.
These resolution methods have been implemented by using the solver Cplex and the Java
programming language. The computation results of the developed methods have proven their
effectiveness for the scheduling of production processes and allowed significant improvements
in the current organization and in the performance of the studied production system.

Keywords : hospital catering, production scheduling, flexible job shop problem, sequence-dependent
setup time, job-splitting, mathematical model, genetic algorithms, iterated local search algorithms.

1 Introduction

Nowadays, hospitals are facing the challenges regarding quality of care and performance. In the
management and organization of hospitals, there is still much progress to be made to improve the
quality of care while reducing costs. To respond effectively to the patients needs and to improve the
working conditions and well-being of their employees, hospitals are looking for tools and new ways
of organization and management. In the present work, a mathematical model and metaheuristics
for the scheduling production processes in hospital catering are developed. This work is part of an
industrial thesis in partnership with HCT and LOSI. The logistics platform of the HCT is composed
of the central food production unit, a laundry, and a store that can satisfy, in addition to its needs,
requests of meals, washings and pharmaceutical products of its partners. The objective of the
addressed problem is to find solutions for scheduling production processes to satisfy the demands
of meals of the customers while optimizing certain criteria and taking into account several specific
industrial constraints.

2 Problem description

The problem of food production process scheduling considered in this study aims to schedule the
operations from the pre-treatment of raw materials to the stock of finished products of a meal
manufacturing process in hospital catering or more generally in collective catering. This problem
is considered as a flexible job shop scheduling with sequence-dependent setup time, since each
job has its own order of operations and each operation has to be affected to one among a set of
alternative machines. The problem of food production process scheduling can be described by a
set of jobs, where each job corresponds to the preparation of a dish characterized by a number of
portions (quantity), and a set of operations for the preparation of the dish (from raw material to
finished product). For each job, there is a due date to respect. It is worth to highlight that the
dishes to be prepared do not have the same operating ranges (set of operations necessary for the
preparation of dish). In this study, we identified ten possible operating ranges for all the dishes
to be prepared and it is possible that several dishes may have the same operating range. For each
operation of an operating range there is a set of material resources able to realize it, such as :
ovens, packaging machines, cooling cells, etc. These material resources can be classified into three
categories : material resources with a capacity of one portion and that can not process several jobs at
the same time (material resources that can perform preprocessing and cold production operations),
material resources with a capacity greater than one portion and which can not process several jobs
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2 Scheduling production processes in hospital catering

at the same time (ovens,...) and material resources with a capacity greater than one portion and
that can process several jobs at the same time (cooling cells). For each material resource, there
is a setup time to take into account which corresponds to the preparation time of the machine
before carrying out an operation and the cleaning time of the machine between two consecutive
operations. A time window of availability is known for each material resource. Note that the
corresponding machines may not be identical, involving different processing times according to the
chosen machine. The setup times of machines are sequence dependent because it depends on the
preceding operation on the same machine. The food production process scheduling involves two
steps : (i) assignment of operations to machines, (ii) sequencing of operations on machines. In order
to respect the production capacity of material resources, a job can be splitted into smaller sub-lots,
in such a way that the operations of sub-lots of a job can be performed simultaneously on different
machines. This strategy, which is useful when machine capacity does not allow the treatment of
the whole job, also enables a more efficient processing scheme. The criterion to minimize in the
present study is the total of flow time of jobs in the production system. The choice of this criterion
is based on the fact that the respect of the cold chain at each stage of the product life cycle must
be ensure. It aims to constantly maintain a low temperature (positive or negative depending on the
product) to ensure the maintenance of all the food qualities (hygienic, nutritional and gustatory).

3 Resolution methods

To respond effectively to this new industrial problem, we first developed mathematical models for
small instances of the problem. The results of these works are the subject of scientific publications
([1], [2])- The developed mathematical models have been implemented by using the solver Cplex
and they have been tested on 150 instances of different types : real instances of HCT, randomly
generated instances of HCT type, randomly generated instances and adapted instances of literature
([6], [7], etc). The implementation results (Table 1) of the mathematical models show that these
latter are able to find solutions in less than three hours of execution for the small instances. The
execution times of the mathematical models for these instances vary according to the number of
jobs, sub-lots, and operations. The computational results of the proposed mathematical models
on different types of instances show the limits of an exact resolution for the studied problem. To
solve the large instances in reasonable resolution times, two genetic algorithms (GAs) and two
iterated local search algorithms (ILSs) are developed. The results of these works are the subject
of a scientific publication ([5]). The developed metaheuristics have been implemented in Java
programming language and have been tested on the same instances (instances presented below) as
the mathematical models. From the computation results presented in Table 1, we remark that the
developed metaheuristics are efficient in terms of quality and rapidity. The performance depend
on the type of instances and their sizes, and it depends also on the choice of heuristics for the
generation of initial solutions. By comparing the different resolution methods on all the tested
instances, we found that for some instances, the two genetic algorithms succeeded in finding the
optimal solutions in very short computation times compared to the mathematical models. For the
instances for which the optimality has not been reached, the gaps between the solutions obtained
with the algorithms and the optimal solutions are very small. For the large instances for which
the mathematical models have failed to find solutions after more than three hours of execution,
the developed metaheuristics have found feasible solutions within reasonable computation times.
By comparing the results obtained with the genetic and iterated local search algorithms on all
the tested instances, we find that the ILSs are less good than the GAs in terms of quality of
solutions obtained. Whereas, in terms of rapidity, the ILSs methods are faster compared to the
GAs. Table 2 represents the results of the genetic algorithm on some examples of real production
days with comparison between the real solutions as these production days were organized and the
solutions proposed by the genetic algorithm. The performance indicators between solutions are
based on the total flow time and the gaps between the solutions. From these results, we remark
that the gaps between the real solutions and those of the genetic algorithm are very importants
and significants. For example, for the instance having : 62 dishes, 68 sub-lots, 218 operations, 29
machines, we have brought about a considerable improvement of 18,72 % on the real solution. The
proposed metaheuristics make it possible also to improve the solutions of the adapted instances of
the literature. For example, for the instance of Lee et al. [7], the genetic algorithms have brought
about an improvement of 3.92 % on the solutions obtained by the methods proposed in [7], which
shows the quality of the developed metaheuristics.
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Scheduling production processes in hospital catering 3

J SL O MFO (h) TO (s) F1 (h) T1 (s) F2 (h) T2 (s) F3 (h) T3 (s) F4 (h) T4 (s)
5 5 2429 399 240 399 04 399 1 399 01 399 0.28
6 6 2929 492 1200 49.2 0.6 492 14 492 016 49.2  0.40
810 39 29 69.4 9000 694 1 694 2 694 046 694 0.3
9 11 44 29 - >10800 777 15 777 3 77 071 TI0 12
1012 48 29 - >10800 850 2 8.0 4 8.4 096 859 14
2022 9329 - > 10800 1624 30 1624 60 1665 5 1658 11
40 42 17929 - > 10800 339.7 90 3397 180 3549 23 3523 49
50 58 22729 - > 10800 471.6 138 478.6 276 490.6 30 4856 60
60 68 27129 - > 10800 590.4 180 593.9 360 6244 43 6167 87

82 92 370 29 - > 10800 798.3 300 788.6 600  846.5 70 840.8 141
J: nomber of jobs, SL: number of sub-lots, O: number of operations, M: number of machines, F0: total
flow time of the mathematical model, TO: computational time of the mathematical model, F1: total flow
time of GA1, T1: computational time of GA1, F2: total flow time of GA2, T2: computational time of
GA2, F3: total flow time of ILS1, T3: computational time of ILS1, F4: total flow time of ILS2, T4 :
computational time of ILS2

Table 1: Computational results of the developed resolution methods on real instances of HCT.

Instance 1 Instance 2 Instance 3

- Number of dishes 82 110 62

- Number of sub-lots of dishes 92 115 68

- Number of operations 370 392 218

- Number of material resources 29 29 29

- Average number of meals produced 4 800 4 800 4 800
- Real solutions 901,97 h 1062,66 h 278,23 h
- Genetic algorithm solutions 788,64 h 95248 h 26,12 h

- Gaps between real and genetic algorithm solutions -12,56 % -10,36 % -18,72 %
Table 2: Comparison between real and genetic algorithm solutions on some
examples of production days.

4 Conclusion

This article presents the results of a study on a new industrial problem. Different resolution methods
for scheduling production processes in hospital catering were developed. A mathematical model
integrating all the constraints of the studied problem was developed. The computational results of
the mathematical model on different types of instances show the limits of an exact resolution for the
problem of scheduling production processes. To solve the large instances of this problem, different
metaheuristics have been developed and tested on several types of instances. The computational
results of these metaheuristics have proven their effectiveness for scheduling operations of the food
production processes and allowed significant improvements in current real solutions and system
performance. The present work opens the way to different perspectives such as the study of the
production planning problem over several days and our future works will focus on the development
of resolution methods for this problem.
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Abstract. Dynamic pricing strategies are usually adopted to dynamically adjust the prod-
ucts’ prices taking into account demand function characteristics to maximize the revenue.
This paper addresses the problem in which a firm has to make decisions about its selling
prices in each period to maximize the total profit over the whole horizon. We propose a theo-
retical analysis of this problem from which we show that: first, when the demand function is
linear, the problem can be formulated as a quadratic programming problem. We also present
the Karush-Kuhn-Tucker system, which can be used to find the optimal pricing policy when
the objective function is concave. Then, when the demand is isoelastic, we also show that
the problem can be reduced to the maximization of N independent functions in bounded
intervals. Some numerical examples are provided to illustrate the results obtained for both
the linear and isoelastic cases.

Keywords : Revenue maximization, Dynamic pricing, Linear and isoelastic demand, Quadratic
programming, KKT conditions

1 Introduction

Dynamic pricing is a pricing strategy where the firms adjust dynamically the prices of the prod-
ucts and services according to the perceived demand at different times (Narahari et al. (2005)).
One of the key elements when dealing with a dynamic pricing problem is the demand function
which characterizes the relation between different factors like (selling price, advertising, seasonal-
ity,...) and the demand. In the paper of. Huang et al. (2013), a survey on the demand functions
was presented. The factors considered are price, rebate, lead time, space, quality, and advertising.
The authors observed that: 1) the linear and isoelastic demand functions are the two widely used
in the literature, and 2) the majority of publications consider the price and quality factors.

Initially, the dynamic pricing has been applied to the service industries such as airline (Smith
et al. (1992)) and hotels (Bitran, Mondschein (1995)). According to Elmaghraby, Keskinocak
(2003), factors like 1) the availability of demand data and decision-support system to track the
changes in prices and, 2) the simplicity of prices adjusting due to the recent developments in tech-
nologies lead to several works on dynamic pricing on a wide range of industries like retails (Chen
et al. (2016)).

Several studies dealing with the coordination of dynamic pricing and production decisions with
the discrete-time horizon and multiple products are conducted. The work of Bajwa, Sox (2015)
presented a joint pricing, production, and advertising decisions model for a firm that produces
and sells multiple products as different brands. The authors assumed that the demand is a func-
tion of the price and advertising money and demonstrated that coordinating the marketing and
operational decisions leads the firm to increase its profitability. The paper of Bajwa et al. (2016)
considered a manufacturer with a limited production capacity. They proposed a model that allows
lost sales under a price-dependent demand function. Ouazene et al. (2017) studied the problem in
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which the products can be sold through multiple channels and the demand is a price-dependent
function. The authors compared the dynamic and constant pricing strategies. The paper of Couzon
et al. (2019) presented an extension of the classical capacitated lot-sizing problem by considering a
production system with variable capacity under a price-dependent demand function. The work of
Couzon et al. (2020) improved the model studied in Bajwa et al. (2016) by introducing new lower
and upper bounds that reduced the search space. They also proposed new constructive efficient
heuristics to solve the model. All the papers cited above assumed that the demand in a given period
is a function of the price of the product in the same period and can take the linear or isoelastic form.

Several surveys on dynamic pricing have been published, Bitran, Caldentey (2003), Elmaghraby,
Keskinocak (2003), and Chen, Simchi-Levi (2012) reviewed the literature on dynamic pricing with
the presence of inventory considerations. A survey on dynamic pricing and learning was conducted
in Boer den (2015). The authors reviewed the literature on dynamic pricing with demand uncer-
tainty.

The presented work investigates the problem in which a firm has to make decisions about its
selling prices in each period to maximize the total profit over the whole horizon. This problem
has been initially tackled by Shakya et al. (2012) and solved by combining neural networks and
evolutionary algorithms. Their study is based on linear, exponential, and multinomial logit de-
mand functions. In the presented paper, a theoretical analysis in which we consider the linear and
isoelastic demand functions will be conducted. The mathematical properties of the problem will
be studied and some theoretical results that lead to finding the optimum pricing policy will be
provided.

The remainder of this paper is organized as follows. Section 2 presents the dynamic pricing
problem assumptions and mathematical formulation. Section 3 describes the resolution approach
under the linear and isoelastic demand. A numerical experiments are presented in section 4. A
conclusion is to be found in section 5.

2 Problem description

The dynamic pricing problem addressed in this study is the same as the model presented in
Shakya et al. (2012). The model is denoted as (P,). The problem considers a firm that produces
and sells its product. The goal is to find the product’s price in each period to maximize the firm’s
total profit over a given horizon. Following the notations used to describe the model:

N Number of periods in the horizon
t Time index, t =1,..., N
Q¢ Number of production (sales) at period ¢
P, Price of a product at period ¢ (decision variable)
C:  Cost of one unit production in period ¢
II  Total profit during the entire planning horizon
P, Upper bound for the price at period ¢
P, Lower bound for price at period ¢
K: Upper bound for the capacity at period ¢
M: Lower bound for the capacity at period ¢

The initial mathematical model Py is detailed below:

N
max I = Z(PtQt — CiQy) (1)
t=1
st : Mt SQt SKt, t:1,2,...,N (2)
&Sptgﬁh t:1a25'“7N (3)
P,>0, t=12,..,N (4)
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The objective function represents the total profit over all the horizon to maximize. P;Q; is the
total revenues in period ¢t and C;Q; is the cost per production in period ¢. Constraints (2) consider
the production capacity, the objective is to regulate the use of the available capacity in each period
(machines, labor, etc ...) by considering production values that are at least equal to the minimum
available capacity and don’t exceed the maximum production capacity. Constraints (3) bound the
selling price of each period by P, and P, to avoid a lower profit value, and a lower demand. Finally,
constraints (4) are the non-negativity constraints. Not that the decisions variables P; (t = 1,..., N)
are a strict positive real numbers.

3 Resolution approach

In the presented work, the linear and isoelastic demand functions are considered. Both are
price-dependent demand. The linear demand is adopted from Shakya et al. (2012) and the isoe-
lastic function is the same as the demand studied in Couzon et al. (2020). The following notations
will be considered in the presented work. Some new notations will be introduced throughout the
analytical study.

PT = (P, Py, ..., Py) The pricing policy’s vector
M The total constraints’ number

3.1 Case with linear demand function

Following the same assumption as in Shakya et al. (2012), the demand in period ¢ (equation 5) is
linear and depends on the price of the product in the same period and on the price of the product in
other periods. a;(> 0) is defined as the intercept parameter, it represents the number of customers
willing to buy the product at period t. b,y are the slope parameters. They represent the impact of
price in period ¢’ on the demand in period t. by is generally assumed to be negative because when
the product’s price in a period ¢ increases, the corresponding demand in the same period decreases.

N
Qi = ¢(Py, Py, ..., Pxy) = ar + Y byt Pr (5)

t'=1

Replacing Q; by its value from (5), Py can be written as:

N N
g =3 (s o) - ©

t'=1
N
st : Mt §at+2bt/tpt/ SKt, t:172,...7N (7)
t'=1
&Sptéﬁt: t:1727"'7N (8)
P>0, t=12.,N 9)

Proposition 1.: The total profit function IT is quadratic and its expression is given in equation
(10). W is a (N x N) symmetric matriz and VT is a (1 x N) vector of real numbers. D is a real
constant number and it is independent from the selling price vector.

II = %PTWP+VTP+D (10)
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Proof of proposition 1: I can be rewritten as follows:

N N N N N N
7= Zatpt - Zatct +Zpt th’tpt/ - th th’tpt’
t=1 t=1 t=1 t'=1 t=1  t/=1
II =51+ 55+ 853
N
With Sy =-> a,C; =D
t=1
N N N
Sy = Zatpt - ZOt th’tpt’
t=1 t=1 t'=1

Sy = (a1 Py — C1(b11PL + b21Po + ... + by1PN)) + (a2 P2 — Ca(b12 Py + booPo + ... + byaPn)) + ...+
(anPn — CN(blNP1 4+ bonPo + ... + bNNPN))

Sy = Py(ay — C1b1y — Cobia — ... — Cnbin) + Pa(as — Crbay — Cobos — ... — Cyban) + ...+
Prn(any — Ciby1 — Cabya — ... — Cnbi )

N N N
SQ = Pl(al — thblt) + PQ(CLQ — thbzt) + - + PN(CLN — thbNt)

=1 =1 =1
Sy =VTPp
With
Vily = (al =Y buChy g — Y boCry .y an = Yy bNtCt)
and
Py
P,
Pyi = :
Py

N N
S3 = ZPt Z byt Py = Py(binPL +ba1Po+ ... + bnv1Pn) + Pa(b12 Py + b2a Py + ...+ byoPrn) + ...+
t=1 =1

Pn(binPr 4+ banPo + ...+ bvnPy)
Let consider :

1
Sy = 5PTWP
with P is the same vector as defined for Sy and
2b11, b1z +b21, biz+b3r, ..., bin+bn1

b1a + bay, 2b2, baz + b3z, ..., ban + b
Wn.N = . : : ) )

bin + b1, bany + b2, b3y + s, ... 2byy

2b11, bio +b21, b1z +b31, ..., bin + DNt Py

1 bio + bo1, 2b2, ba3 + b3z, ..., ban + b2 Py
Sy = 5(P1,P2,--,PN) ) ) ) ) ) .

bin +bn1, ban + b2, b3y + b3, -0 2byy Py
1
54 = 5 (2b11P1 + (b12 + bZI)PZ + ...+ (blN + le)PN)7 (b12 + b21)P1 + 2b22P2 +..t (b2N + bNQ)PN’
P
P,
ooy (0N +bN1) Py A+ (ban +bn2) Po + . + 2bNNPN)>

Py
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Sy = ;<P1 (2b11P1 + (b12 + b21)Po + ... + (bin + le)PN) + PQ((b12 + b21) P14 2b22 Po + ... + (ban + bNQ)PN)
4. +Py ((blN +bn1) Py + (ban + byo) P+ .+ 2bNNPN)>

Sy = ;(H (21711131 2o Pyt ...k 2bN1PN) P (zblgpl ¥ QbooPo 4 ...+ 2bN2PN) T

Py (2b1NP1 § 2o Pot ..+ 2bNNPN)>

Sy = <P1 <b11P1 b Pyt meN) e (1)12131 S booPy ..+ bNQPN) T

Py <b1NP1 +bonPo+ ...+ bNNPN)>

Sy =53

Then, the following relation is tune :

1
I = §PTWP+VTP+D

Considering the constraints of Py, they can be rewritten as:

N
> bPy <Ki—a  t=1,2,.,N (11)
t'=1
N
_th’tpt’ Sat—Mt t:1,2,..,N (12)
t'=1
P,<P, t=1,2,.,N (13)
-P<-P t=12,.,N (14)

From equations (10), (11), (12), (13) and, (14) we have a quadratic objective function and linear
constraints, as a result, Py is a quadratic programming problem and it can be represented as:

1
max Il =-PTwp+VvTp
Py, Ps,.., Py 2 (15)

st : AP < E

The last term D is omitted from the objective function because it’s a constant and it doesn’t
have any influence on the optimal pricing policy. The matrix Ap;xn is defined from the M con-
straints and the vector E contains the right side of each constraint. The values of A and F are
given in the following two equations.

b117 b217 ale
—b11, —ba1, ... ,—bn1
1, 0, ... .0
1, 0, ... ,0
AvN = : : : : (16)
bin, ban, ... ,bnN
—bin, —bon, ..., —byn
0, 0, .. 1
0, 0, .. ,—1
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Ki—a
al—Ml

Eny = : (17)

Since the problem P, is quadratic and all the constraints are linear, two cases are distinguished
regarding the convexity of the objective function II. When IT is not concave i.e the matrix W is
not definite or semi-definite negative, the problem is not convex and it can be solved using non-
linear programming algorithms such as interior-point method, gradient methods, etc. However, all
these methods reach in generally a local optimum. When IT is concave i.e the matrix W is def-
inite or semi-definite negative, P, is a convex programming problem and it can be solved optimally.

First, let consider the case when IT is concave, one way to find the optimal solution of Py, is the
resolution of Karush-Kuhn-Tucker or K KT system related to Py. The K KT conditions generally
aren’t sufficient i.e if a point P* is a solution for the K KT system, then P* can be a local optimum,
a global optimum, or saddle point. However, when dealing with a convex programming problem,
the K KT conditions became sufficient and any solution of the K KT system is a global optimum
of the considering problem. In the rest of the section, the K K'T' system for the problem Py when
this later is a convex programming problem is presented.

Let II' = -II and P} the problem presented as follows:

1
min II'=-PTW'P+VTpP
Py1,Ps,..,Pn 2

st : AP < E

(18)

Note that the matrix W’ = -W and the vector V'7 = -V7T. The resolution of Py to opti-
mality is equivalent to the resolution of P} to optimality. Furthermore, Py is considered to define
the K KT system. Before the presentation of the K K'T' system, some new notations are introduced:

Ajprj :gJ(P) j:172,..7M
AT = (A1, M2,-,A0r) )\; is the jth KKT multiplier with j = 1,2, .., M

The KKT system related to P} is detailed below:

M
VII'(P) + Z AjVg;i(P)=0 N equations (19)
j=1
g;(P) <0 j=12,.,.M M equations (20)
Ajgi(P)=0 j=1,2,..M M equations (21)
A >0, j=1,2...M (22)

After computing the gradients related to the first N equations, they are represented as PTW’ +
V'T + AT A = 0. Regarding the equations (20), they can be replaced by (AP — E) < 0. The value
of \;g;(P) < 0Vj, since from the equations (20) and (22) we have g;(P) < 0Vj and A; > 0 Vj,
respectively. As a result, the M equations related to \;g;(P) = 0 Vj are replaced by the constraint
A1g1(P) 4+ X2g2(P) + ... + Aargar(P) = 0 which corresponds to AT (AP — E) = 0. The last sum is
equal to 0 if and only if each term \;g;(P) = 0 Vj. The KKT system for P} can be represented
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as:
PTW + V7T +ATA=0 N equations (23)
AP—-FE <0 M equations (24)
M(AP-E)=0 1 equation (25)
A >0, j=1,2...M (26)

Regarding the first N equations, they are represented as a one line vector (1 x N). The con-
straints remain the same if we consider the transpose of PTW’ 4+ V'T + AT A = 0 which is equal to
W'P + V' + AT )\. Now, considering the equations AP — E < 0 and AT (AP — E) = 0, the vector
S = (s1,82,...,sn)7 is added, with s; > 0 such that AP — E + S = 0 and AT(—S) = 0. The last
term AT (=S) = 0 is equal to —A{'s; — AJso — ... = Aj;sn = 0. As each term —\Ts; < 0V, the
term AT (—S) = 0 can be replaced by AT(S) = 0. The K KT system is represented as follows:

WP+V +ATA\=0 N equations (27)
AP—E+S=0 M equations (28)
M(s)=0 1 equation (29)
A >0, j=12..M (30)

Finally, the matrix representation of the K KT system of P} is:

W', AT 0 1;_4/,
A 0 In)\y) \E

)\ij = 0, j = 1,2, 7]\4
A >0, j=1,2,., M
5,>0, j=12..M

3.2 Case with Isoelastic demand function

The isoelastic demand function also called the constant elasticity function is the simplest non-
linear demand function. One of its advantages is that it does not require a finite upper limit of
the price Huang et al. (2013). The same demand as the one studied in Bajwa et al. (2016), and
Couzon et al. (2020) is considered. The demand in a period ¢ depends only on the price of the
product in the same period (equation 31). (y > 0) is the seasonality factor. 3 is the price elasticity
of demand, it measures the percentage change in the quantity demanded for a product in relation
to percentage change in its price. According to the authors in Phillips (2005), the price elasticity

is defined as 8 = 75%()1)). Since d'(p) < 0 (downward-slopping of the demand), the value of 8 > 0.

Qt = O[’ytPtiﬁ (31)

Replacing Q; its value from (31), the total profit function IT is equal to:

N
I = Z Oé’ytptiﬂ(Pt — Ct) (32)
t=1

II'=a [711315(131 —C1) + 7Py P (Py = Co) + ... +n Py’ (Py — C) (33)
N

H:ath(Pt) (34)
t=1

with fi(P;) = %P (P — Cy) (35)
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Regarding the capacity constraints M; < Q; < K; Vt, they are represented as:

Mt S CK’)/tPtiﬂ S Kt (36)
M, _ K,
7t <P B < St (37)
Qg Qv
1 1

K B M. B
<t> <P < <t> (38)

Qe Qv

1
_ 5 -
We define I; as : Iy = [P, P} N {(I{t) , <M*) } = [at, be], then, Py can be written as:

N
max Il = az P,
Py,Ps,.. PN P} ft( t)

st P e [at,bt]

Finding the optimal pricing policy is equivalent to find the value P; 4, Which maximizes f;,
i.e P* = (max f1(P1), max fa(P2)...,max fn(Pp)). The optimal selling price for each f; is obtained
analytically through the study of f;’s variation. The derivative of f;, and the value Py for which
fi(P;) = 0 are presented in equations (39) and (40) respectively. When 8 < 1, f{(P;) >0V P, > 0,
which implies that f; is increasing in [0, +oo[ specially in [ag, by], then P 0. = b. When 8 > 1,
Py > 0and 0 < Cy < Py As aresult, f/ > 0 for P, in ]0, Py;] and f/ <0 for P; > Py;. This means
that, f; is increasing in |0, Py and decreasing in [Pot, +00[. Regarding the order between Py, a;
and by, we can consider the following three cases:

1. if a; < POt < bt then Pt,mam = P()t
2. if bt S P()t then Ptjnam = bt
3. if ag > POt then Pt,maw = Q¢

£l = am (Pt“”” (P(1—B) + m))) (39)

Pu=-—c (40)

4 Numerical Experiments

In this section, two numerical examples are presented to illustrate the proposed approach.

Example 1:

The linear demand function is considered, the instance’s parameters are generated randomly
(table 1). The number of periods is fixed to N = 2. The total profit function IT is concave since
(2b11 = =2 < 0, 2bgy = —6 < 0 and 2by;.2bag — (b12 + b21)? = 3 > 0), therefore the optimization
problem Fj is a convex programming problem. The feasible region X and the function I7 are shown
in figures (1a) and (1b) respectively.

Parameters t=1 t
Cl 2
at 3
Mt 3
K 4
8
1
17

P;
Py
b b1 = —

bi2 =1 | ba1 =2,b22 = -3

Table 1: Instance 1 Parameters values
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o~
L~
>

0

The feasible region is shown in white.

(a) feasible region (X) (b) Profit function IT

Fig. 1: Total profit function and feasible area

Before the resolution, the nature of the optimal pricing policy P* is considered. Since the total
profit function is concave and the global maximum of IT in R? is P,,4, = (17, 3?2) ¢ X, any interior
point of X is not an optimal solution for the problem P,. As a result, P* belongs to the boundary
of X.

We apply the K KT system as defined in the section 3.1 (see Appendix A for details). The
K KT system is implemented and resolved using gekko package on Python3. The optimal pric-
ing policy is P* = (Pf = 8,P; = 2) and the optimal total profit value is II* = 27.75. One can
remark that P; = P; = 8 and — P} +2P5 = 1, which confirm that P* belongs to the boundary of X.

Example 2:

The isoelastic demand is considered with 8 = 2 and, a = 100. The values of N, Cy, M, K, P,
and P, are the same as for Example 1. The seasonality parameters are fixed to v; = v5 = 0.5. The
red and blue curves in the following figure represent f1(P;) and fo(P») respectively.

0 5 10 15 20 25 30

Fig.2: Curves of f; and fo

Table 2 shows the values of ay, by, Py, and P} which are computed by following the steps
described in the section 3.2. For f1, the value of Py belongs to [a1,b1], as a result Py = Py; = 4.
Regarding the function fa, the value of Pya > be, thus, Py = ba = 5. The total profit function
IT = f1(P}) + fo(Ps) = 6.25 + 4 = 10, 25.

5 Conclusion

This paper investigated the dynamic pricing problem adopted from Shakya et al. (2012), in
which a firm produces and sells its product over a finite horizon. The problem considers con-
straints such as limited production capacity and production costs. The firm has to set its selling
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Parameters ‘ t=1 ‘ t=2
at 3.53 | 2.35
by 4.08 5
Pot 4 6
Py 4 5

Table 2: Prices’ intervals and optimal pricing policy

prices such that the total profit is maximized.

As a first contribution, the case when the demand at a period ¢ is a linear function of the
price in the same period and the prices of the other periods is studied. It has been shown that
under these assumptions the problem can be formulated as a quadratic programming problem. The
Karush-Kuhn-Tucker system to obtain the optimal pricing policy when the total profit function is
concave is presented.

The second contribution consists of the consideration of the isoelastic demand function which is
commonly used in the literature. It has been proven that when dealing with this demand function,
the objective function is the sum of N univariate functions over N bounded intervals. As a result,
the optimal pricing policy is resumed to find the maximum of each function.

The presented work assumes that the selling price is the only factor that influences demand.
However, consumers are generally sensitive to other parameters like the lead time, rebate, and
competitor prices. One extension of this work is the incorporation of these parameters to the de-
mand function to achieve a more accurate representation of the real market behavior.

Acknowledgment
The authors would like to acknowledge the support from the European Regional Develop-

ment Fund (FEDER) and the Industrial Chair Connected-Innovation (https://chaire-connected-
innovation.fr/)

181



Theoretical resolution of dynamic pricing problem with Iinear and nonlinear demands 1T

A Appendix A

A.1 KKT system for Example 1

From the parameters values presented in the table 1, the problem optimization problem is

formulated as:
1 2 =3\ (P P,
131,111312 2( 1 F2) (—3 6 ) (P2> (=2,-13) <P2>

-1 2 1
1 -2 0
1 0 8
s.t: 11 _03 <§;> < Eg1= 11
-1 3 6
0 1 8
0 —1 -1

The K KT system is defined as:

A1
A2
A3
2 -3 P1+—2+—111—11—100 )\4_0
-3 6 Py —13 2 =200 -3 3 1-1 X | \O
A6
A7
A8
-1 2 1 S 0
1 -2 0 S9 0
1 0 8 S3 0
L0 (P | =L fsaf 2|0
1 -3 P2 1 S5 B 0
-1 3 6 S6 0
0 1 8 S7 0
0 —1 1 o 0
S1
52
S3
s
(A1, Az, A3, Ag, As, Ag, Az, Ag) 82 =0
56
ST
S8
A] 2 0’ j = b b 78
Sj _Oa .7: y &y 78
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Abstract. We propose a new metaheuristic training scheme for Machine
Learning that combines Stochastic Gradient Descent (SGD) and Discrete
Optimization in an unconventional way. Our idea is to define a discrete
neighborhood of the current SGD point containing a number of “poten-
tially good moves” that exploit gradient information, and to search this
neighborhood by using a classical metaheuristic scheme borrowed from
Discrete Optimization. In the present paper we investigate the use of
a simple Simulated Annealing (SA) metaheuristic that accepts/rejects
a candidate new solution in the neighborhood with a probability that
depends both on the new solution quality and on a parameter (the tem-
perature) which is modified over time to lower the probability of accepting
worsening moves.

Computational results on image classification (CIFAR-10) are reported,
showing that the proposed approach leads to an improvement of the final
validation accuracy for modern Deep Neural Networks such as ResNet34
and VGG16.

Keywords: Simulated Annealing - Stochastic Gradient Descent - Deep
Neural Networks - Machine Learning - Training Algorithm

1 Introduction

Machine Learning (ML) is a fundamental topic in Artificial Intelligence. Its
growth in the research community has been followed by a huge rise in the number
of projects in the industry leveraging this technology.

Deep learning is a subset of ML, based on learning data representation through
the use of neural network architectures, specifically Deep Neural Networks (DNNs).
Inspired by human processing behavior, DNNs have set new state-of-art results
in speech recognition, visual object recognition, object detection, and many other
domains.

* Work supported by MiUR, Italy (project PRIN). We gratefully acknowledge the
support of NVIDIA Corporation with the donation of the Titan Xp GPU used for
this research.
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Stochastic Gradient Descent (SGD) is de facto the standard algorithm for
training Deep Neural Networks (DNNs). Leveraging the gradient, SGD allows
one to rapidly find a good solution in the very high dimensional space of weights
associated with modern DNNs. Moreover, the use of minibatches allows one to
exploit modern GPUs and to achieve a considerable computational efficiency.

In the present paper we investigate the use of an alternative training method,
namely, the Simulated Annealing (SA) algorithm [8]. The use of SA for training
is not new, but previous proposals are mainly intended to be applied for non-
differentiable objective functions for which SGD is not applied due to the lack
of gradients; see, e.g., [15,10]. Instead, our SA method requires differentiability
of (a proxy of) the loss function, and leverages on the availability of a gradient
direction to define local moves that have a large probability to improve the
current solution.

Our approach is computationally evaluated in an implementaion leveraging
hyper-parameters. Assume some hyper-parameter values (e.g., learning rates for
SGD) are collected in a discrete set H. At each SGD iteration, we randomly pick
one hyper-parameter from H, temporarily implement the corresponding move as
in the classical SGD method (using the gradient information) and evaluate the
new point on the current minibatch. If the loss function does not deteriorate too
much, we accept the move as in the classical SGD method, otherwise we reject it:
we step back to the previous point, change the minibatch, randomly pick another
hyper-parameter from H, and repeat. The decision of accepting/rejecting a move
is based on the classical SA criterion, and depends of the amount of loss-function
worsening and on a certain parameter (the temperature) which is modified over
time to lower the probability of accepting worsening moves.

A distinctive feature of our scheme is that hyper-parameters are modified
within a single SGD execution (and not in an external loop, as customary) and
evaluated on the fly on the current minibatch, i.e., their tuning is fully embedded
within the SGD algorithm.

Computational results are reported, showing that the proposed approach leads
to an improvement of the final validation accuracy for modern DNN architectures
(ResNet34 and VGG16 on CIFAR-10).

2 Simulated Annealing

The basic SA algorithm for a generic optimization problem can be outlined as
follows. Let S be the set of all possible feasible solutions, and f : S — R be the
objective function to be minimized. An optimal solution s* is a solution in S
such that f(s*) < f(s) holds for all s € S.

SA is an iterative method that constructs a trajectory of solutions s(9, . .. | s(*)
in S. At each iteration, SA considers moving from the current feasible solution
5 (say) to a candidate new feasible solution s,e, (say). Let A(s®), s,00) =
f(8new) — f(5%) be the objective function worsening when moving from s
t0 Spew—positive if S, 18 strictly worse than s®. The hallmark of SA is
that worsening moves are not forbidden but accepted with a certain acceptance
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probability p(s¥), 5,6, T) that depends on the amount of worsening A(s(*) 5,04,
and on a parameter T' > 0 called temperature. A typical way to compute the
acceptance probability is through Metropolis’ formula [11]:

e—A(s(i),Snew)/T if A(8(1)7 Snew) > 0

) 1
1 if A5, spe0) <0 . (1)

p(S, Snew> T) = {

Thus, the probability of accepting a worsening move is large if the amount of
worsening A(s(i), s’) > 0 is small and the temperature T is large. Note that the
probability is 1 when A(s(),s") < 0, meaning that improving moves are always
accepted by the SA method.

Temperature T is a crucial parameter: it is initialized to a certain value Tj
(say), and iteratively decreased during the SA execution so as to make worsening
moves less and less likely in the final iterations. A simple update formula for
TisT=a- T, where a € (0,1) is called cooling factor. Typical ranges for this
parameter are 0.95 — 0.99 (if cooling is applied at each SA iteration) or 0.7 — 0.8
(if cooling is only applied at the end of a “computational epoch”, i.e., after several
SA iterations with a constant temperature).

The basic SA scheme is outlined in Algorithm 1; more advanced implementa-

tions are possible, e.g., the temperature can be restored multiple times to the
initial value.

Algorithm 1 : SA

Input: function f to be minimized, initial temperature Ty > 0, cooling factor
a € (0,1), number of iterations nlter
Output: the very last solution s(*/**")

1: Compute an initial solution s(* and initialize T' = T
2: for i =0,...,nlter — 1 do

3: Pick a new tentative solution s, in a convenient neighborhood N (s¥) of s(*)
4: worsening = f(Snew) — f(s(i))

5. p’f’Ob — efworsening/T

6: if random(0,1) < prob then

7 s = 5,00

8: else

9: S+ — (D)
10: end if
11: T=a-T
12: end for

At Step 6, random(0,1) is a pseudo-random value uniformly distributed in
[0,1]. Note that, at Step 5, the acceptance probability prob becomes larger than
1 in case worsening < 0, meaning that improving moves are always accepted (as
required).
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2.1 A naive implementation for training without gradients

In the context of training, one is interested in minimizing a loss function L(w)
with respect to a large-dimensional vector w € RM of so-called weights. If L(w) is
differentiable (which is not required by the SA algorithm), there exists a gradient
V(w) giving the steepest increasing direction of L when moving from a given
point w.

Here is a very first attempt to use SA in this setting. Given the current
solution (i.e., set of weights) w, we generate a random move A(w) € RM and
then we evaluate the loss function in the nearby point w’ := w — eA(w), where €
is a small positive real number. If the norm of eA(w) is small enough and L is
differentiable, due to Taylor’s approximation we know that

L(w') ~ L(w) — e VI (w)A(w) . (2)

Thus the objective function improves if V(w)T A(w) > 0. As we work in the
continuous space, in the attempt of improving the objective function we can also
try to move in the opposite direction and move to w” := w + ¢ A(w). Thus,
our actual move from the current w consists of picking the best (in terms of
objective function) point wpeq,, say, between the two nearby points w’ and w”’: if
Wnew iMmproves L(w), then we surely accept this move; otherwise we accept it
according to the Metropolis’ formula (1). Note that the above SA approach is
completely derivative free: as a matter of fact, SA could optimize directly over
discrete functions such as the accuracy in the context of classification.

Validation loss comparison Validation accuracy comparison
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(a) Validation loss (b) Validation accuracy

Fig. 1: Performance on the validation set of our naive SA implementation (SSA)
for VGG16 on Fashion-MNIST. SGD: learning rate n = 0.001, no momen-
tum/Nesterov acceleration. SSA: e = 0.01, o = 0.97, Tp = 1.

In a preliminary phase of our work we implemented the simple scheme above
in a stochastic manner, using minibatches when evaluating L(w’) and L(w"), very
much in the spirit of the SGD algorithm. Figures 1-2, compare the performance of
the resulting Stochastic SA algorithm, called SSA, with that of a straightforward
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Fig. 2: Comparison of our naive SA implementation (SSA) vs SGD for VGG16
on Fashion-MNIST. SGD: learning rate n = 0.001, no momentum/Nesterov
acceleration. 8SA: € = 0.01, o = 0.97, Ty = 1. Subfigure (b) clearly shows that
SSA has no overfitting but is not able to exploit the full capacity of VGG16,
resulting into an unsatisfactory final accuracy.

SGD implementation with constant learning rate and no momentum [20] nor
Nesterov [13] acceleration, using the Fashion-MNIST [21] dataset and the VGG16
[16] architecture. Figure 2(b) reports accuracy on both the training and the
validation sets, showing that SSA does not suffer from overfitting as the accuracy
on the training and validation sets are almost identical—a benefit deriving from
the derivative-free nature of SSA. However, SSA is clearly unsatisfactory in terms
of validation accuracy (which is much worse than the SGD one) in that it does
not exploit well the VGG16 capacity.

We are confident that the above results could be improved by a more ad-
vanced implementation. E.g., one could vary the value of € during the algorithm,
and/or replace the loss function by (one minus) the accuracy evaluated on the
current minibatch—recall that SSA does not require the objective function be
differentiable. However, even an improved SSA implementation is unlikely to be
competitive with SGD. In our view, the main drawback of the SSA algorithm
(as stated) is that, due the very large dimensional space, the random direction
+A(w) is very unlikely to lead to a substantial improvement of the objective
function as the effect of its components tend to cancel out randomly. Thus, a
more clever definition of the basic move is needed to drive SSA in an effective
way.

3 Improved SGD training by SA

We next introduce an unconventional way of using SA in the context of training.
We assume the function L(w) to be minimized be differentiable, so we can
compute its gradient V(w). From SGD we borrow the idea of moving in the
anti-gradient direction —V(w), possibly corrected using momentum/Nesterov
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acceleration techniques. Instead of using a certain a priori learning rate 7,
however, we randomly pick one from a discrete set H (say) of possible candidates.
In other words, at each SA iteration the move is selected randomly in a discrete
neighborhood N (w(i)) whose elements correspond to SGD iterations with different
learning rates. An important feature of our method is that H can (actually,
should) contain unusually large learning rates, as the corresponding moves can be
discarded by the Metropolis’ criterion if they deteriorate the objective function
too much.

A possible interpretation of our approach is in the context of SGD hyper-
parameter tuning. According to our proposal, hyper-parameters are collected
in a discrete set H and sampled within a single SGD execution: in our tests,
H just contains a number of possible learning rates, but it could involve other
parameters/decisions as well, e.g., applying momentum, or Nesterov (or none of
the two) at the current SGD iteration, or alike. The key property here is that
any element in H corresponds to a reasonable (non completely random) move,
so picking one of them at random has a significant probability of improving the
objective function. As usual, moves are accepted according to the Metropolis’
criterion, so the set H can also contain “risky choices” that would be highly
inefficient if applied systematically within a whole training epoch.

Algorithm 2 : SGD-SA

Parameters: A set of learning rates H, initial temperature Ty > 0

Input: Differentiable loss function L to be minimized, cooling factor o € (0, 1),
number of epochs nEpochs, number of minibatches N

Output: the best performing w* on the validation set at the end of each epoch

1: Divide the training dataset into N minibatches

2: Initialize s = 0, T =Ty, w® = random_initialization()
3: fort=1,...,nEpochs do

4: forn=1,...,N do

5: Extract the n-th minibatch (z, y)

6: Compute L(w(“, x,y) and its gradient v = backpropag;ation(w(i)7 z,Y)
7 Randomly pick a learning rate n from H

8: Wnew = w — nuv

9: Compute L(wnew, Z,Y)
10: worsening = L(Wnew, ©,y) — L(w®, z, )
11: prob = e~worsening/T
12: if random(0,1) < prob then
13: wltD = Wnew
14 else
15 wltD) — @
16 end if
17: t=1+1

18: end for
19: T=«oa-T
20: end for
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Our basic approach is formalized in Algorithm 2, and will be later referred to
as SGD-SA. More elaborated versions using momentum/Nesterov are also possible
but not investigated in the present paper, as we aim at keeping the overall
computational setting as simple and clean as possible.

4 Computational analysis of SGD-SA

We next report a computational comparison of SGD and SGD-SA for a classical
image classification task involving the CIFAR-10 [9] dataset. As customary, the
dataset was shuffled and partitioned into 50,000 examples for the training set,
and the remaining 10,000 for the test set. As to the DNN architecture, we tested
two well-known proposals from the literature: VGG16 [16] and ResNet34 [5].
Training was performed for 100 epochs using PyTorch, with minibatch size 512.
Tests have been performed using a single NVIDIA TITAN Xp GPU.

Our Scheduled-SGD implementation of SGD is quite basic but still rather
effective on our dataset: it uses no momentum/Nesterov acceleration, and the
learning rate is set according the following schedule: n = 0.1 for first 30
epochs, 0.01 for the next 40 epochs, and 0.001 for the final 30 epochs. As
to SGD-SA, we used o = 0.8, initial temperature Ty = 1, and learning-rate set
H =1{0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0.09, 0.08,0.07,0.06, 0.05}.

Both Scheduled-SGD and SGD-SA use pseudo-random numbers generated
from an initial random seed, which therefore has some effects of the search path
in the weight space and hence on the final solution found. Due to the very large
number of weights that lead to statistical compensation effects, the impact of the
seed on the initialization of the very first solution w(®) is very limited—a property
already known for SGD that is inherited by SGD-SA as well. However, random
numbers are used by SGD-SA also when taking some crucial “discrete” decisions,
namely: the selection of the learning rate n € H (Step 7) and the acceptance
test (Step 12). As a result, as shown next, the search path of SGD-SA is very
dependent on the initial seed. Therefore, for both Scheduled-SGD and SGD-SA
we decided to repeat each run 10 times, starting with 10 random seeds, and to
report results for each seed. In our view, this dependency on the seed is in fact
a positive feature of SGD-SA, in that it allows one to treat the seed as a single
(quite powerful) hyper-parameter to be randomly tuned in an external loop.

Our first order of business is to evaluate the convergence property of SGD-SA on
the training set—after all, this is the optimization task that SA faces directly. In
Figure 3 we plot the average probability prob (clipped to 1) of accepting a move at
Step 12, as well as the training-set accuracy as a function of the epochs. Subfigure
3a shows that the probability of accepting a move is almost one in the first epochs,
even if the amount of worsening is typically quite large in this phase. Later on,
the probability becomes smaller and smaller, and only very small worsenings are
more likely to be accepted. As a result, large learning rates are automatically
discarded in the last iterations. Subfigure 3b is quite interesting: even in our
simple implementation, Scheduled-SGD quickly converges to the best-possible
value of one for accuracy, and the plots for the various seeds (gray lines) are
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(b) Training accuracy (10 runs with different random seeds)

Fig. 3: Optimization efficiency over the training set (VGG16 on CIFAR-10)

almost overlapping—thus confirming that the random seed has negligible effects
of Scheduled-SGD. As to SGD-SA (black lines), its convergence to accuracy one
is slower than Scheduled-SGD, and different seeds lead to substantially different
curves—a consequence of the discrete random decisions taken along the search
path.

Figure 4 shows the performance on the validation set of Scheduled-SGD and
SGD-SA (both with 10 runs with different random seeds) when using the ResNet34
architecture—results with VGG16 are very similar, hence they are not reported.
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As expected, the search path of SGD-SA is more diversified (leading to accuracy
drops in the first epochs) but the final solutions tend to generalize better than
Scheduled-SGD, as witnessed by the better performance on the validation set.

Validation loss comparison
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(a) Validation loss

Validation accuracy comparison
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Fig.4: ResNet34 on CIFAR-10 (validation set)

Table 1 gives more detailed results for each random seed, and reports the
final validation accuracy and loss reached by Scheduled-SGD and SGD-SA. The
results show that, for all seeds, SGD-SA always produces a significantly better
(lower) validation loss than Scheduled-SGD. As to validation accuracy, SGD-SA
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Method Seed VGG16 ResNet34
Loss Accuracy Loss Accuracy
0 0.001640 85.27 0.001519 82.18
1 0.001564 84.94 0.001472 82.58
2 0.001642 84.84 0.001467 82.27
3 0.001662 84.93 0.001468 82.37
4 0.001628 84.92 0.001602 81.69
Scheduled-SGD o 501677 85.370.001558  81.80
6 0.001505 84.91 0.001480 82.24
7 0.001480 85.28 0.001532 82.07
8 0.001623 85.26 0.001574 81.52
9 0.001680 85.41 0.001499 82.41

0.001127 86.44 0.001306 82.55
0.001206 86.18 0.001231 84.11
0.001121 86.04 0.001238 83.32
0.001133 86.76 0.001457 81.39
0.001278 85.17 0.001585 76.31
0.001112 86.30 0.001276 83.74
0.001233 85.71 0.001405 82.07
0.001130 86.59 0.001261 82.57
0.001167 86.14 0.001407 83.12
0.001084 86.28 0.001240 83.19

SGD-SA

© 00 O Ul W= O

Best Scheduled-SGD 0.001480 85.41 0.001467 82.58
Best SGD-SA 0.001084 86.76 0.001240 84.11

Table 1: Best validation accuracy and loss, seed by seed.

outperforms Scheduled-SGD for all seeds but seeds 3, 4 and 6 for ResNet34. In
particular, SGD-SA leads to a significantly better (1-2%) validation accuracy than
Scheduled-SGD if the best run for the 10 seeds is considered.

5 Conclusions and future work

We have proposed a new metaheuristic training scheme that combines Stochastic
Gradient Descent and Discrete Optimization in an unconventional way.

Our idea is to define a discrete neighborhood of the current solution containing
a number of “potentially good moves” that exploit gradient information, and
to search this neighborhood by using a classical metaheuristic scheme borrowed
from Discrete Optimization. In the present paper, we have investigated the use
of a simple Simulated Annealing metaheuristic that accepts/rejects a candidate
new solution in the neighborhood with a probability that depends both on the
new solution quality and on a parameter (the temperature) which is varied over
time. We have used this scheme as an automatic way to perform hyper-parameter
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tuning within a single training execution, and have shown its potentials on a
classical test problem (CIFAR-10 image classification using VGG16/ResNet34
deep neural networks).

In a follow-up research we plan to investigate the use of two different objective
functions at training time: one differentiable to compute the gradient (and hence
a set of potentially good moves), and one completely generic (possibly black-box)
for the Simulated Annealing acceptance/rejection test—the latter intended to
favor simple/robust solutions that are likely to generalize well.

Replacing Simulated Annealing with other Discrete Optimization metaheuris-
tics (tabu search, variable neighborhood search, genetic algorithms, etc.) is also
an interesting topic that deserves future research.
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Abstract Software Product Lines Engineering has created various tools
that assist with the standardisation in the design and implementation
of clusters of equivalent software systems with an explicit representa-
tion of variability choices in the form of Feature Models, making the
selection of the most ideal software product a Feature Selection problem.
With the increase in the number of properties, the problem needs to
be defined as a multi-objective optimisation where objectives are con-
sidered independently one from another with the goal of finding and
providing decision-makers a large and diverse set of non-dominated solu-
tions/products. Following the optimisation, decision-makers define their
own (often complex) preferences on how does the ideal software product
look like. Then, they select the unique solution that matches their prefer-
ences the most and discard the rest of the solutions—sometimes with the
help of some Multi-Criteria Decision Analysis technique. In this work, we
study the usability and the performance of incorporating preferences of
decision-makers by carrying-out Multi-Criteria Decision Analysis directly
within the multi-objective optimisation to increase the chances of finding
more solutions that match preferences of the decision-makers the most
and avoid wasting execution time searching for non-dominated solutions
that are poor with respect to decision-makers’ preferences.

Keywords: Feature Selection, Software Product Line, Multi-Objective Evolution
Algorithm, Multi-Criteria Decision Analysis.

1 Introduction

Software Engineering is divided into multiple domains [1]. One of these domains is
Software Product Lines (SPL) which considers groups of related software systems
as a whole, rather than dealing with every single one of them separately [2].
Feature Models (FMs) is the most recurrent representation of SPLs. Furthermore,
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the FM holds a listing of all the possible feature configurations/combinations
which could be viewed as constraints. Therefore, making the FM a representation
of all valid software products that could be made out the features in the SPL.
Building a software product out of a particular SPL requires the selection
of features that respect the desired software configuration. With the multiple
characteristics/objectives that are interesting to decision-makers in practice (e.g.,
cost, technical feasibility, or reliability), the problem of finding the ‘best’ feature
configuration is seen as an instance of a multi-objective optimisation problem [3,4].

Evolutionary algorithms have long been used to efficiently optimise problems
in various domains from Computer Networks (e.g., [7—7]) to Intelligent Transport
Systems (e.g., [8]), to Software Engineering, based on analytical/mathematical
(e.g., [5,0]) or simulated (e.g., [8,9]) models. Evolutionary algorithms are par-
ticularly effective when dealing with multi-objective optimisation problems in
software engineering (e.g., [L0—13]). This is also the case for multi-objective feature
selection in SPL for which the state-of-the-art SATIBEA [3] is an Indicator-Based
Evolutionary Algorithm (IBEA) that uses a SAT solver as a mutation operator
to correct infeasible solutions.

Multi-objective optimisation techniques result in a set of non-dominated
products/solutions from which decision-makers select the product that fits their
preferences the most. Given that the number of solutions in the set of non-
dominated solutions is often large and that preferences of decision-makers are
often complex, decision-makers are usually assisted by Multi-Criteria Decision
Analysis (MCDA) tools to accomplish this task [14]. There exist multiple MCDA
techniques that take decision-makers’ preferences (each of them with its degree of
preference expressibility) and return the product that match them the most. We
show in this paper that: (i) some MCDA techniques are simplistic and can only
handle a limited number of preference types (e.g., only take weights into accounts
such as ELECTRE-IV), but they are fast, whereas (ii) other more elaborate
MCDA techniques handle larger preference variations (e.g., they enable the use
of different utility functions such as PROMETHEE-II), but they are slower and
more time-consuming.

In this paper, we aim to include preferences of the decision-makers directly in
the multi-objective search process to avoid spending a precious execution time
searching for solutions that are (despite being non-dominated) far from decision-
makers’ preferences. In this paper, we study the effects of using MCDA techniques
in the selection process of SATIBEA instead of the Indicator-Based technique
(i-e., based on the contribution in Hypervolume of each solution). Particularly,
we would like to evaluate the impact in terms of both: (i) the execution time
overhead that it would induce, and (ii) quantity of non-dominated solutions
matching preferences of decision-makers missed by SATIBEA.

This paper makes the following contributions:

— We propose SAT_MCDA _EA, a hybrid algorithm that includes decision-
makers preferences in an MCDA form directly in the evolutionary search
process.
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— We show that using MCDA techniques as a selection operator has an insig-
nificant impact in terms of execution time overhead in comparison to the
execution time taken by one generation of SATIBEA.

— We also show that using MCDA techniques (particularly PROMETHEE-IT)
enables finding a large number of solutions which better match preferences of
decision-makers and that are missed by SATIBEA (despite not outperforming
SATIBEA on most of the multi-objective performance metrics).

Combining MCDA techniques with multi-objective evolutionary algorithms
has already been attempted in a few recent works (e.g., [15-17]). However, to
the best of our knowledge, this is the first time it is attempted in the Software
Engineering domain in general and on the multi-objective feature selection in
FM in particular.

The remainder of this paper is organised as follows: Section 2 presents the
background of our study. Section 3 describes some common MCDA techniques
and details our SAT_MCDA _EA approach. Section 4 provides our overall set-up
and benchmark for multi-objective feature selection in SPL. Section 5 reports the
results of our evaluation in terms of execution time overhead and performance of
SAT_MCDA_EA against SATIBEA. Finally, Section 6 concludes the paper.

2 Background

In this section, we detail two aspects that make up the background of our work.

2.1 Software Product Line Engineering

Software Product Line Engineering is the paradigm that attempts to manage
software variations more systematically and provide tools that cover the do-
main engineering and the application engineering processes with their multiple
phases/activities [18]. In SPL, all software artefacts (i.e., variations of the same
feature) could be picked and put together to form a particular product as long
as they are compatible.

Feature Models is a way to represent an SPL. FMs represent the set of all
available features with their variations and incompatibilities (i.e., constraints).
Figure 1 shows a toy FM example with ten inter-connected features. It shows, for
example, that the final product requires a ‘Screen’. It also shows that there exist
three ‘Screen’ types (i.e., ‘Basic’, ‘Colour’ or ‘High Resolution’) and only one of
them could be selected for the final product. To build a software product from
the SPL, we need to select a subset of features S C F such that constraints of
the FM F are satisfied. Constraints of the FM can be modelled as a satisfiability
(SAT) problem for instantiating Boolean variables to true or false (in our case,
every variable represents a feature) in a way that satisfies all the constraints. A
variable f; € {true, false} is set to true if the feature F; € F is picked to be part
of S, and false otherwise.

An FM can be represented in a conjunctive normal form (CNF). Therefore,
searching for a valid software product in the SPL is equivalent to searching
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for a feasible solution to the SAT problem. For instance, the FM in Figure 1
describes the screen alternatives in its SAT model with these clauses: (Basic V
ColourV High resolution) A(~BasicV—=Colour) \(—~BasicvV-High resolution) A
(=Colour vV —=High resolution).

Mobile Phone

—@® Mandatory
—Q Optional
T> Alternative
» or

- -» Requires

< -» Excludes

Figure 1: Example of a Feature Model

2.2 Multi-Objective Optimisation

Multi-Objective Optimisation (MOO) considers the optimisation of more than
two objective functions at the same time. Software products can be seen from
various perspectives (e.g., development cost, reliability, performance). Therefore,
by considering each of the perspectives as independent objectives, feature selection
in SPL is a suitable candidate for MOO [14].

As a meaningful sample case, we use a set of commonly used optimisation
objectives in the literature [19-21]:

— Correctness — reduce the number of violated constraints.

— Richness of features — increase the number of picked features (have products
with more functionality, minimisation of its negative value is considered).
Features used before — reduce the number of picked features that were not
used before.

Known defects — reduce the number of known defects in picked features.
Cost — reduce the cost of the picked features.

3 State-of-the-Art and Proposed Approach

In this section, we describe the state-of-the-art algorithm SATIBEA and our
proposed approach.

3.1 SATIBEA

SATIBEA [3] is an extension to the Indicator-Based Evolutionary Algorithm
(IBEA) which guides the optimisation through a quality indicator selection
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process (in this case, the Hypervolume); a SAT solver has been introduced as a
mutation operator to assist IBEA.

Note that there are multiple algorithms designed to address the multi-objective
feature selection in SPL problem. Most of these algorithms perform in a similar
fashion as SATIBEA (evolutionary algorithm + exact algorithm such as SMT [20]
or MILP [21,22]). In this work, we do not compare to them as we do not aim
to design an algorithm that is better in terms of multi-objective metrics (even
if we report the performance with respect to those metrics below). Instead, our
goal is to showcase the fact that including preferences of the decision-makers
in the evolutionary search process is worth considering when decision-makers
have complex preferences as: (i) it only adds a marginal execution time overhead,
and (ii) it finds solutions that are interesting with respect to decision-makers’
preferences, but missed by particular IBEA algorithms (in our case SATIBEA).

3.2 Multi-Criteria Decision Analysis

Providing a set of non-dominated solutions, decision-makers explore them to
find their preferred one. Given the large size of the non-dominated sets that are
obtained after performing the multi-objective optimisation, decision-makers take
advantage of MCDA techniques to select the ideal solution with respect to their
preferences.

MCDA deals with decision-making constrained by multiple and often con-
flicting criteria (or objectives or goals). MCDA has been broadly divided into
two categories [141]: (i) Outranking Methods: builds a preference relation, and
(ii) Multiple Attribute Utility and Value Theory: the ‘utility’ of every action is
scored based on its utility.

In this work, we select three commonly used MCDA techniques: two outrank-
ing methods (ELECTRE-IV [23] and PROMETHEE-II [24]) and one Multiple
Attribute Utility and Value Theory method (MAUT [27]).

We propose in this paper to substitute the Indicator-Based selection oper-
ator in the original SATIBEA algorithm by one of the aforementioned MCDA
techniques (i.e., ELECTRE-IV, PROMETHEE-II or MAUT) to create what we
call SAT_MCDA_EA. Therefore, we are creating three distinct algorithms under
the same umbrella of SAT_MCDA _EA: (i) SAT_ELECTRE-IV_EA, where we use
ELECTRE-IV as the selection operator, (ii) SAT_ PROMETHEE-II_EA, where
we use PROMETHEE-II as the selection operator, and (iii) SAT_MAUT_EA,
where we use MAUT as the selection operator.

4 System Set-up

This section presents the different elements that we have used in our experiments:
the dataset, the multi-objective performance metrics, the parameters of the
genetic algorithms (i.e., SATIBEA and SAT_MCDA_EA), the parameters we use
for the MCDA techniques, and the hardware configuration.
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4.1 System and Algorithms Set-up

We use the implementation of SATIBEA that is made available to us by its
creators (implemented in Java) and implement our approach on top of it. We
conduct our experiments on a machine with a 4 core CPU (our algorithms use
a core at a time though) and 16 GB of RAM. We ran all our algorithms and
determined the average results over 30 runs for each instance.

We use the same parameters for SATIBEA as those defined by its authors
(e.g., population size: 300, crossover rate: 0.8, mutation rate of each feature
selection: 0.001, and solver mutation rate: 0.02). We also use the same parameters
as SATIBEA for our SAT_MCDA_EA approach. Furthermore, we define addition
parameters for the MCDA techniques to simulate preferences of decision-makers.
Note that the chosen preferences are only selected to showcase different capabilities
of each MCDA method. Therefore, it will be worth performing a more robust
analysis with different kinds of preferences and a full parameters sweeping for
each of these MCDA methods in a future work.

— ELECTRE-IV: requires a parameter triplet (optimisation threshold, prefer-
ence threshold, and indifference threshold) for every objective. We set these
triplets to (5,6,5), (3,4,3), (0.1,0.3,0.1), (1,2,1) and (3,4,3) for Correctness,
Richness of features, Feature used before, Known defects, and Cost.

— PROMETHEE-II: requires a parameter pair (weight and preference function)
for each objective. We set equal weights for all objectives and set their prefer-
ence functions to Level, Linear, Linear, Level, and Gaussian for Correctness,
Richness of features, Feature used before, Known defects, and Cost.

— MAUT: only requires one parameter per objective (weight) that we set equally
for all the objectives.

Based on the parameters that each of the MCDA techniques requires, we
see that PROMETHEE-II is the most expressive between them as it enables
decision-makers to design their own custom utility function for each objective
and feed it to the MCDA.

4.2 Dataset

For our experiments, we use the five of the largest open source FMs we could
find [20]. Table 1 shows the version and the size of each of the FMs that we
consider in our experiments. The table also reports the number of features and
the size of the SAT problem necessary to represent the FM in a conjunctive
normal form (in terms of number of variables and number of clauses). Similarly to
the SATIBEA paper [3], we set the execution time on the Linux Kernel to 1,200s.
For the other datasets, we use smaller execution times based on the convergence
time of SATIBEA [19, 20].

4.3 Multi-Objective Performance Metrics

To assess the performance of our algorithms we use 5 multi-objective performance
metrics: 4 quality metrics (Hypervolume, Epsilon, Generation Distance, and
Inverted Generation Distance) and 1 diversity metric (Spread).
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Table 1: Versions and characteristics of the feature models used in our experiments.

Dataset Version |#Features|# Variables|#Clauses| Time (s)
Linux kernel| 2.6.28.6 5,701 6,888 343,944 | 1,200
eCos 20100825 1,244 1,244 3,146 50
Fiasco |2011081207| 300 1,638 5,228 200
FreeBSD 8.0.0 1,396 1,396 62,183 200
pClinux 3.0 616 1,850 2,468 100

— Hypervolume (HV): computes the volume (measured in k dimensions of the
problem’s search space) that is dominated by the Pareto front (to maximise).

— Epsilon (e€): evaluates the smallest distance that is needed for every solution
in Pareto front to dominate the Reference front (to minimise).

— Generation Distance (GD): evaluates the smallest distance needed for every
solution in Pareto front to dominate the Reference front (to minimise).

— Inverted Generation Distance (IGD): evaluates average distance between
every solution in Reference front and its closest solution in Pareto front (to
minimise).

— Spread (S): computes the solutions’ distribution to evaluate their extent
spread in Pareto front (to maximise).

5 Evaluation

5.1 Execution Time Overhead

One of the major issues that kept designers of evolutionary algorithms away
from using MCDA techniques within the search process is the excessive execution
time that these techniques require. More researchers and practitioners favour less
time-consuming indicator-based methods. This is even more true with problems
that are only given a few seconds as a total optimisation time budget. In this
section, we evaluate the overhead execution time that is introduced by the use of
MCDA techniques. We compare the execution time of MCDA techniques to the
execution time needed to evolve a full generation and also to the execution time
of the default indicator-based method (in our case, the Hypervolume).

Table 2 shows the average execution time in millisecond over 30 iterations
of the second generation of SATIBEA (the generation following the evolution
of the randomly generated initial population) using the default indicator-based
(Hypervolume). The table also shows the average execution time of each partic-
ular selection technique from Indicator-Based, to the three considered MCDA
techniques (i.e., ELECTRE-IV, MAUT, and PROMETHEE-II).

We clearly see that the execution time of a full SATIBEA generation is very
large in comparison to the execution time of the different selection operators
(148 times larger on average than the largest selection time per instance). A
single generation takes on average 531, 11, 84, 100, and 12 times larger execu-
tion times than the most time-consuming selection process (in this case, using
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Table 2: Average execution time (ms) of the second generation of SATIBEA,
indicator-based selection, and MCDA selection methods.

Dataset |Generation|Indicator-Based | ELECTRE-IVIMAUT|PROMETHEE-II
Linux Kernel| 53,788 30.50 1.71 62.75 101.23
eCos 1,235 30.22 1.93 60.33 114.82
Fiasco 12,477 44.49 1.42 59.68 149.04
FreeBSD 12,742 29.57 1.56 71.28 127.30
uClinux 1,197 31.6 1.55 58.09 96.44

PROMETHEE-II) on the instances Linux Kernel, eCos, Fiasco, FreeBSD and
uClinux respectively. This is a clear indication that using any of the studied
MCDA techniques is less likely to add a significant execution time overhead. The
execution time of the section process is particularly insignificant when dealing
with the large instances (Linux Kernel, Fiasco and FreeBSD).

We see that with the exception of ELECTRE-IV, MCDA techniques (i.e.,
MAUT and PROMETHEE-II) necessitate a larger execution time than the default
Indicator-Based selection. This is one of the main reasons why the simplistic
weighted-sum is the de-facto go to in absence of a pure multi-objective objective
optimisation (keeping objectives separate with no aggregation). However, we
notice in our usecase that the order by which the execution time of these MCDA
techniques exceed the Indicator-Based selection is rather small (~0.9 and ~2.5
more execution time on average for MAUT and PROMETHEE-II respectively).

Therefore, we could claim that from an execution time perspective and in the
context of multi-objective feature selection in large software product lines such
as the ones studied in our paper, decision-makers should no longer be reluctant
to provide their preferences in advance to be embedded in the multi-objective
optimisation process.

5.2 Multi-Objective Performance Metrics

Knowing that using MCDA techniques in the multi-objective optimisation process
does not add a significant execution time overhead is good, but obtaining improved
results is better —despite not being the most important in our case as our goal is
to find more solutions that match decision-makers’ preferences. Therefore, we
would like to evaluate the impact of our approach in terms of performance and
quantify it using the different multi-objective metrics seen in Section 4.

Table 3 shows the average performances achieved by SATIBEA and SAT -
MCDA_EA techniques (i.e., SAT ELECTRE-IV_EA, SAT_ MAUT_EA, SAT_-
PROMETHEE-II_EA) with respect to the quality metrics HV, IGD, GD, Epsilon
and Spread. We put in bold the best achieved performances per instance and
per metric. We also put (*) when results are not statistically significant between
SATIBEA and the best performing SAT_MCDA _EA technique (p-value j 0.05
when evaluated using the non-parametric two-tailed Mann-Whitney U test).
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Table 3 clearly shows that SATIBEA achieves the best performances on
the metrics HV and IGD on all instances. SATIBEA also achieves the best
performances on Epsilon in 4 out of 5 instances on average. This is a clear
indication that SATIBEA maintains its supremacy with regards to very important
multi-objective performance metrics. This is quite understandable as SATIBEA’s
aim by design is to cover most of the search space, which yields better multi-
objective quality metrics performances. However, SAT_MCDA_EA algorithms
target solutions that better match the predefined preferences of the decision-
makers and leave large parts of the search space unprobed, which yields low
multi-objective quality metrics performances.

Table 3 also shows that SATIBEA does not always achieve the best results
with respect to the Spread metric. SAT_ ELECTRE-IV_EA achieves the best
performance on Spread on 3 out of 5 instances on average. Although, Spread is a
secondary metrics and should not be interpreted alone without the other quality
metrics. Looking at SAT ELECTRE-IV_EA’s performance in terms of HV, we
see that it is poor, which reduces the importance of its Spread performance.

Table 3 also shows that SATIBEA is not achieving the best GD on any instance
(achieved by SAT_ PROMETHEE-II_EA ). This is an indication that most of the
solutions that are found by SAT PROMETHEE-II_EA are non-dominated by the
solutions found by the other algorithms. However, given that the performance
of SAT_ PROMETHEE-IT_EA in terms of HV is poor, we can deduce that its
solutions are not diverse enough. While this might seem negative, we believe
that this is a good characteristic. Decision-makers would rather be provided
with several non-dominated solutions that are similar and better match their
preferences, rather than a set of non-dominated solutions covering a larger space,
but match their preferences less. Furthermore, SAT_MAUT_EA also achieves a
better performance than SATIBEA in terms of GD on 3 out of 5 instances on
average.

5.3 SAT _MCDA _EA’s Strictly Non-Dominated Solutions
With SAT_ PROMETHEE-II_EA and SAT_MAUT_EA achieving good GD per-

formances, we would like to measure the ratio of non-dominated solutions found
by SAT_MCDA_EA algorithms, but missed by SATIBEA. We gather all non-
dominated solutions found over all iterations by each algorithm and perform a
pairwise non-dominance comparison. Table 4 shows the ratio (in percentage) of
solutions found by each SAT MCDA_EA that are strictly non-dominated (neither
equal nor dominated) by any solution found by SATIBEA.

Table 4 confirms our assumption that many solutions found by SAT_ MAUT -
EA and SAT_ PROMETHEE-II_EA are strictly non-dominated by those found
by SATIBEA. We see that SAT_ PROMETHEE-II_EA finds the largest number
of solutions non-dominated by those found by SATIBEA (~83% non-dominated
solutions on average, and 94% on Fiasco). Therefore, if decision-makers have
a prior knowledge of what makes a good software, they are better off using
PROMETHEE-II as a selection operator. While this will not yield optimal
multi-objective metrics, it will yield more solutions matching their preferences.
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Table 3: Comparison of the average performances achieved by SATIBEA and the
various SAT MCDA_EA algorithms.

Dataset Metric| SATIBEA | SAT_ELECTRE-| SAT_MAUT_EA | SAT_.PROMETHEE-

IV_EA II_LEA

HV 0.136 0.124 0.123 0.134

1GD 0.010 0.016 0.016 0.012

Linux Kernel | GD 0.030 0.130 0.012 0.007
€ 1982 2047 2051 1991

S 1.16 1.24 1.21 1.19

HV 0.252 0.206 0.188 0.085

I1GD | 0.0071 0.0072 0.008 0.016
eCos GD 0.0722 3.8714 0.0935 0.0031
€ 147 260 217 149

S 1.51"% 1.30 1.33 1.55

HV 0.195 0.133 0.132 0.124

1GD 0.009 0.022 0.024 0.018

Fiasco GD 0.065 0.237 0.076 0.008
€ 277 917 950 171

S 1.58 1.14 1.16 1.27

HV 0.24 0.18 0.18 0.08

1GD 0.006 0.011 0.012 0.018

FreeBSD GD 0.091 0.156 0.066 0.004
€ 133 303 308 498

S 1.21 1.23* 1.20 1.21

HV 0.893 0.89 0.891 0.805

1GD 0.054 0.055 0.056 0.060

uClinux GD 0.043 0.016 0.015 0.012
€ 598" 611 604 1199

S 1.067 1.229 1.198 1.003

Table 4: Ratio (in per cent) of strictly non-dominated solutions found over the 30
iterations by SATIBEA using one of the MCDA methods in comparison with the
solutions found by SATIBEA when using the default Indicator-Based method.

D SAT_ELECTRE-IV_EA SAT_MAUT_EA SAT_PROMETHEE-II_EA
ataset vs SATIBEA vs SATIBEA vs SATIBEA
Linux Kernel 40 41 66

eCos 33 42 90

Fiasco 27 59 94

FreeBSD 26 48 92

uClinux 5 34 73
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6 Conclusion and future work

In this paper, we proposed using MCDA techniques directly within the multi-
objective search process by employing them as the selection operator. We have
evaluated their impact both in terms of induced execution time overhead and in
terms of quality of the obtained solutions. We have seen that using the MCDA
techniques introduces a non-significant overhead execution time with respect to
the execution time of the other operators that make up the evolution. However,
we have also seen that using the MCDA techniques within the search process
impacts negatively the performance of the algorithm with respect to various
multi-objective performance metrics with the exception of GD. We have confirmed
that the SAT_MCDA _EA algorithms perform particularly well with respect to
GD as they find a large number of solutions that match their preferences but that
are not dominated by the solutions found by SATIBEA. The insight obtained
from this study encourages us to deepen the investigation of combining MCDA
techniques with the multi-objective feature selection in SPL.

Acknowledgement: This work was supported, in part, by Science Foundation
Ireland grants No. 13/RC/2094_P2 (Lero) and 13/RC/2106_P2 (ADAPT).
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Abstract. Understanding the phenomenon of disinformation and its
spread through the internet has been an increasingly challenging task,
but it is necessary since the effects of this type of content have their
impacts in the most diverse areas and generate more and more impacts
within society. Automated fact-checking systems have been proposed by
applying supervised machine learning techniques to assist in filtering fake
news. However, two challenges are still present, the first related to under-
standing disinformation in its subgroups. The second challenge is related
to the availability of datasets containing news classified between true and
false. This article proposes an exploratory analysis through unsupervised
algorithms and the t-SNE technique to visualize data with high dimen-
sionality, identify the subgroups present in the disinformation, and the
identification of possible outsiders between the classes. We also propose
a new Corpus in Portuguese containing 19446 news, classified as true
and false, and 15 linguistic features extracted from this dataset. Fi